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hinisx C. AnglanoxAbstra
tQuality of servi
e (QoS) in delivery of 
ontinuous media over the Internet is still relativelypoor and in
onsistent. Although many su
h appli
ations 
an tolerate some degree of missinginformation, signi�
ant losses degrade an appli
ation's QoS. One approa
h to providing QoS for
ontinuous media appli
ations over the Internet is to use the IntServ model for signaling (e.g.,RSVP) and resour
e reservation in all routers along the streaming path. However, this approa
hsu�ers from s
alability and deployment problems. In 
ontrast, in this paper we investigate thepotential bene�ts of mitigating the QoS guarantee problem through the exploitation of multiplepaths existing in the network between a set of senders and a re
eiver of 
ontinuous media. Oneadvantage of this approa
h is that the 
omplexity of QoS provision 
an be pushed to the networkedge and hen
e improve the s
alability and deployment 
hara
teristi
s while at the same timeprovide a 
ertain level of QoS guarantees.Our fo
us in this work is on providing a fundamental understanding of the bene�ts of usingmultiple paths to deliver 
ontinuous media over best-e�ort wide-area networks. Spe
i�
ally, we
onsider pre-re
orded 
ontinuous media appli
ations (as in video-on-demand systems) and usethe following metri
s in evaluating the performan
e of multi-path streaming as 
ompared tosingle-path streaming: (a) data loss rate, (b) 
onditional error burst length distribution, and (
)lag1-auto
orrelation. The results of this work 
an be used in guiding the design of multi-path
ontinuous media systems streaming data over best-e�ort wide-area networks.1 Introdu
tionQuality of servi
e (QoS) in streaming of 
ontinuous media over the Internet is still poor andin
onsistent. The degradation in quality of 
ontinuous media appli
ations, involving delivery ofvideo and audio, is partly due to variations in delays as well as losses experien
ed by pa
ketssent through wide-area networks. Although many su
h appli
ations 
an tolerate some degree ofmissing information, signi�
ant losses degrade an appli
ation's quality of servi
e. One approa
h toproviding QoS for 
ontinuous media appli
ations over the Internet is to use the IntServ model forsignaling (e.g., RSVP) and resour
e reservation in all routers along the streaming path. However,this approa
h su�ers from s
alability and deployment problems. In 
ontrast, in this work weinvestigate the potential bene�ts of providing QoS guarantees in 
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the exploitation of multiple paths existing in the network between a set of senders and a re
eiver.One advantage of this approa
h is that the 
omplexity of QoS provision 
an be pushed to thenetwork edge (an original design prin
iple of the Internet) and hen
e improve the s
alability anddeployment 
hara
teristi
s while at the same time provide a 
ertain level of QoS guarantees. Ourfo
us in this work is on providing a fundamental understanding of the bene�ts of using multiplepaths to deliver 
ontinuous media data (su
h as video) destined for a parti
ular re
eiver, i.e., thisdata is fragmented into pa
kets and the di�erent pa
kets take alternate routes to the re
eiver.There are a number of approa
hes to a

omplishing a multi-path data delivery, and we des
ribethe spe
i�
 approa
h 
onsidered in our system below. We �rst note that su
h paths do not haveto be 
ompletely disjoint, i.e., it is suÆ
ient for them to have disjoint points of 
ongestion orbottlene
ks. Existen
e of multiple paths with disjoint bottlene
ks in
ludes the following potentialbene�ts.� Redu
tion in 
orrelation between 
onse
utive pa
ket losses. Although a 
ontinuous media(CM) appli
ation 
an tolerate some missing information, a large number of 
onse
utive pa
ketlosses not only 
ontributes to signi�
ant degradation in CM quality but also diminishes abilityto 
orre
t su
h losses through error 
orre
tion te
hniques, e.g., erasure 
odes. As we will showin this paper, sending data through multiple paths 
an potentially redu
e burst lengths and
orrelations between 
onse
utive losses and thus improve the quality of delivered data.� In
reased throughput. In delivery of 
ontinuous media one 
an tradeo� the quality of thedata with the amount of 
ompression a
hieved, i.e., one 
an redu
e the amount of bandwidthneeded to deliver the data at the 
ost of its quality. Sending data through multiple pathspotentially in
reases the amount of (aggregate) bandwidth available to the appli
ation andhen
e in
reases the quality of delivered data.� Ability to adjust to variations in 
ongestion patterns on di�erent parts of the network. CMappli
ations are often long lasting (e.g., delivery of a movie might take on the order of hours).Hen
e, it is reasonable to expe
t that network 
onditions will 
hange throughout the deliveryof data to a CM appli
ation. Sin
e not all paths, in general, would experien
e the same traÆ
patterns and 
ongestion, sending data through multiple paths potentially improves the abilityto adapt to 
hanges in network 
onditions.In general, the use of multiple paths in designing of distributed (over best-e�ort wide-area networks)
ontinuous media appli
ations requires 
onsideration of the following issues.� Determining bottlene
ks, joint points of 
ongestion, and network 
hara
teristi
s in general.To gain the bene�ts of multi-path streaming des
ribed above, one must �rst determine thepaths to be used in delivery of the data. Sin
e it is reasonable to 
hara
terize a path usingits bottlene
k link [2℄, what we need to be able to do is determine whether a number of pathsshare points of 
ongestion, i.e., have joint or disjoint bottlene
ks [7, 18℄. Although this isnot ne
essary in our approa
h, other approa
hes to multi-path streaming might require fairlya

urate estimation of various network 
hara
teristi
s (refer to Se
tion 5). These are non-trivial problems whi
h are outside the s
ope of this paper. However, we note that 
urrentlywe use [18℄ in our system for dete
ting shared points of 
ongestion.� E�e
ts of redundan
y and error erasure s
hemes. Some amount of lost data 
an be re
on-stru
ted in CM appli
ations through the use of redundant information, e.g., as in FEC [1℄2



te
hniques. Hen
e, in 
onstru
ting multipath streaming te
hniques one should take into 
on-sideration the e�e
t of redundant information on the �nal quality of the data and how theerasure 
odes intera
t with multi-path delivery.� Adaptation s
hemes under 
hanges in network 
onditions. When network 
onditions 
hange,one 
an improve the quality of CM by adapting how the data is streamed on multiple paths(e.g., by sending less data on 
ongested paths).� Data pla
ement. Proper pla
ement of data on the servers is an issue in the 
ontext of CMappli
ations delivering pre-stored data, for instan
e, a video-on-demand appli
ation (in 
on-trast to a video 
onferen
ing appli
ation where data is produ
ed \live"). Inappropriate datapla
ement 
an adversely e�e
t servers' performan
e. For instan
e, this 
an o

ur due to loadimbalan
e problems arising from the fa
t that only spe
i�
 parts of the data are being deliv-ered from a parti
ular server as well as the fa
t that spe
i�
 data required might 
hange overthe 
ourse of the appli
ation, as the system adapts to 
ongestion patterns in the network.This in turn redu
es the quality of servi
e experien
ed by the CM appli
ation (in this 
asedue to server rather than network performan
e). We note that these problems 
an be moresevere when adaptation s
hemes (as mentioned above) are used.� Data dispersion. Given that one 
annot ne
essarily rely on the network layer to providemultipath routing, another 
onsideration is how to a

omplish the dispersion of data overmultiple paths existing in the network between a sender and a re
eiver of data. This maybe an espe
ially important 
onsideration for appli
ations where data is generated live, e.g.,a video 
onferen
ing appli
ation, in 
ontrast to appli
ations where data is pre-re
orded (andhen
e 
an, for instan
e, be dispersed to a set of distributed servers in advan
e of a
tual datastreaming).� Need for proto
ol/network support. Lastly, some me
hanisms for streaming appli
ation dataover multiple paths might require support from lower layers, su
h as the network layer. Of
ourse, in this 
ase, ease of deployment is an issue.Although all these issues are of importan
e, in this paper we narrow the s
ope by fo
using on:� delivery of pre-stored video, e.g., as in video-on-demand appli
ations (in 
ontrast to deliveryof \live" data as in video-
onferen
ing appli
ations);� appli
ation-level s
hemes (whi
h are deployable today over the 
urrent Internet) | that is,we assume the use of best-e�ort IP-based networks, where a spe
i�
 path is used betweenany pair of hosts (sender and re
eiver) on the network and this path is determined by anetwork-level routing algorithm; furthermore, our system does not require spe
i�
 knowledgeof the paths, only the ability to determine whether two paths share a point of 
ongestion,e.g., using [18℄;� a

omplishment of multiple paths to the same re
eiver by distributing servers a
ross wide-areanetworks and streaming data from multiple senders simultaneously;� streaming over the network issues only (rather than, e.g., 
onsidering server-related problemssu
h as the load balan
ing issues mentioned above); that is, for the purposes of this paper weassume that the data is fully repli
ated at all servers and hen
e any server 
an deliver anyfra
tion of the CM data. 3



Our system is depi
ted in Figure 1, where any server 
an send any fra
tion of the 
ontinuousmedia data. More spe
i�
ally, server i sends fra
tion �i of the data expe
ted by the re
eiver, where
...

Network

receiver

senders
S1 S2 S3 SN

Figure 1: Continuous media system using multipath streaming.0 � �i � 1 and Pi �i = 1. In general, we assume that the setting and possible adaptation of thesefra
tions (as the delivery of data progresses) is done by the re
eiver (based on its per
eived qualityof data and determination of joint points of 
ongestion). The re
eiver assembles the data frommultiple senders and plays it in the appropriate order.In the remainder of the paper, our fo
us is on providing the fundamental understanding and on
hara
terizing the bene�ts of the multi-path approa
h to streaming of pre-stored 
ontinuous mediadata over wide-area networks, under the setup des
ribed above. More spe
i�
ally, we fo
us on loss
hara
teristi
s as they are an indi
ation of the resulting quality of the delivered data stream. Webelieve that the understanding of loss 
hara
teristi
s under a multi-path approa
h is non-trivialand deserves further attention. We also believe that the work presented here is a step in theright dire
tion. Spe
i�
ally, the 
ontributions of this paper are as follows. Firstly, we give ananalyti
al 
hara
terization of when a multi-path approa
h is bene�
ial, as 
ompared to a singlepath approa
h, using the following metri
s (a) pa
ket loss rate, (b) lag-1 auto
orrelation of pa
ketlosses, and (
) burst length distribution. (These metri
s are de�ned more formally in Se
tion 2).We also extend this analysis to information loss rate, i.e., we 
onsider the resulting losses afteran appli
ation of an erasure 
ode. Se
ondly, we extend the evaluation of the multi-path approa
hbene�ts using simulations of the analyti
al model as well as through more detailed simulationsusing a pa
ket-level network simulator [8℄. These are also performed with and without the use ofan erasure 
ode. Our results indi
ate that: (1) in general, multi-path streaming exhibits better loss
hara
teristi
s than single-path streaming, (2) use of an erasure 
ode may not ne
essarily improvedata loss 
hara
teristi
s in the 
ase of single-path streaming, while multi-path streaming (with orwithout use of an erasure 
ode) 
an improve data loss 
hara
teristi
s, and (3) lag1-auto
orrelationof multi-path streaming is usually 
loser to zero than that of single path streaming, and we believethat this will also result in a higher viewing quality of the re
eived 
ontinuous media.The remainder of this paper is organized as follows. In Se
tion 2 we present our analyti
alevaluation of the multipath approa
h des
ribed above. This evaluation is extended through sim-ulation, using both the analyti
al model and a network simulator, in Se
tions 3 and 4. Se
tion5 brie
y des
ribes some additional 
onsiderations in the use of multi-path streaming as well aspresents related work on this topi
. Our 
on
luding remarks are given in Se
tion 6.
4



2 Analyti
al EvaluationIn this se
tion, we present our analysis of the single-path and the multi-path streaming approa
hes.As mentioned earlier, our main fo
us is on loss 
hara
teristi
s. We �rst 
onsider these approa
heswithout the use of erasure 
odes, so as to understand the basi
 di�eren
es between single andmulti-path streaming. We then also 
onsider the 
hanges in loss 
hara
teristi
s when and erasure
ode, and hen
e redundant information, is added, as this is another approa
h to dealing with pa
ketlosses. Spe
i�
ally, we 
onsider a variation of su
h 
odes, whi
h we refer to as FEC, as de�nedbelow. As in [2℄, we use a two-state Markov 
hain, known as the Gilbert model, as our model of apath; as in [2℄ we 
hara
terize the path by its bottlene
k link. This model, whi
h is de�ned moreformally below, allows for dependen
e in 
onse
utive pa
ket losses and should be a more a

uraterepresentation of the network than an independent loss model.We use the following performan
e measures to quantify the merits of the di�erent streamingapproa
hes (these are de�ned more formally below):1. mean data pa
kets loss rate (with and without FEC),2. 
onditional burst length distribution, 
onditioned on there being at least one error (with andwithout FEC),3. lag-1 auto-
orrelation (with and without FEC).The �rst performan
e measure is an obvious approa
h to 
omparing single and multi-path streaming(when losses, rather than throughput, are of importan
e). The other two performan
e measuresare less obvious; however, we believe that they 
an signi�
antly a�e
t the quality of the viewed
ontinuous medai. To illustrate this point, in the next se
tion we brie
y 
onsider a \quality ofviewed data" type measure. In subsequent se
tions we return to the analysis of the streamingte
hniques.2.1 Visual Quality of DataWe �rst give a brief motivation for 
onsidering above given performan
e metri
s, and spe
i�
ally,for 
onsidering burst lengths and 
orrelations between losses. We dis
uss this in the 
ontext of videodata. Ideally, one would like to have a measure of the quality of the viewed video, as a fun
tion ofloss 
hara
teristi
s. To the best of our knowledge, there is no su
h widely a

epted measure, andoften the quality of a video is evaluated using human observers. However, some metri
s have beenused in the past, for instan
e, signal to noise ratio of the resulting video [6℄. Hen
e, we illustratethe e�e
ts of bursty losses on the quality of the resulting video (and spe
i�
ally on the signal tonoise ratio) using the following experiment.Experiment (E�e
t of Correlated Bursty Losses on Video Quality) : In this experiment,we drop 2% of the frames from video V. These 2% losses are introdu
ed in a variety of \patterns",e.g., the dropped frames 
an be evenly spa
ed throughout video V, or they 
an be more bursty.The details of whi
h frames are dropped, given a parti
ular drop pattern as identi�ed by the burstlength, are given in the �rst two 
olumns of Table 1. Moreover, in evaluating the quality of theresulting video V, we use a 
ommon error 
on
ealment s
heme to make up for a dropped frame.Spe
i�
ally, a dropped frame is repla
ed by the previous frame whi
h is su

essfully re
eived. Forexample, frame i repla
es frames i+1; i+2; � � � ; i+ k if frame i is re
eived su

essfully and framesi+ 1; � � � ; i+ k are lost. 5



Error Burst Length Lost Frames Numbers PSNR (dB)1 25+k*50 where k2 f0; 1; � � � ; 29g 39.107 dB2 f50,51g + k*100 where k2 f0; 1; � � � ; 14g 38.015 dB3 f74,75,76g +k*150 where k2 f0; 1; � � � ; 9g 31.325 dB5 f123,124,125,126,127g +k*200 where k2 f0; 1; � � � ; 5g 30.433 dB15 f368,369,...,381,382g +k*750 where k2 f0; 1g 28.407 dB30 f736,737,...,764,765g 29.942 dBTable 1: Peak signal-to-noise ratio (PSNR) for various bursty loss patterns.For ea
h possible frame loss pattern, we measure the quality of the re
eived video by 
omputingthe peak signal-to-noise ratio (PSNR) as follows. (Note that, a larger value of PSNR implies ahigher quality of the video.) In general, for a video of l frames where ea
h frame 
onsists of m� npixels, (ea
h 
ontaining an RGB value1 with ea
h of the three 
olors represented by 8-bits), thePSNR is 
al
ulated using the following expression (in dB):SNRpeak = 10� log10 2552 Pmi=1Pnj=1Plk=1P3
=1(P1(i;j;k;
)�P2(i;j;k;
))23�m�n�l ! :where Ps(i; j; k; 
) is the pixel value at 
oordinate (i; j) of k-th video frame (of stream s, s = 1; 2)and 
olor 
hannel 
 where 
 = 1; 2; 3, for red, green, and blue, respe
tively. In our experiment, thevalues of m,n, and l are 352, 240 and 1500, respe
tively. The sour
e video in this experiment isusing MPEG-1 NTSC settings [5℄ where ea
h frame is 352 � 240 (with 29:97 frames per se
ond),hen
e the values of m and n above. Also, we use approximately the �rst 50 se
onds of this videofor this experiment, hen
e the value of l above. Values for P1 are obtained from the frame sequen
eresulting after the drop-and-
on
eal pro
ess while values for P2 are obtained from the original videoframes of V.Table 1 gives the PSNR values for the di�erent burst patterns. We 
an observe that given thesame amount of information loss (e.g., 2% in our experiment), the PSNR metri
 
an be signi�
antlylower for the more bursty loss patterns, and hen
e is the quality of the video. Thus, we believethat burst length distribution and 
orrelations between losses are the right metri
s for evaluatingthe goodness of a streaming approa
h as they dire
tly re
e
t on the quality of re
eived video.2.2 ModelLet us now state the path model used in this paper. As in [2℄, we use a stationary 
ontinuous timeGilbert model to 
hara
terize the potential 
orrelations between 
onse
utive losses on a path. Undera stationary 
ontinuous time Gilbert model, the pa
ket loss pro
ess along path k is des
ribed by atwo state 
ontinuous time Markov 
hain fXk(t)g where Xk(t) 2 f0; 1g. If a pa
ket is transmittedat time t when the state of path k is Xk(t) = 0, then no pa
ket loss o

urs. On the other hand,the transmitted pa
ket is 
onsidered lost if Xk(t) = 1. The in�nitesimal generator for this Gilbertmodel of path k is: Qk = " ��0(k) �0(k)�1(k) ��1(k) # :1Information about the three 
olors, red, green, and blue.6



The stationary distribution of this Gilbert model is �(k) = [�0(k); �1(k)℄ where �0(k) = �1(k)=(�0(k)+�1(k)) and �1(k) = �0(k)=(�0(k) + �1(k)). Let p(k)i;j (�) be the probability that path k is in statej at time t + � , given that it was in state i at time t, i.e., p(k)i;j (�) = P (Xk(t + �) = jjXk(t) = i).From [14℄, we have thatp(k)i;j (�) = 8>>>>>><>>>>>>: �1(k)�0(k)+�1(k) �1� e�[�0(k)+�1(k)℄�� i = 1; j = 0;�0(k)�0(k)+�1(k) �1� e�[�0(k)+�1(k)℄�� i = 0; j = 1;�0(k)+�1(k)e�(�0(k)+�1(k))��0(k)+�1(k) i = 1; j = 1;�1(k)+�1(k)e�(�0(k)+�1(k))��0(k)+�1(k) i = 0; j = 0 (1)for all � > 0.Throughout the paper we refer to single path streaming as SP streaming and multipath stream-ing with N paths as MP streaming. Without loss of generality, when paths are homogeneous, weassume that SP streaming always transmits data along path 1. In the evaluation of MP streaming,we assume that the multiple paths have disjoint bottlene
ks (or points of 
ongestion) and hen
ethe Gilbert models representing them are independent. Note that, sin
e we represent a path by itsbottlene
k link, multiple paths with joint points of 
ongestion 
ould just be represented by a singleGilbert model. Lastly, note that our fo
us is on a streaming appli
ation whi
h generates pa
ketsat a 
onstant rate; hen
e our derivations below are done under this assumption.2.3 Performan
e Analysis of SP vs. Multi-path Streaming (without FEC)Let us �rst derive the average pa
ket loss rate. Unless stated otherwise, below we 
onsider a spe
ial
ase of multi-path streaming, namely dual path, round robin (DPRR) streaming. There are anumber of di�erent approa
hes to distributing data along the multiple paths; here we 
onsidera simple 
ase, i.e., DPRR, wherein ea
h path 
arries half the appli
ation's traÆ
 and the pa
kettransmission is 
arried out in a round robin manner. That is, odd numbered pa
kets are transmittedalong path 1 while even numbered pa
kets are transmitted along path 2. We use this simple s
hemefor dual path streaming to illustrate the basi
 performan
e di�eren
es between single and multi-pathstreaming, so as to gain some basi
 understanding.If we assume that the streaming rate does not a�e
t the 
hannel loss 
hara
teristi
s (i.e., theparameters of the Gilbert model), then for the SP 
ase, the average pa
ket loss rate is simplyPsp[loss pa
ket℄ = �1(1) = �0(1)�0(1) + �1(1) : (2)For the MP 
ase, assume that we have N � 1 paths and let �i be the fra
tion of the appli
ation'sworkload that is sent along path i where PNi=1 �i = 1. Then the average pa
ket loss rate for theMP 
ase is Pmp[loss pa
ket℄ = NXi=1 �i�1(i) = NXi=1 �i � �0(i)�0(i) + �1(i)� :If these N paths are homogeneous, then we 
an simplify the above expression toPmp[loss pa
ket℄ = �0(1)�0(1) + �1(1) : (3)7



Remark: the impli
ation of Equations (2) and (3) is that if the appli
ation's sending rate doesnot a�e
t the loss 
hara
teristi
s of the path then splitting the data between multiple homogeneouspaths does not redu
e the average pa
ket loss rate, as 
ompared to a single path with the same loss
hara
teristi
s.On the other hand, if the appli
ation's sending rate 
an a�e
t the loss 
hara
teristi
s of thepath (e.g., sending data with a higher bandwidth may in
rease the losses), then the average lossrate of the MP approa
h 
an be di�erent from that of the SP approa
h. To illustrate this e�e
t,let � be the appli
ation's mean sending rate and�0(i) = F(�) (4)�1(i) = B(�) (5)where F (B) is a 
ontinuous non-de
reasing (non-in
reasing) fun
tion of �. Then, we have thefollowing result.Theorem 1 If the parameters of the Gilbert model are spe
i�ed by fun
tions F and B, then theaverage pa
ket loss rate under the single path streaming approa
h will be greater than or equal tothe average pa
ket loss rate under the multi-path streaming approa
h wherein these paths have thesame Gilbert's parameters.Proof: It is easy to show that the rate of 
hange of the MP average pa
ket loss rate under thehomogeneous Gilbert model is:dPmp[loss pa
ket℄d� = dd� � F(�)F(�) + B(�)�= [F(�) + B(�)℄F 0(�)�F(�)[F 0(�) + B0(�)℄[F(�) + B(�)℄2= B(�)F 0(�)�F(�)B0(�)[F(�) + B(�)℄2 � 0:That is, a higher sending rate along a path results in a higher loss rate. Sin
e the sending ratealong a path in the MP 
ase is less than or equal to the sending rate of the SP 
ase, given thatthese paths are homogeneous, the resulting average pa
ket loss rate of MP will be less than or equalto that of SP.Let us now 
onsider the 
onditional burst length distribution, of both SP and MP 
ases, 
on-ditioned on there being a loss. Let �1 be the mean streaming rate (in units of pa
kets per se
ond)along path 1 and Æ1 = 1=�1 is the time between two 
onse
utively transmitted pa
kets. Then, inthe SP 
ase (as also derived in [2℄ for a voi
e-over-IP type appli
ation), the probability of having apa
ket error burst of size m � 1 is:Psp[error burst = m℄ = 8<: �0(1)p(1)0;1(Æ1)p(1)1;0(Æ1) for m = 1;�0(1)p(1)0;1(Æ1) hp(1)1;1(Æ1)im�1 p(1)1;0(Æ1) for m � 2: (6)The probability of having a pa
ket error burst of any size is thereforePsp[error burst℄ = 1Xm=1Psp[error burst = m℄ = �0(1)p(1)0;1(Æ1):8



Moreover, the 
onditional probability of having a pa
ket error burst of size m � 1, 
onditioned onthere being a loss, is equal toPsp[error burst of size mj error burst℄ = Psp[error burst = m℄Psp[error burst℄= hp(1)1;1(Æ1)im�1 p(1)1;0(Æ1) for m � 1. (7)In the MP 
ase, let us 
onsider the spe
ial 
ase of DPRR streaming, i.e., N = 2. Let �2 be thestreaming rate (in units of pa
kets per se
ond) along path 1 or path 2. Note that under DPRR,�2 = �1=2. Then, the time between two 
onse
utively transmitted pa
kets along the same path isÆ2 = 1=�2 = 2Æ1. To understand the basi
 tradeo� between SP and MP streaming, we also assumethat both paths are homogeneous su
h that they are 
hara
terized by a stationary 
ontinuoustime Gilbert model of the same parameters (i.e., �0(1) = �0(2) and �1(1) = �1(2)). Given thissimpli�
ation, the stationary distributions for both paths are the same (i.e., �0(1) = �0(2); �1(1) =�1(2)) and we 
an express all performan
e measures using the parameters of path 1. Under theseassumptions, the probability of having a pa
ket error burst of size m � 1 is:Pdp[error burst = m℄ = 8<: �0(1)�1(1)p(1)0;0(2Æ1) for m = 1;�0(1)�1(1) hp(1)1;1(2Æ1)im�2 p(1)0;1(2Æ1)p(1)1;0(2Æ1) for m � 2: (8)and the probability of having a pa
ket error burst of any size is therefore:Pdp[error burst℄ = 1Xm=1Pdp[error burst = m℄= �0(1)�1(1)p(1)0;0(2Æ1) + 1Xm=2 �0(1)�1(1)[p(1)1;1(2Æ1)℄m�2p(1)0;1(2Æ1)p(1)1;0(2Æ1)= �0(1)�1(1)24p(1)0;0(2Æ1) + p(1)0;1(2Æ1)p(1)1;0(2Æ1)1� p(1)1;1(2Æ1) 35 = �0(1)�1(1) hp(1)0;0(2Æ1) + p(1)0;1(2Æ1)i= �0(1)�1(1):Then, the 
onditional probability of having a pa
ket error burst of size m � 1, 
onditioned on therebeing a pa
ket error, is equal to:Pdp[error burst of size mj error burst℄ = Pdp[error burst = m℄Pdp[error burst℄= 8<: p(1)0;0(2Æ1) for m = 1;hp(1)1;1(2Æ1)im�2 p(1)0;1(2Æ1)p(1)1;0(2Æ1) for m � 2: (9)We 
an now state the 
onditions under whi
h the DPRR approa
h will have a small 
onditionalburst error than the SP approa
h. Before we present this result, let us present the de�nition anda basi
 lemma of sto
hasti
 
omparison [17℄.De�nition 1 We say that the random variable X is sto
hasti
ally larger than the random vari-able Y , written X �st Y , if P [X � z℄ � P [Y � z℄ for all z.Lemma 1 We say that X �st Y i� E[f(X)℄ � E[f(Y )℄ for all in
reasing fun
tions f .9



Now, let Bsp and Bdp be the random variables representing the 
onditional pa
ket error burstsize, given that there is at least one pa
ket error, under the SP and the homogeneous DPRRapproa
hes, respe
tively. Then, we have the following result.Theorem 2 If p0;1(2Æ1)p1;0(2Æ1) � p1;1(Æ1)p1;0(Æ1), then Bsp �st Bdp.Proof: First, note that p1;1(t) is an non-in
reasing fun
tion of t. If p0;1(2Æ1)p1;0(2Æ1) � p1;1(Æ1)p1;0(Æ1),then from Equations (7) and (9), we 
an dedu
e thatPdp[error burst of size mj error burst℄ � Psp[error burst of size mj error burst℄ m � 2:Sin
e 1Xm=1Psp[Bsp =m℄ = 1Xm=1Pdp[Bdp = m℄ = 1 and1Xm=j Psp[Bsp =m℄ � 1Xm=j Pdp[Bdp = m℄ for j � 2,we 
an 
on
lude that Bsp �st Bdp.Remark: Note that Bsp �st Bdp implies (based on Lemma 1) that E[f(Bsp)℄ � E[f(Bdp)℄ forall in
reasing fun
tions f . Therefore, we 
an 
on
lude that for all moments of Bsp and Bdp, wehave E[Bksp℄ � E[Bkdp℄ for k � 1, where E[Bksp℄ and E[Bkdp℄ refer to the kth moments of Bsp andBdp, respe
tively. The impli
ation of the above theorem is that the homogeneous DPRR approa
hwill have a lower mean 
onditional burst length than the SP approa
h, given that the theorem's
ondition is satis�ed.Let us now 
onsider the lag-1 auto
orrelation of pa
ket errors metri
. We begin with the SPapproa
h. The lag-1 auto
orrelation fun
tion R[XtXt+Æ1 ℄ measures the degree of dependen
y of
onse
utive pa
ket errors. For example, a high positive value of R[XtXt+Æ1 ℄ implies that a lostpa
ket is very likely to be followed by another lost pa
ket. On the other hand, a high negativevalue of R[XtXt+Æ1 ℄ implies that a lost pa
ket is likely to be followed by a su

essful pa
ket arrival.Also, if the statisti
s of the 
onse
utive pa
ket losses are not 
orrelated2, then R[XtXt+Æ1 ℄ = 0.The lag-1 auto
orrelation for the SP approa
h isR[XtXt+Æ1 ℄ = E[(Xt �X)(Xt+Æ1 �X)℄E[(Xt �X)2℄ = E[XtXt+Æ1 �X2℄E[X2t �X2℄ :Sin
e X = �1(1) = �0(1)=[�0(1) + �1(2)℄, E[XtXt+Æ1 ℄ = �1(1)p(1)1;1(Æ1) and E[X2t ℄ = �1(1) =�0(1)=[�0(1) + �1(2)℄, substituting these expressions into the above equation, gives usR[XtXt+Æ1 ℄ = �1(1)p(1)1;1(Æ1)� �21(1)�1(1)[1 � �1(1)℄ = [�0(1) + �1(1)℄p(1)1;1(Æ1)� �0(1)�1(1) : (10)Lemma 2 For a high (low) bandwidth streaming appli
ation, the lag-1 auto
orrelation of the SPstreaming approa
h is positively 
orrelated (tends to zero).2Note that if the lag-1 auto
orrelation, R[XtXt+Æ1 ℄, is equal to 0, it does not ne
essarily imply that 
onse
utivepa
ket losses are not 
orrelated. 10



Proof: Note that when Æ1 ! 0, p(1)1;1(Æ1)! 1, and 
onsequently the lag-1 auto
orrelationR[XtXt+Æ1 ℄approa
hes 1. In other words, if the streaming appli
ation has a high bandwidth requirement su
hthat the inter-pa
ket spa
ing tends to zero, then the 
onse
utive pa
ket losses are \positively" 
or-related. On the other hand, when Æ1 !1, p(1)1;1(Æ1)! �0(1)=[�0(1) + �1(1)℄, and 
onsequently thelag-1 auto
orrelation R[XtXt+Æ1 ℄! 0. This implies that for low bandwidth streaming appli
ations,wherein the inter-pa
ket spa
ing is very large, the lag1-auto
orrelation tends to zero.Let us also derive the lag-1 auto
orrelation of the homogeneous DPRR approa
h. The lag-1auto
orrelation in this 
ase is:E[X(1)t X(2)t+Æ1 ℄ = E[(X(1)t �X(1))(X(2)t+Æ1 �X(2))℄qE[(X(1)t �X(1))2℄E[(X(2)t �X(2))2℄ : (11)Be
ause both paths are homogeneous (i.e., their respe
tive Gilbert models have the same parame-ters), we 
an simplify the above expression as:E[X(1)t X(2)t+Æ1 ℄ = E[X(1)t X(2)t+Æ1 �X(1)2℄E[(X(1)t �X(1))2℄ = E[X(1)t X(2)t+Æ1 ℄�E[X(1)2℄E[�X(1)t �2℄�E[�X(1)�2℄= � �1(1)�0(1)+�1(1)�� �1(2)�0(2)+�1(2)�� � �1(1)�0(1)+�1(1)�2�0(1)�1(1)= (�0(1) + �1(1))2 = � �1(1)�0(1)+�1(1)�2 � � �1(1)�0(1)+�1(1)�2�0(1)�1(1)= (�0(1) + �1(1))2= 0 (12)In fa
t, we 
an see that the 
onse
utive pa
ket losses under the homogeneous DPRR appli
ationare \un
orrelated" sin
e we have assumed independen
e of the two paths.2.4 Performan
e Analysis of SP vs. Multi-path Streaming (with FEC)We have shown that loss 
hara
teristi
s 
an be improved with multi-path streaming as 
omparedto single path streaming, under 
onditions and metri
s spe
i�ed above. However, an interestingquestion that remains is whether there are still bene�ts to be gained on
e some form of redundan
yis added to the stream. Spe
i�
ally, we 
onsider the use of an erasure 
ode (as de�ned below), towhi
h we will refer as FEC in the remainder of the paper. Hen
e, in this se
tion we fo
us on thebasi
 understanding of the performan
e of single path vs. multi-path streaming when FEC is addedto the stream.Sin
e numerous 
oding s
hemes exist, we �rst give the details of the simple FEC s
heme 
on-sidered here. We divide a video �le into groups of data pa
kets su
h that ea
h group 
onsists of kdata pa
kets. Given ea
h group of k data pa
kets, we generate n > k pa
kets. We refer to these npa
kets as a FEC group. The en
oding s
heme is su
h that, if the number of lost pa
kets withina FEC group is less than or equal to (n� k), then we 
an re
onstru
t the original k data pa
ketswithin that FEC group.Let us �rst derive the average pa
ket loss rate under the SP approa
h. As before, assume thatwe use path 1 whi
h is 
hara
terized by a Gilbert model, as de�ned above, with parameters �0(1)and �1(1). The streaming appli
ation generates pa
kets at a rate of � (in unit of pa
ket/se
)3 .3Note that here, \pa
kets" in
ludes both data pa
kets and pa
kets 
arrying redundant information.11
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(1/λ)Figure 2: An Embedded Markov Chain whi
h des
ribes whether a transmitted pa
ket is loss ornot.Whenever a pa
ket is transmitted along this path, it may be lost (if the state of the path is \1")or it may arrive su

essfully at the re
eiver (if the state of the path is \0"). Figure 2 depi
ts anembedded Markov 
hain of this path wherein the two 
onse
utive embedded points are 1=� unitsapart. The derivation of transition probabilities of this DTMC is based on Equation (1); hen
e theyare a fun
tion of the Gilbert model's parameters �0(1) and �1(1) as well as the pa
ket transmissionrate �. The steady state probabilities of this embedded Markov 
hain are �0(1) = �1(1)�0(1)+�1(1) and�1(1) = �0(1)�0(1)+�1(1) .We are now interested in deriving P (1)(j; n), whi
h is the probability of losing j pa
ket in an npa
ket transmission. We de�neP (1)i (j; n) = Prob(j; njinitial state of the path is i) i 2 f0; 1gas the probability of j lost pa
ket in an n pa
ket transmission, given that the �rst pa
ket wastransmitted when the path was in state i (where i 2 f0; 1g). We then have:P (1)(j; n) = P (1)0 (j; n)�0(1) + P (1)1 (j; n)�1(1) j = 0; 1; : : : ; n: (13)We also de�ne:L(1)i (j; n) = Prob(j; njthe initial state of the path is i and the �nal state is 0) i 2 f0; 1gH(1)i (j; n) = Prob(j; njthe initial state of the path is i and the �nal state is 1) i 2 f0; 1gwhere L(1)i (j; n) (H(1)i (j; n)) is the probability that we have j lost pa
kets in an n pa
ket transmis-sion, given that the �rst pa
ket was transmitted when the path was in state i (where i 2 f0; 1g)and that the last pa
ket was transmitted when the path was in state 0 (state 1). Then we have:P (1)i (j; n) = L(1)i (j; n) +H(1)i (j; n) i 2 f0; 1g and j = 0; 1; : : : ; n: (14)We 
an also express L(1)i (j; n) and H(1)i (j; n) in the following re
ursive forms:L(1)i (j; n) = L(1)i (j; n� 1)(1 � p(1)0;1(1=�)) +H(1)i (j; n� 1)p(1)1;0(1=�) j < n;(15)H(1)i (j; n) = L(1)i (j � 1; n� 1)p(1)0;1(1=�) +H(1)i (j � 1; n� 1)(1 � p(1)1;0(1=�)) j < n:(16)where we also have the following boundary 
onditions:L(1)i (j;m) = 0 i 2 f0; 1g; j = 0; 1; : : : ; n and m � j (17)L(1)0 (0;m) = (1� p(1)0;1(1=�))m�1 for m = 1; 2; : : : ; n (18)L(1)1 (0;m) = 0 for m = 1; 2; : : : ; n (19)12



H(1)i (j;m) = 0 i 2 f0; 1g;j = 1; 2; : : : ; n and m < j (20)H(1)i (0;m) = 0 for i 2 f0; 1g and m = 0; 1; : : : ; n (21)H(1)0 (m;m) = 0 for m = 1; 2; : : : ; n (22)H(1)1 (m;m) = (1� p(1)1;0(1=�))m�1 for m = 1; 2; : : : ; n. (23)Remark: To 
ompute the value of P (1)(j; n) in Equation (13), we need to 
ompute the values ofthe four square matri
es L(1)0 ;L(1)1 ;H(1)0 , andH(1)1 , whose entries 
an be 
omputed using Equations(15) through (23). Ea
h of these matri
es is of size (n+ 1) � (n + 1). In other words, 
omputingthe values of P (1)(j; n) (for all j) has a 
omputational 
omplexity of �(4(n+ 1)2).Let Psp be the probability of an irre
overable error within a FEC group. It is equal toPsp = nXj=n�k+1P (1)(j; n) = nXj=n�k+1 hP (1)0 (j; n)�0(1) + P (1)1 (j; n)�1(1)i= nXj=n�k+1 ��L(1)0 (j; n) +H(1)0 (j; n)�� �1(1)�0(1) + �1(1)�++�L(1)1 (j; n) +H(1)1 (j; n)�� �0(1)�0(1) + �1(1)�� :To derive the average data pa
ket loss rate (with use of FEC) for the SP approa
h, denoted by Lsp,we 
onsider the following two 
ases, based on the number of lost pa
kets, j 2 f0; 1; : : : ; ng, withina FEC group.Case 1: j � n� kIf j, the number of lost pa
ket within a FEC group, is less than or equal to n� k, then all k datapa
kets 
an be re
onstru
ted at the re
eiver. Hen
e, this 
ase does not 
ontribute to informationloss and Lsp = 0.Case 2: j > n� kIn this 
ase, the lost data pa
kets 
annot be fully re
onstru
ted and some information will be lost.However, given that there j lost pa
kets within a FEC group, there are a number of di�erent waysto distribute these losses among the n pa
kets of the FEC group. To understand this e�e
t, let usillustrate it using an example. Assume that n = 5 and k = 4. If j = 2, then there are two possibleways to distribute these two lost pa
kets among the pa
kets of the FEC group: (1) the two lostpa
kets are the data pa
kets within the FEC group, or (2) one lost pa
ket is a data pa
ket and theother lost pa
ket 
orresponds to redundant information in the FEC 
ode. In the �rst 
ase, we lost2 data pa
kets out of a 4 data pa
ket transmission. In the se
ond 
ase, we lost 1 data pa
ket outof a 4 data pa
ket transmission. Using the same argument, if j = 5, then there is only one way todistribute these �ve lost pa
kets among pa
kets of the FEC group. That is, all data pa
kets arelost. Therefore, given that there are j lost pa
kets, the number of ways to distribute the j lostpa
kets among the pa
kets of a FEC group is W = M� j + (n � k) + 1 where M = minfj; kg.Let L(j) be the average data pa
ket loss rate given that there are j lost pa
kets in a FEC group.Then, we haveL(j) = 1W MXi=j�(n�k) ik= � 1M� j + (n� k) + 1��1k��M(M+ 1)2 � (j � (n� k))(j � (n� k)� 1)2 � (24)13



It is now easy to derive Lsp, the average data pa
ket loss rate (with the use of FEC) for the SPapproa
h as follows:Lsp = nXj=n�k+1P (1)(j; n)L(j)= nXj=n�k+1 hP (1)0 (j; n)�0(1) + P (1)1 (j; n)�1(1)iL(j)= nXj=n�k+1240�L0(j; n) +H0(j; n)1A� �1(1)�0(1) + �1(1)�L(j) +0�L(1)1 (j; n) +H(1)1 (j; n)1A� �0(1)�0(1) + �1(1)�L(j)35 : (25)To derive the average data pa
ket loss rate (with use of FEC) for the MP approa
h, let us�rst 
onsider a simple 
ase of dual-path streaming. Assume that there are two servers S1 and S2that use two di�erent, possibly heterogeneous, paths. We use the same FEC s
heme as des
ribedabove to generate a stream of data divided into n pa
ket FEC groups. To transmit the pa
ketswithin a FEC group, server S1 transmits n1 pa
kets while server S2 transmits n2 pa
kets su
h thatn1 + n2 = n. Based on the similar argument we made above in the SP 
ase, we haveP (1)(j; n1) = P (1)0 (j; n1)�0(1) + P (1)1 (j; n1)�1(1) j = 0; 1; : : : ; n1 (26)P (2)(j; n2) = P (2)0 (j; n2)�0(2) + P (2)1 (j; n2)�1(2) j = 0; 1; : : : ; n2: (27)The 
omputation of P (h)i (j; nh) where i 2 f0; 1g and h 2 f1; 2g is similar to the approa
h mentionedabove, that is, by evaluating the entries of the 
orresponding four matri
es. The 
omputational
omplexity would then be �(4(n1 + 1)2 + 4(n2 + 1)2).Let P2p be the probability of an irre
overable error within a FEC group. It is equal toP2p = nXj=n�k+1 jXh=0P (1)(h; n1)P (2)(j � h; n2); (28)whi
h involves a 
onvolution between the two probability mass fun
tions, P (1)(j; n1) and P (2)(j; n2).Let L2p be the average data pa
ket loss rate (with use of FEC) for the dual path approa
h. Then,we have L2p = nXj=n�k+1 jXh=0P (1)(h; n1)P (2)(j � h; n2)L(j): (29)In general, if we employ N servers S1; S2; : : : ; SN , then the probability of an irre
overable errorwithin a FEC group isPNp = nXj=n�k+10� Xi1+:::+iN=j P (1)(i1; n1)P (2)(i2; n2) � � �P (N)(iN ; n1)1A : (30)The average data pa
ket loss rate with FEC under a MP streaming with N paths isLNp = nXj=n�k+10� Xi1+:::+iN=j P (1)(i1; n1)P (2)(i2; n2) � � �P (N)(iN ; n1)1AL(j): (31)14



In the 
ase of the other two performan
e measures, namely, the 
onditional burst length dis-tribution and the lag-1 auto
orrelation, we resort to the use of simulation, as des
ribed in thefollowing se
tion.3 Analyti
al Model Based EvaluationIn this se
tion, we further evaluate the loss 
hara
teristi
s of the SP vs. MP methods using simu-lations of the Gilbert model des
ribed in Se
tion 2. The simulations allow us to 
onsider the loss
hara
teristi
s under more sophisti
ated s
enarios than in Se
tion 2. Spe
i�
ally, we assume anMPEG-1 video streaming appli
ation whi
h generates pa
kets at a rate of 120 pa
kets per se
ondwith ea
h pa
ket 
ontaining 1400 bytes. We 
onsider at most three senders (S1; S2; S3) and onere
eiver C. Sender Si uses path i to transmit its fra
tion of the data; unless otherwise stated,these paths are assumed to be independent. Moreover, in the �gures given below (unless otherwisestated), the 
urves 
orresponding to SP streaming use path 1, the 
urves 
orresponding to MPstreaming with 2 senders use paths 1 and 2, and the 
urves 
orresponding to MP streaming with3 senders use all three paths. Unless stated otherwise, the pa
ket assignment is 
arried out in around-robin manner, e.g., if we use all three senders, then sender Si transmits data pa
kets at arate of 40 pa
kets per se
ond. The loss pro
ess of path i is modeled by a 
ontinuous stationaryGilbert model (as de�ned in Se
tion 2). Unless stated otherwise, we use �0(i) = 20 and �1(i) = 70,for i = 1; 2; 3. Lastly, we 
onsider all the same performan
e metri
s as de�ned in Se
tion 2.Experiment 1 (Data Loss Rate): In this experiment, we study the data pa
ket loss rate of theSP and MP approa
hes, using only two paths, 1 and 2. The path parameters are as des
ribed aboveex
ept that we vary the �0(2) parameter from 5 to 50. Table 2 illustrates the data loss rate for thesingle path(s) and the dual-path approa
hes (in ea
h 
ase, with and without the use of FEC, wherethe parameters for the FEC s
heme are n = 5 and k = 4). We 
an observe that in this experiment:� Without the use of FEC, the data pa
ket loss rate of the dual path is approximately the meanof the data pa
ket loss rates of paths 1 and 2. These results are 
onsistent with the derivationof Se
tion 2.� With the use of FEC, (in this 
ase n = 5 and k = 4), the a
hieved data pa
ket loss rate 
anbe less than the average of the data pa
ket loss rates of the two 
orresponding single paths.This may o

ur due to the fa
t that error burst lengths in dual-path streaming tend to beshorter than in single-path streaming (refer Theorem 2 in Se
tion 2), and hen
e a 
han
e ofre
overy of lost data (using FEC) should also be higher.This experiment also illustrates the potential advantages of multi-path streaming over \best path"streaming, even when losses (rather than throughput) are the important 
onsideration. That is,when multiple paths are available (but throughput is not the issue), another approa
h might be tostream the data over the \best" available path (and as 
ongestion 
onditions 
hange keep swit
hingthe streaming of the data to the best available path at the time). Our experiment shows thatMP streaming 
ould provide better loss 
hara
teristi
s (e.g., when FEC is used) than the \best"available path. (Please refer to Experiment 6 below on further 
omparison to a best-path typeapproa
h.)Experiment 2 (Data Loss Rate as a fun
tion of FEC parameters): In this experiment, westudy the e�e
ts of FEC parameters on the data loss rate. In general, there are two ways to varythe FEC parameters. We 
an: 15



Loss single path: single path: dual-path single path: single path: dual-pathrate: path 1 path 2 without path 1 path 2 with(�0(2)) w/o FEC w/o FEC FEC with FEC with FEC FEC5 0.221743 0.066767 0.144351 0.189053 0.053048 0.10126415 0.221743 0.176153 0.199395 0.189053 0.147171 0.14163220 0.221743 0.221743 0.222255 0.189053 0.189053 0.15886135 0.221743 0.332848 0.278178 0.189053 0.297647 0.20194750 0.221743 0.416609 0.319230 0.189053 0.385602 0.235681Table 2: Data Loss rate with Heterogeneous Paths.
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Figure 3: Loss rate as a fun
tion of n=k and k1. In
rease the degree of redundan
y (e.g., for a given value of k, in
rease the value of n). Notethat by in
reasing the degree of redundan
y, we also in
rease the amount of traÆ
 on thenetwork.2. In
rease the values of n and k but keep the same ratio of n=k. This implies that we in
reasethe FEC group size, and hen
e the appli
ation needs to maintain a larger re
eiving bu�er(for re
onstru
tion purposes in 
ase of loss) as well as experien
e potentially higher laten
y(sin
e a larger amount of information must be re
eived prior to re
onstru
tion of missinginformation).Figure 3 illustrates the e�e
ts of FEC parameters on the data loss rate, and spe
i�
ally, it depi
tsdata loss rates for SP and MP streaming with n=k = 1:125; 1:25 and 1:5 as well as with di�erentFEC group sizes (where we vary the number of data pa
kets in a FEC group (k) from 8 to 512pa
kets). In this 
ase the path parameters are �0(1) = 20, �1(1) = 70, �0(2) = �0(3) = 10, and�1(2) = �1(3) = 80. We observe that:� In
reasing the amount of redundan
y (e.g., from n=k = 1:125 to 1:5) in SP or MP streaming16




an redu
e the data loss rate. However, one 
an a
hieve a lower data pa
ket loss rate with MPstreaming with a smaller n=k ratio (as 
ompared to SP streaming). In other words, withoutintrodu
ing additional network traÆ
, we 
an obtain better performan
e with MP streaming.� In
reasing the number of data pa
kets in a FEC group (while keeping the same ratio of n=k)may not ne
essary redu
e the data loss rate. For example, 
onsider SP streaming; as wein
rease k, the data loss rate a
tually in
reases in some 
ases. The maybe explained by apossible \
onvergen
e" of the data loss rate, as a fun
tion of n and k, to a non-zero value(please refer to the Appendix for details).
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Figure 4: Conditional probability mass fun
tions of error burst length.Experiment 3 (Conditional Error Burst Length): In this experiment, we 
ompare the 
ondi-tional burst length distribution, 
onditioned on there being at least one error. Figure 4 illustratesthe 
onditional probability mass fun
tions of error burst length (as de�ned in Se
tion 2). In thisexperiment, we observe that the pa
ket error burst length is indeed sto
hasti
ally less than theerror burst length of the single path streaming. We also note, that the 
ondition of Theorem 2 inSe
tion 2 holds in this experiment4. This relationship also holds when we employ FEC.Experiment 4 (Lag-1 Auto
orrelation): In this experiment, we study the lag-1 auto
orrelationof pa
ket losses for both SP and MP streaming (as de�ned in Se
tion 2). Figure 5 illustrates thelag-1 auto
orrelation where �1(1) = �1(2) = �1(3) = 70 and �0(i) is varied (identi
ally) for allthree paths. We make the following observations.� When we use MP streaming without FEC, the lag-1 auto
orrelation is nearly zero while thelag-1 auto
orrelation of SP path streaming (with or without FEC) 
an be highly 
orrelated.� The use of FEC may in
rease the lag-1 auto
orrelation (for both SP and MP approa
hes).This may be explained as follows. The irre
overable losses (after the error 
orre
tion pro
ess)are likely to end up \
loser" in the resulting data stream than in the original data stream(one without the use of erasure 
odes), and hen
e the lag-1 auto
orrelation in this new streambehaves similarly to lag-h auto
orrelation of the original stream, where h > 1. However, westill observe that the lag-1 auto
orrelation of MP streaming is signi�
antly 
loser to zero as
ompared to SP streaming, even with the use of FEC.4Note that here we illustrate the probability mass fun
tion rather than the probability distribution fun
tion, aswe believe it depi
ts the results of the experiment better.17
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Figure 5: Lag-1 auto
orrelation.Experiment 5 (E�e
ts of Load Distribution Among Senders): In previous experiments,all senders transmitted pa
kets in a round-robin manner and hen
e the load distribution betweenall the senders was the same. In this experiment, we investigate e�e
ts of load distribution amongsenders. Spe
i�
ally, we distribute the load among two senders only, where parameter � refers to
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(a) Loss Rate (b)Lag-1 Auto
orrelationFigure 6: Loss rate and Lag-1 auto
orrelation for di�erent load distributions for the dual-pathstreamingthe fra
tion of pa
kets sent by sender 1. For instan
e, when � = 0:3, sender 1 sends 30% of thepa
kets while sender 2 sends 70% of pa
kets. In the 
ases of � = 0 and � = 1, this degeneratesto single path streaming using path 1 and path 2, respe
tively. Both path 1 and path 2 have thesame parameters with �0 = 5; 20, or 40 and �1 �xed at 70. Figure 6 illustrates results of thisexperiment. We observe that there is a slight improvement in loss rate when FEC is used andthe load is equally distributed between the two senders. Moreover, in this experiment, the lag-1auto
orrelation rea
hes its minimum value under equal load distribution. This implies that simpleround-robin pa
ket distribution among paths should result in a higher quality of re
eived video.That is, this simple approa
h of equal distribution is fairly robust.18



Experiment 6 (Sensitivity Analysis): In this experiment, we study the relative performan
e ofMP streaming vs. SP streaming when the SP streaming is performed over the best of the availablepaths. For example, if the performan
e metri
 is loss rate, then the path with the lowest loss rate isused. We note that implementation of this form of best single path streaming would likely requirea fairly a

urate monitoring of the loss 
hara
teristi
s of a path; otherwise, the wrong path mightbe sele
ted. That is, the sensitivity (or robustness) of the streaming de
isions to the a

ura
y ofthe available information about the network is an important issue.In this sensitivity experiment, we 
onsider a two-path system, where the �xed parameters are�0(1) = 20 and �1(1) = �1(2) = 70 and �0(2) is varied from 5 to 50. In this s
enario, the best-pathapproa
h believes (based on 
olle
ted measurements) that path 2 is the better path (e.g., it maymis-estimate the �0(2) parameter as being less than 20). We vary �0(2) from 5 to 50, in order tosee the e�e
t of mis-estimation; hen
e, the best path approa
h over-estimates this parameter whenthe real value of �0(2) is less than 20 and under-estimates this parameter when the real value of�0(2) is greater than 20. We also 
onsider a very simple MP streaming approa
h, where the loadis distributed equally among the two senders in a round-robin manner (i.e., odd-numbered pa
ketsare sent along path 1 while even-numbered pa
kets are sent along path 2).
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Figure 7: Relative loss of dual-path vs. single path when we vary �0(2) and FEC group size.Figure 7 illustrates the relative loss rate (using several di�erent FEC s
hemes) of the twoapproa
hes, whi
h is de�ned as the data loss rate of dual-path streaming divided by the data lossrate of best-path streaming. Hen
e, a relative loss of less than 1 implies that the simple dual-pathapproa
h is doing better than the best path approa
h. In this �gure, we observe that simple dual-path (round-robin) streaming does quite well 
ompared to best-path streaming, even when thereis signi�
ant di�eren
es in loss 
hara
teristi
s between the two paths. Of 
ourse, in 
ases wherethe best path has mu
h better loss 
hara
teristi
s and with relatively little redundant information,the best-path approa
h has a lower data loss rate. However, we note that the best-path approa
hwould require relatively a

urate estimation of the path 
hara
teristi
s, whi
h may be non-trivialespe
ially as network 
onditions 
hange. Hen
e, we believe that the MP approa
h is more robustas 
ompared to best-path streaming.Experiment 7 (E�e
ts of Shared Points of Congestion on Various Performan
e Met-ri
s): In this experiment, we study the e�e
ts of shared points-of-
ongestion, between the pathsused by the di�erent senders, on various performan
e measures. Senders S1 and S2 share the same19



point-of-
ongestion, whi
h we 
an 
hara
terize by a Gilbert model (as de�ned in Se
tion 2). SenderS3 uses a path whi
h does not share a point of 
ongestion with S1 and S2 (as before, this path is
hara
terized by a Gilbert model). All the appli
ation settings remain the same, and we 
onsiderthe following four 
on�gurations.� Con�guration 1: Sender 1 is the only one streaming the data.� Con�guration 2: Senders 1 and 3 stream the data in a round-robin manner, i.e., ea
htransmits at a rate of 60 data pa
kets/se
ond.� Con�guration 3: Senders 1, 2, and 3 stream the data in a round-robin manner, i.e., ea
htransmits at a rate of 40 data pa
kets/se
ond.� Con�guration 4: Senders 1, 2, and 3 stream the data, but senders 1 and 2 transmit at arate of 20 data pa
kets/se
ond while sender 3 transmits at a rate of 80 data pa
kets/se
ond.
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(a) Data Loss Rate (b)Lag1-auto
orrelationFigure 8: E�e
ts of shared points-of-
ongestion on data loss rate and lag-1 auto
orrelation withFEC (n = 10; k = 8).Figure 8 illustrates the data loss rate and lag1-auto
orrelation for above 
on�gurations, whenFEC is used, with (n = 10; k = 8). Moreover, we vary the �0(1); �1(1); �0(3), and �1(3) parameters(as des
ribed in the �gure). From this �gure, we observe the following.� MP streaming (
on�guration 2, 3, and 4) has a lower data loss rate as 
ompared to SPstreaming (
on�guration 1).� Dete
ting shared points of 
ongestion is important, as in
luding a greater number of paths ina transmission (under su
h 
onditions) may adversely a�e
t the data loss rate. For example,equally splitting the workload among senders 1 and 3 (
on�guration 2) a
hieves a lower dataloss rate than equally splitting the workload among senders 1, 2, and 3 (
on�guration 3). Thiso

urs be
ause senders 1 and 2 share the same point of 
ongestion and with 
on�guration3 we are a
tually sending a greater fra
tion of the workload through this shared point of
ongestion. This agrees with intuition, as in this se
tion we are e�e
tively modeling a sharedpoint of 
ongestion as a single path/bottlene
k, i.e., 
on�guration 3 e�e
tively 
orrespondsto a 
on�guration with two senders and an unequal split of workload between them.20



� Of 
ourse, shared points of 
ongestion adversely a�e
t the lag-1 auto
orrelation metri
. Forexample, 
on�guration 3 has a higher lag-1 auto
orrelation than 
on�guration 2. Again, theexplanation given in the pre
eding point applies here as well.4 Simulation Model Based EvaluationIn this se
tion, we evaluate the performan
e of SP streaming vs. MP streaming using the NS-2 [8℄simulator. NS-2 is a pa
ket level simulator whi
h allows us to study the performan
e measures (asde�ned in Se
tion 2) under more realisti
 traÆ
 and Internet proto
ols (su
h as UDP).4.1 Simulation SetupAs in the previous se
tion, we 
onsider at most three senders (S1, S2 and S3) and one re
eiver C.Figure 9 illustrates our simulation topology. Ea
h sender transmits the video data, at a 
onstant
S1

S2

L1

L2

L4

sender

receiver

narrow link
with 3 Mbps
background
traffic

wide link
with 10 Mbps

L5

S3

L3

Figure 9: Simulation Topology.rate, to the re
eiver C using the UDP proto
ol, with pa
ket sizes of 1400 bytes. The data traÆ
goes through two types of links: (1) wide/higher 
apa
ity links (represented by solid lines) and (2)narrow/lower 
apa
ity links (represented by dotted lines). Ea
h wide link has a bandwidth of 10Mbps while the bandwidth of a narrow link is 3 Mbps. Ea
h link has a di�erent propagation delayand the propagation delay is generated using an exponential random variable with a mean of 200 ms.The streaming appli
ation has a sending rate of 1:5 Mbps whi
h 
onsumes 50% of the bandwidth ofa narrow link. The a
tual sending rate of ea
h sender is a fun
tion of the traÆ
 load distribution.Unless stated otherwise, an equal distribution is used, e.g., for MP streaming with three senders(sending data in a round-robin manner), the sending rate of ea
h sender is 0:5 Mbps. Ba
kgroundtraÆ
 (represented by grey arrows) is introdu
ed at di�erent narrow links. The ba
kground traÆ
is generated using exponential on/o� sour
es. The average \on" time plus the average \o�" time ofthese on/o� sour
es is equal to 1 se
ond. During the \on" times, the ba
kground sour
e generatesUDP traÆ
 with a 
onstant rate of 3 Mbps, whi
h 
an saturate the 
apa
ity of the traversed narrowlinks. In the following experiments we vary the amount of \on" time within an average of 1 se
ondperiod. For example, a ba
kground traÆ
 rate of 1:8 Mbps represents an average \on" time of0:6 se
onds for an average of 1 se
ond on/o� period. There are three possible sets of ba
kground21



traÆ
 lo
ations. One set of lo
al ba
kground traÆ
 o

urs on the narrow links Li where i = 1; 2; 3.This ba
kground traÆ
 
ompetes with the 
orresponding sender Si (i = 1; 2; 3) for the bandwidthresour
es of the narrow links L1; L2, and L3, respe
tively. The se
ond set of ba
kground traÆ
o

urs on the narrow link L4. This ba
kground traÆ
 
ompetes with senders S1 and S2 for thebandwidth resour
e of the narrow link L4. The third set of ba
kground traÆ
 o

urs on the narrowlink L5. This ba
kground traÆ
 
ompetes with all three senders for the bandwidth resour
e ofthe narrow link L5. Unless stated otherwise, SP streaming is done from sender 1 and dual-pathstreaming is done from senders 1 and 3.Experiment 1 (Data Loss Rate): Figure 10 illustrates the data loss rates for SP and MP
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Figure 10: Loss rate with FEC parameters n = 10 and k = 8.streaming. In this simulation, we vary the average ba
kground traÆ
 through the narrow links L1,L2, and L3 from 0 Mbps to 2:7 Mbps. (Note that the senders do not share points of 
ongestionin this 
ase.) From this �gure, we observe the following. Firstly, MP streaming 
an a
hieve asigni�
ant redu
tion in the data loss rate as 
ompared to SP streaming. Se
ondly, employment ofFEC may a
tually in
rease the data pa
ket loss rate; for example, the data loss rate of SP streamingwith FEC is a bit higher than the data loss rate of SP without FEC. Thirdly, the improvementsin the data loss rate a
hieved through the use of MP streaming without FEC is higher than thata
hieved through the use of FEC by adding it to SP streaming. This is potentially due to the fa
tthat the use of FEC (with SP streaming) introdu
es additional traÆ
 into the (already) 
ongestednetwork and hen
e results in higher data losses. On the other hand, the use of MP streaminga
hieves a signi�
ant redu
tion in data loss rate without introdu
tion of additional network traÆ
.Experiment 2 (Data Loss Rate as a fun
tion of FEC parameters): In this experiment, westudy the e�e
ts of FEC parameters on the data loss rate. Again, we vary the FEC parameters asin Se
tion 3. Figure 11 illustrates the data loss rate when a ba
kground traÆ
 of 1:5 Mbps is usedon ea
h of the narrow links L1; L2, and L3. We observe that:� In
reasing the degree of redundan
y under SP streaming may not ne
essarily redu
e thedata loss rate, one reason being that introdu
ing additional traÆ
 (due to higher degree ofredundan
y) into an already 
ongested network may result in higher pa
ket loss rates. Hen
e,MP streaming may have a higher 
han
e of de
reasing the data loss rate with higher degreesof redundan
y, i.e., with less traÆ
 being introdu
ed per path.� MP streaming 
an signi�
antly redu
e data loss rate as 
ompared to SP streaming.22
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Figure 11: Loss rate as a fun
tion of n=k ratio and kIn summary, we observe that in
reasing the amount of redundan
y (by in
reasing the n=k ratio) orin
reasing the FEC group size (and hen
e potentially su�ering higher laten
y at the re
eiver witha need for larger bu�er sizes) may not result in signi�
ant redu
tion in data loss rate, for either SPor MP streaming. On the other hand, taking advantage of multiple independent paths, 
an redu
ethe data loss rate signi�
antly.
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Figure 12: Conditional probability mass fun
tion for error burst length.Experiment 3 (Conditional Error Burst Length): In this experiment, we 
ompare the 
on-ditional burst length distribution, 
onditioned on there being at least one loss, of the SP and MPapproa
hes. In this 
ase a ba
kground traÆ
 of 2:4 Mbps is used on ea
h of the narrow links L1; L2and L3. The 
onditional probability mass fun
tion5 of error burst length is given in Figure 12,where we observe that MP streaming has a sto
hasti
ally smaller data pa
ket burst length thanSP streaming.Experiment 4 (Lag-1 Auto
orrelation): In this experiment, we study lag-1 auto
orrelation ofpa
ket losses for both SP and MP streaming. Figure 13 illustrates the lag-1 auto
orrelation as we5As in Se
tion 3 we illustrate the probability mass fun
tion rather than the probability distribution fun
tion, aswe believe it depi
ts the results of the experiment better.23
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Figure 13: Lag-1 auto
orrelation.vary the ba
kground traÆ
 on the narrow links L1; L2 and L3. We observe the following.� Without use of FEC, the MP lag-1 auto
orrelation is 
lose to zero (as derived in Se
tion 2),i.e., the losses appear nearly un
orrelated when streaming over multiple independent paths.On the other hand, the 
orrelation of losses with SP streaming 
an be quite high.� With use of FEC, lag-1 auto
orrelation may in
rease. We believe that a similar explanation(as given in Experiment 4 of Se
tion 3) holds here. However, we still observe that the MPlag-1 auto
orrelation is signi�
antly lower than the SP lag-1 auto
orrelation (under the sameFEC s
heme).Lastly, the de
rease in lag-1 auto
orrelation as a fun
tion of higher ba
kground traÆ
 may be
ounter-intuitive. One explanation may be that the \no losses" (i.e., the pa
kets that are re
eivedsu

essfully) in the resulting stream tend to be more \random" as 
ongestion on the networkin
reases.Experiment 5 (E�e
ts of Load Distribution among Senders): In previous experiments,all senders transmitted pa
kets in a round-robin manner and hen
e the load on all senders (i.e.,the amount of data streamed from ea
h sender) was the same. In this experiment, we study thee�e
ts of di�erent load distributions on the resulting loss 
hara
teristi
s observed at the re
eiver.Spe
i�
ally, we 
onsider the following 
on�gurations.Con�guration 1 Streaming from sender 1 only.Con�guration 2 Equal distribution of load between senders 1 and 3 only.Con�guration 3 Equal distribution of load among all senders.Con�guration 4 Sender 1 streams 1=6 of the data, sender 2 streams 1=6 of the data, andsender 3 streams 2=3 of the data.Figure 14 depi
ts the data loss rate and the lag-1 auto
orrelation of these 
on�gurations. In thisexperiment, equal distribution of load (
on�guration 3) tends to a
hieve a lower data loss rate andlag-1 auto
orrelation. 24
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(a) Loss Rate (b)Lag-1 Auto
orrelationFigure 14: Loss rate and Lag-1 auto
orrelation under di�erent load distributionsExperiment 6 (Sensitivity Analysis): In this experiment, we study the relative performan
e ofMP streaming vs. SP streaming when the SP streaming is performed over the best of the availablepaths (please refer to Se
tion 3 for a more detailed explanation of \best path" streaming and themotivation for making this 
omparison). Spe
i�
ally, we 
onsider a two senders system with onlysenders S1 and S3 transmitting pa
kets. The ba
kground traÆ
 on L1 is �xed at 1:5 Mbps, and theba
kground traÆ
 on L3 is varied from 0:3 to 2:7 Mbps. In this s
enario, the best-path approa
hbelieves (based on 
olle
ted measurements) that the path originating at sender S3 experien
es theleast losses. Therefore, the best-path streaming approa
h always uses the path originating fromsender S3. We also 
onsider a very simple MP streaming approa
h, whi
h streams the data in around-robin manner from S1 and S3.
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Figure 15: Relative Loss Rate when ba
kground traÆ
 on link L3 and FEC group size are varied.Figure 15 illustrates the relative loss rate (using several di�erent FEC s
hemes), whi
h is de�nedas the data loss rate of dual-path streaming divided by the data loss rate of best-path streaming.Hen
e, a relative loss rate of less than 1, implies that simple dual-path streaming is more robustas 
ompared to best-path streaming. As in Se
tion 3, we observe that simple dual-path (round-25



robin) streaming does quite well 
ompared to best-path streaming, even when there is signi�
antdi�eren
es in loss 
hara
teristi
s between the two paths. Of 
ourse, in 
ases where the best pathhas mu
h better loss 
hara
teristi
s and with relatively little redundant information, the best-pathapproa
h has a lower data loss rate. Hen
e, we believe that the MP approa
h is more robust as
ompared to best-path streaming.Experiment 7 (E�e
ts of Shared Points of Congestion on Various Performan
e Met-ri
s): In this experiment, we study the e�e
ts of shared points-of-
ongestion, between the pathsused by the di�erent senders, on various performan
e measures. Here, the ba
kground traÆ
 issent through the narrow links L3 and L4. Note that, having ba
kground traÆ
 on L4 implies thatsenders 1 and 2 share the same point-of-
ongestion. Again, we 
onsider the four 
on�gurationsdes
ribed in Experiment 5 above.
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(a) Data Loss Rate (b)Lag1-auto
orrelationFigure 16: E�e
ts of shared points-of-
ongestion on data loss rate and lag-1 auto
orrelation withFEC (n = 10; k = 8).Figure 16 illustrates the data loss rate and lag-1 auto
orrelation for these 
on�gurations, whenFEC is used, with (n = 10; k = 8). Moreover, we vary the ba
kground traÆ
 on the two narrowlinks L3 and L4 among the following values: 0:6 Mbps, 1:2 Mbps, 1:8 Mbps, and 2:4 Mbps. Fromthis �gure, we observe the following.� MP streaming (
on�gurations 2, 3, 4) has a lower data loss rate as 
ompared to SP streaming(
on�guration 1).� Dete
ting shared points of 
ongestion is important, as in
luding a greater number of paths/senders(under su
h 
onditions) in the transmission may adversely a�e
t the data loss rate.� Shared points of 
ongestion adversely a�e
t the lag-1 auto
orrelation metri
. For example,
on�guration 3 has a higher lag-1 auto
orrelation than 
on�guration 2.5 Other Considerations and Related WorkIn this se
tion we �rst brie
y dis
uss some of the issues that should be explored when 
onsideringthe use of MP streaming. We then survey related work on this topi
.26



5.1 Considerations in Use of MP StreamingWe note that one should also 
onsider the potential 
osts or detrimental e�e
ts of multipath stream-ing. For instan
e, MP streaming might have an adverse e�e
t on the resulting delay 
hara
teristi
sobserved at the re
eiver. As a result, it might also require a large amount of re
eiver bu�er spa
e.In addition, the overheads asso
iated with sending data over multiple paths and then assemblingit into a single stream at the re
eiver should also be 
onsidered. Moreover, the overheads and
omplexity due to measurements needed to a
hieve better performan
e with MP streaming shouldalso be 
onsidered. For instan
e, in our 
ase, we employ dete
tion of shared points of 
ongestion[18℄ to improve the performan
e of our MP streaming system. Other approa
hes to MP streamingmight require even more detailed information about the network (refer to Se
tion 5.2) whi
h islikely to result in a need for more \intrusive" and 
omplex measurements. Lastly, s
alability ofsu
h measurement s
hemes is an issue as well. However, the evaluation of su
h 
osts is outside thes
ope of this paper.5.2 Related WorkWe now give a brief survey of existing work on this topi
, and spe
i�
ally, we fo
us on thosethat either 
onsider loss 
hara
teristi
s or 
an be deployed over best-e�ort networks (as these are
onsiderations in our work as well). Earlier e�orts on dealing with losses through the use of multipleindependent paths (although at lower layers of the network) in
lude dispersity routing, as proposedby Maxem
huk [11, 12, 13℄. Brie
y, a message is divided into a number of submessages whi
hare then transmitted over a set of independent links in the network (and hen
e the number ofsubmessages is limited by the number of su
h links). The fo
us in this work was on redu
ingdelay, whi
h in
ludes redu
ing the number of retries needed to deliver a message without error, bysending the pie
es of the data over multiple independent paths. Of 
ourse, addition of redundantinformation, where only a subset of the submessages would need to arrive 
orre
tly, is also possibleunder su
h a s
heme. An important di�eren
e in our work is that we fo
us on streaming appli
ationswhere the data transmission rate is determined by the appli
ation's needs rather than on deliveringthe data to its destination as fast as possible. Hen
e, in our 
ase the data is sent through thenetwork at a spe
i�
 rate and that has an e�e
t on loss 
hara
teristi
s, whi
h we investigate here.Also, we do not 
onsider retransmissions as there is usually little opportunity to retransmit datain su
h appli
ations (due to their real-time 
onstraints), and hen
e some amount of lossiness mustbe tolerated.The use of multiple paths in routing data has of 
ourse been 
onsidered at the network layer.However, it is not generally done at the network layer in the 
urrent Internet. Hen
e, higher layerme
hanisms should be 
onsidered. Another set of works on the topi
 
onsiders higher level me
h-anisms, but requires some assistan
e from the lower layers and/or assumes signi�
ant knowledgeof network topology and/or link 
apa
ities and delays (on all links used for data delivery). Givensu
h knowledge, algorithms are proposed for sele
ting paths whi
h 
an avoid 
ongested routes. Forinstan
e, in [4℄, the authors fo
us on adaptation of delivery rate along the di�erent paths, basedon losses observed at the re
eiver. And, [3℄ 
onsiders proper s
heduling of the initial portion ofthe video so as to redu
e the start-up delay. In 
ontrast, our approa
h does not rely on spe
i�
knowledge of topologies, 
apa
ities, delays, et
., and only 
onsiders whether a set of paths do or donot share joint points of 
ongestion, as 
an be dete
ted at the end-hosts. Moreover, our fo
us in thispaper is on 
hara
terizing the bene�ts, with respe
t to loss 
hara
teristi
s, of a multipath approa
has 
ompared to a single path approa
h. Hen
e, our interest is in the more basi
 understanding of27



this problem.Re
ent literature on this topi
 also in
ludes works on voi
e-over-IP type appli
ations. Forinstan
e, [10, 9℄ proposes a s
heme for real-time audio transmission using multiple independentpaths between a single sender and a single re
eiver, where multiple des
ription 
oding (MDC) isused in multi-path delivery and a FEC approa
h is used in single-path delivery. These approa
hesare evaluated through simulation and experiments. In 
ontrast, we believe that it is importantto understand the e�e
ts of multi-path delivery on loss 
hara
teristi
s, even without the use of
oding te
hniques. Hen
e, a great deal of our paper fo
uses on that. We also note that \live"appli
ations (su
h as voi
e-over-IP) have di�erent 
hara
teristi
s than pre-re
orded appli
ations(as we are 
onsidering here). For instan
e, one su
h di�eren
e is the need to disperse data in real-time, whereas in our 
ase, we 
an distribute it to the multiple senders ahead of time; this makesappli
ation-level implementation simpler and possibly more eÆ
ient. Another di�eren
e might bethe ability to address the potentially adverse e�e
ts of MP streaming on delay 
hara
teristi
s (asmentioned above).The most re
ent work on the topi
 [16℄ is 
losest to ours in that it also 
onsiders delivery of pre-re
orded video from multiple senders distributed a
ross the network. However, this work fo
uses ona transport proto
ol as well as on optimization algorithms for (a) rate distribution among the paths(i.e., how mu
h data to send over ea
h path) and (b) pa
ket distribution among the paths (i.e.,whi
h pa
ket should be sent over whi
h path), with the obje
tive of minimizing the loss rate at there
eiver. In an e�ort that will appear in the future [15℄6 FEC te
hniques are added (as 
omparedto [16℄). Again, distribution algorithms are 
onsidered but with the obje
tive of minimizing theprobability of irre
overable error. In 
ontrast, due to the nature of the appli
ation, we believe thatit is important to 
onsider loss 
hara
teristi
s even when the losses 
annot be fully re
overed. Thatis, sin
e we are 
onsidering delivery of video (whi
h 
an be displayed even under some losses) in
ontrast to �le transfer (whi
h 
annot tolerate losses), it is important to 
onsider other metri
s.As mentioned above, in this paper we 
onsider, data loss rate (with and without the use of FEC),burst length distribution (with and without the use of FEC), as well as lag-1 auto
orrelation (withand without the use of FEC), in our evaluation of potential bene�ts of multi-path streaming.6 Con
lusionsIn this paper we investigated the potential bene�ts of an appli
ation-layer multi-path streamingapproa
h to providing QoS over best-e�ort wide-area networks. As already mentioned, an advantageof this approa
h (as 
ompared to approa
hes that require support of lower layers) is that the
omplexity of QoS provision 
an be pushed to the network edge and hen
e improve the s
alabilityand deployment 
hara
teristi
s while at the same time provide a 
ertain level of QoS guarantees.Our fo
us in this paper was on providing a fundamental understanding of the bene�ts of usingmultiple paths to deliver pre-re
orded 
ontinuous media over best-e�ort wide-area networks, withloss 
hara
teristi
s being the main 
on
ern.Our results indi
ate that in general, multi-path streaming exhibits better loss 
hara
teristi
sthan single-path streaming (with or without use of an erasure 
ode), whi
h should result in ahigher viewing quality of the re
eived 
ontinuous media. These results 
an be used in guiding thedesign of multi-path 
ontinuous media systems. Overall, we believe that these results are quite6This paper has not appeared yet, and hen
e we are referring to the version 
urrently available on the authors'web page. 28



en
ouraging and warrant further study of multi-path streaming over wide-area networks. Our
urrent and future e�orts in
lude: (a) investigation of potential bene�ts of streaming adaptationbetween multiple paths, as network 
onditions 
hange as well as (b) validation of 
on
lusions madehere using real Internet experiments.Referen
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e of Data Loss RateIn this appendix, we provide an explanation for the possible 
onvergen
e of the data loss rate whenthe FEC group size is in
reased (e.g., by keeping the ratio of n=k but in
reasing the value of n).Let Pp�path(j; n) be the probability of losing j pa
kets under p parallel senders/paths when theFEC group size is n. Based on the derivation in Se
tion 2, we have:P1�path(j; n) = P (1)(j; n) for j = 1; 2; : : : ; n.Pm�path(j; n) = Xi1+���+im=j P (1)(i1; n1) � P (2)(i2; n2) � � � � � P (m)(im; nm)for n1 + � � �+ nm = n and m > 1.Let 	N�path(n) be the average number of lost pa
kets when we use N � 1 parallel senders and theFEC group size is n. We have that	N�path(n) = nXj=n�k+1 jPN�path(j; n):Let � = n�kn be the fra
tion of redundant pa
kets within a FEC group and PN�path be theprobability of losing any pa
ket when one uses N parallel senders. We have that PN�path =PNi=1 �i �0(i)�0(i)+�1(i) . Let Lp�path(n; �) denote the average data loss rate when a FEC group size ofsize n is used and �n is the number of redundant pa
kets with p � 1 parallel senders. We 
onje
turethat limn!1Lp�path(n; �) = ( 0 if limn!1 	N�path(n)�n ! 0;(0,PN�path℄ otherwise. (32)The above statement is intuitive for the following reasons (its proof is left for future work). Aswe in
rease n (but keep � 
onstant), if the rate of in
rease of 	N�path(n) is less than the rateof in
rease of �n, then we will have more redundant pa
kets to \prote
t" the lost pa
kets withina FEC group; in that 
ase, the average data loss rate Lp�path(n; �) will 
onverge to zero as wein
rease n. On the other hand, if the rate of in
rease of 	N�path(n) is greater than the rate ofin
rease of �n, as we in
rease n, then we will have some irre
overable pa
ket losses within a FECgroup. In that 
ase, LN�path(n; �) has to be greater than zero and in the worst 
ase, it is upperbounded by the pa
ket loss rate of the 
hannel.
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