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Abstract—Frequently, ISPs charge for Internet use not based
on peak bandwidth usage, but according to a percentile (often the
95th percentile) cost model. In other words, the time slots with the
top 5 percent (in the case of 95th percentile) of data transmission
volume do not affect the cost of transmission. Instead, we are
charged based on the volume of traffic sent in the 95th percentile
slot. In such an environment, by allowing a short delay in
transmission of some data, we may be able to reduce our cost
considerably.

We provide an optimal solution to the offline version of this
problem (in which the job arrivals are known), for any delay
D > 0. The algorithm works for any choice of percentile. We also
show that there is no efficient deterministic online algorithm for
this problem. However, for a slightly different problem, where the
maximum amount of data transmitted is used for cost accounting,
we provide an online algorithm with a competitive ratio of 2D+1

D+1
.

Furthermore, we prove that no online algorithm can achieve a

competitive ratio better than 2D+1
D+F (D)

where F (D) =
∑

D+1
i=1

i

D+i

for any D > 0 in an adversarial setting.
We also provide a heuristic that can be used in an online

setting where the network traffic has a strong correlation over
consecutive accounting cycles, based on the solution to the offline
percentile problem. Experimental results are used to illustrate the
performance of the algorithms proposed in this work.

I. INTRODUCTION

A huge amount of data is transferred over the Internet

every day. For example, Google, Amazon and other operators

of large data centers that host cloud computing applications

need to provide services and synchronize processed data

across multiple locations. Multimedia content providers such

as Akamai need to replicate video clips over servers located

in different regions for optimized content delivery. Huge data

chunks are transmitted over high speed links, and cost the

senders a significant amount of money on a daily basis.

Cost accounting for data transfer is performed differently

from other utilities such as energy, where companies are

billed by the total volume of utility consumed. For network

bandwidth, the cost in large scale computing systems, the 95th
percentile rule is widely used [10]. The rule can be described

as follows: the average utility usage is sampled every w time

units. Thus, in an accounting cycle of length L, a total of L
w

samples are taken. (A typical number for w is 5 minutes and

L is 24 hours.) Then the 95th percentile of these samples is

taken as the actual utility usage in that accounting cycle.

The performance requirements of such data transfers typ-

ically include transmission delay, as the data chunks have

to be delivered within some time period. Often, such delay

requirements are not stringent. For example, video replications

over servers at different locations do not have to be carried

out exactly at 9:00PM daily. All that is needed is that they

are completed, for instance, before midnight. This provides

opportunities for data senders to optimize data transfers by

attempting to reduce the 95th percentile usage. We can view

data chunks as jobs, and links (or senders) as servers. Then,

the problem can be viewed as a scheduling problem aimed as

reducing the 95th percentile usage. In fact, given some slack

in job scheduling, we can consider any percentile as defining

our metric.

Consider the following simple example: Suppose there is

a server that serves jobs of the same size. Jobs arrive at the

server in each time slot. The server has a capacity of serving

up to 5 jobs in one slot. Over an accounting period of 5 time

slots, the number of jobs arriving at the server is [3, 3, 3, 3, 0].
Our goal is to minimize the 80th percentile (second largest in

this case) of the number of jobs served in one time slot. If

all jobs are served within the time slot in which they arrive,

with no delay, then the service sequence is also [3, 3, 3, 3, 0].
Note that according to the 80th percentile rule, the billed

output bandwidth usage is also 3. However by delaying each

job by at most one time slot, the server can instead choose

the service sequence [2, 4, 2, 2, 2], thus reducing the billed

bandwidth usage to 2, since the slot with the maximum load

is not counted. Note that the trade-off here is that four jobs

are delayed. One is delayed from slot 1 to slot 2, one from

slot 3 to slot 4, and two from slot 4 to slot 5.

The above example looks straightforward. But the general

problem of percentile minimization can be difficult, due to

the following: 1) jobs arrive with delay requirements and

2) the job arrival patterns might not be available ahead of

time. This paper considers this problem, as well as a closely

related problem from an algorithmic prospective. We focus

on reducing the 95th percentile because it is the value based

on which the bandwidth usage is currently billed; however,

our approach can be applied to other percentile values1. We

provide job scheduling algorithms and analysis of the problem

of minimizing the 95th percentile of job service, subject to

1For the problem of minimizing the 100th percentile (maximum value), the
complexity of our approach is lower than the complexity for other percentile
values.
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delay constraints. We focus on uniform delay requirements,

where all jobs arrive with the same delay requirement. Our

study covers both the offline problem, where all the job arrivals

are known in advance, and the online problem, where no

knowledge of job arrivals is available a priori.

While scheduling problems have been investigated for

decades [12], the metrics considered in prior work have more

to do with minimizing the maximum load, or scheduling a

given fraction of jobs, while minimizing maximum load [6].

Our model represents a new class of problems, and is based

on the charging mechanism in use.

The bounded delay buffer management problem, first intro-

duced by Kesselman et al. [9] is a somewhat similar problem

that has been widely studied in literature. This is an online

problem, where jobs have weights and deadlines, and the

goal is to maximize the weight of jobs served within their

deadline, where the processor can only process one job at a

time. Though the problem seems related to the problems we

consider in this work, it is not obvious that their techniques can

be directly applied to our problem. In Section X we provide

some more references to subsequent works in this area.

The contributions of this work are summarized as follows:

• We analyze the offline problem of minimizing the 95th
percentile of job service where the jobs can be delayed

by at most one time slot, i.e., D = 1, and provide OPT, a

dynamic programming algorithm that obtains an optimal

service schedule in O(N2 logC) time, where N is the

number of time slots and C is the link capacity (see

Section III). The algorithm can be modified to consider

any percentile.

• We extend our approach to general uniform delay require-

ments. (see Section IV).

• We show that the online problem is hard and no algorithm

achieves constant competitive ratio (see Section V).

• We study a closely related problem where the maximum,

instead of the 95th percentile is minimized. We provide an

efficient online algorithm that achieves close to optimal

performance for this problem (see Section VI). We vali-

date this by showing a lower bound that any deterministic

algorithm can achieve for a general uniform delay.

• We provide a simple heuristic aimed at reducing the 95th
percentile of job service based on OPT. The heuristic can

be used in an online manner (see Section VII).

• Extending the original problem to the case where jobs

have variable sizes makes it NP-hard (See Section VIII).

• We evaluate the performance of all algorithms using

synthetic workload datasets and show that our heuristic

achieves up to 13% reductions of the 95th percentile of

the number of jobs served (see Section IX).

• We provide pointers to future work and conclude in

Section XI.

II. PROBLEM DEFINITION

Consider a system with a single server, where time is slotted.

Let N be the total number of time slots in an accounting cycle.

Let A(i) denote the number of jobs arriving in time slot i. Each

job is of unit work. Jobs arrive at the beginning of each time

slot and some number of them, S(i), are served by the end of

that time slot. Jobs that are served in the time slot in which

they arrived incur no delay. Unserved jobs are carried over for

service in future time slots; each time a job is carried over, it

incurs an additional delay of one time slot.

The goal is to choose S(i), i = 1, 2, 3, ..., N , such that the

95th percentile of S(i) is minimized. To make this problem

realistic (and potentially interesting) the following constraints

are introduced:

• The server has a capacity of C. Thus, S(i) ≤ C, ∀i. To
simplify the problem, we assume that A(i) ≤ C, ∀i.

• Each job can be delayed by at most D time slots (0 <
D ≫ N ).

This problem has an offline and an online version, depending

on whether job arrivals, A(i), are known in advance or not.

III. SOLUTION TO OFFLINE PROBLEM FOR D = 1

In this section we give an algorithm to solve the proposed

offline problem, where A(i), i = 1, 2, ..., N is known a priori.

To simplify the problem, we first assume delayD = 1. We will

later extend our solution to accommodate general D values.

We call our approach OPT.

A solution to this problem is useful in scenarios like bulk

data transfer [10], where workload is pre-determined but can

be scheduled with some flexibility. According to the 95th
percentile accounting rule, the number of jobs served in the

top 5% of the total time slots are not included in accounting.

These time slots can be viewed as “free” because the jobs

served in these time slots do not change the 95th percentile

result. Let T = 5% × N be the number of “free” time slots

(we assume T is an integer). Assume that in “free” time slots,

up to C jobs can be served, whereas in the other N − T time

slots, at most H(H ≤ C) jobs can be served. In this way, H
serves as the upper bound of the 95th percentile of the number

of jobs served in one time slot.

The goal is to find the smallest H , so that there is a schedule

to serve jobs, such that all but T slots serve at most H jobs.

We make a guess for H , and then verify if our guess leads to

a feasible solution. We can do a doubling search, combined

with a binary search for H .

We first discuss the solution for unit delay (D = 1). At step
i, the number of arriving jobs is A(i). Each job should be

served in the same slot, or in the next slot. The load on any

single slot cannot exceed C (the maximum capacity).

OPT (1, 0) = max{A(1)−H, 0}

OPT (1, 1) = 0

OPT (i, t) =

min

{

max{OPT (i− 1, t− 1) +A(i)− C, 0}

max{OPT (i− 1, t) +A(i)−H, 0} if OPT (i− 1, t) ≤ H

Since this is a standard dynamic program, we do not further

discuss how to implement it. The key point is that if a
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feasible schedule exists with the chosen value of H , then

OPT (N,T ) = 0. If OPT (N,T ) > 0 then this implies that

there is no schedule with the guessed value of H .

We assume that each instance has the property that A(i) ≤
C. From this it is easy to see (by induction) that OPT (i, t) ≤
C. In other words, since we never receive more than C jobs,

we never pass on more than C unfinished jobs.

Theorem 1. OPT (i, t) minimizes the number of unserved jobs
in the first i slots, assuming that at most t slots can have load

> H , and all the other slots are required to have load at most

H .

Proof: The proof is by induction on (i, t). In other words,

we assume that we have proven the claim for (i− 1, j) for all
j ≤ i− 1 and wish to prove it now for (i, t) for all t ≤ i. In
fact if t ≥ i, OPT (i, t) = 0 since all the slots are “free”. If we

assume that a solution exists for the given value H then clearly

by time N , all the jobs are handled and thus OPT (N,T ) = 0.
For the general case note that in an optimal solution the load

in slot i is either > H or ≤ H . In the former case, we have a

capacity of C in time slot i. If an optimal solution exists that

passes on p jobs, by induction our solution for (i − 1, t − 1)
passes on at most p jobs. As a result, if the load at time i is
at most C then with fewer jobs it is at most C. Since at most

C jobs are passed on from slot i− 1, we can handle them all

in time slot i. In the latter case, we use an optimal solution

for the sub-problem (i− 1, t), but it is important to note that

if more than H jobs are passed on, then we cannot feasibly

handle more than H delayed jobs in time slot i since there is

an upper bound on the delay of D = 1.

IV. EXTENDING OPT TO GENERAL UNIFORM DELAY

We assume that all arriving jobs can be delayed by at most

D ≥ 1 time slots. The goal is to minimize the 95th percentile

of the number of jobs served. Our algorithm in Section III

solves the D = 1 case. We now extend this algorithm to the

general D case. When D > 1, the jobs left unfinished by time

slot i consist of jobs that have been delayed for 1, 2, ..., D time

slots. Intuitively, the service priority for these jobs should be

different. In general, let U(i) = (U1(i), ..., UD(i)) be the

vector of unfinished jobs at the end of time slot i. That is, an
element Uj(i) represents the number of jobs that have been

delayed for j time slots, including time slot i. For instance,
U1(i) is the number of jobs that arrived in time slot i but did
not get served in that time slot. Similarly, UD(i) represents the
number of jobs that have already been delayed for a maximum

allowed D time slots; thus, they all have to be served in time

slot i + 1. Let us define an augmented vector UA(i) =
(A(i),U(i − 1)), where UA

0 (i) = A(i) and UA
k (i) = Uk(i−

1) ∀ k ≥ 1. Let S(i) = (S0(i), ..., SD(i)) be the service

vector.

The service vector S(i) represents the amount of work done

in time slot i. Specifically, Sj(i) represents the quantity of jobs
UA
j (i) served in time slot i.

In this scenario, H being feasible means that
∑D

j=0 Sj(i) ≤

H for an “accounted” slot and
∑D

j=0 Sj(i) ≤ C for a “free”

slot. Moreover, 0 ≤ Sj(i) ≤ UA
j (i).

We show that an algorithm similar to the one given in

Section III can solve the general problem. We define a dynamic

program to calculate OPT (i, t). Since jobs can be delayed for

more than one time slot now, our algorithm now needs to (1)

provide a service schedule vector, (2) calculate the vector of

unfinished jobs, and (3) decide whether a certain H value is

feasible.

For a particular UA(i), there are multiple feasible S(i)
vectors that satisfy the above constraints. For example, when

D = 2, suppose U(i − 1) = (2, 1), A(i) = 3 and H = 3,
S(i) can be either (1, 1, 1), (0, 2, 1), or (2, 0, 1).
We choose S(i) in a greedy manner. Specifically, jobs that

arrive earlier will be served before those arriving later. This

is intuitive because jobs that have been delayed longer are

more urgent and should be prioritized over those that just

arrived. Given this, the service schedule vector we choose for

the example above is (0, 2, 1).
To check feasibility of assigning an “accounted” time slot

or “free” slot, we need to compare H with UD(i) to check if

the corresponding schedule is feasible.

We define OPT (i, t), {i = 1, 2, 3, ..., n; t = 0, 1, 2, ..., T}
as the minimum number of total jobs left unfinished by the end

of time slot i, using t “free” time slots. We have OPT (i, t) =
0 if i ≤ t, as we assume that A(i) ≤ C, ∀i.
For every (i, t), we have associated vectors U(i, t) and

S(i, t), where the former is the vector of unserved jobs after

time slot i when t free slots have been used, and the latter is

the vector of served jobs in time slot i when t free slots have

been used. These vectors are stored along with the OPT (i, t)
entry.

OPT (i, t) is chosen to be one of the following values,

depending on whether i is a free slot or an accounted slot.

If i is a free slot, then we can transmit up to C
jobs. This is distributed among the unserved jobs as fol-

lows. First, we define the augmented vector UA(i, t) =
(A(i),U(i − 1, t − 1)). Let k be the smallest index such that∑D

j=k U
A
j (i, t) ≤ C. Since A(i) ≤ C ∀i, k is well-defined.

Let ÛA
k−1(i, t) = C −

∑D
j=k U

A
j (i, t). Then

S(i, t) = (0, . . . , 0, ÛA
k−1(i, t), U

A
k (i, t), . . . , UA

D(i, t)).
We define UC(i, t) to be the first D elements of

UA(i, t) − S(i, t). This is because the last element of

the difference of the vectors is 0 since k is well-defined.

In this case, define OPT1(i, t) =
∑D

j=1 U
C
j (i, t).

If i is an accounted slot, then we can transmit up to H jobs.

This is again distributed among the unserved jobs as follows.

First, we again define the augmented vector for this case as

UA(i, t) = (A(i),U(i − 1, t)). Let k be the smallest index

such that
∑D

j=k U
A
j (i, t) ≤ H .

If there exists no such k, that means UA
D(i, t) = UD(i −

1, t) > H , hence this value of H is infeasible. In this case,

define OPT2(i, t) =∞.

Otherwise, let ÛA
k−1(i, t) = H −

∑D
j=k U

A
j (i, t).

Then S(i, t) = (0, . . . , 0, ÛA
k−1(i, t), U

A
k (i, t), . . . , UA

D(i, t)).
Again, UH(i, t) is defined to be the first D elements of
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UA(i, t) − S(i, t). This is because the last element of the

difference of the vectors is 0 since k is now well-defined.

In this case, define OPT2(i, t) =
∑D

j=1 U
H
j (i, t).

OPT (i, t) is chosen to be the minimum of OPT1(i, t) and
OPT2(i, t). The corresponding vector UC(i, t) or UH(i, t)
is retained as vector U(i, t).
Therefore, for every (i, t), OPT (i, t) =

∑D
j=1 Uj(i, t)

by definition. Hence, we can now define OPT (i, t) more

compactly as follows.

OPT (1, 0) = max(A(1)−H, 0)

OPT (1, 1) = 0

OPT (i, t) = 0 ∀ t ≥ i

OPT (i, t) =

min

{

max{OPT (i− 1, t− 1) +A(i)− C, 0}

max{OPT (i− 1, t) +A(i)−H, 0} if UD(i− 1, t) ≤ H

Theorem 2. OPT (i, t) minimizes the number of unserved jobs
in the first i slots, assuming that at most t slots can have load

> H , and all the other slots are required to have load at most

H .

Proof: The proof is by induction on (i, t). Given the base

cases defined in our dynamic program, we assume that we have

proven the claim for (i − 1, j) for all j ≤ i − 1 and wish to

prove it now for (i, t) for all t ≤ i. For t = i, OPT (i, t) = 0
since all the slots are “free”. If a solution exists for a given

H , then obviously OPT (N,T ) = 0.
In the general case, in an optimal solution the load in slot i

is either > H or ≤ H . The former case is similar to D = 1. In
the latter case, we use an optimal solution for the sub-problem

(i − 1, t), but if UD(i − 1, t) > H , then we cannot feasibly

handle more than H delayed jobs in time slot i since these

jobs have reached their maximum delay. Hence we need to

prove that UD(i − 1, t) ≤ UO
D (i − 1, t) for all t ≤ i − 1 for

any algorithm O.

We first prove the following claim:

Claim 1. For any (i′, t′), if Uj(i
′, t′) > 0 for any 1 < j ≤ D,

then Uk(i
′, t′) = A(i′ − k + 1) for all k < j.

Proof: This claim follows from the greedy manner in

which we choose the service schedule. Specifically, at any

(i′, t′), if Uj(i
′, t′) > 0 for some 1 < j ≤ D, then the jobs

with lesser delay will not be processed at all. The jobs with

delay less than j would be the jobs arriving at time slots (i′−
k + 1) where k < j.

Proof of Theorem 2 contd. If UD(i − 1, t) = 0 then

UD(i − 1, t) ≤ UO
D (i − 1, t). Otherwise, if UD(i − 1, t) > 0,

then from the above claim Uk(i − 1, t) = A(i − k) for all

k < D. However, OPT (i − 1, t) =
∑D

j=1 Uj(i− 1, t) by

definition. By the induction hypothesis, OPT (i − 1, t) ≤
O(i − 1, t) for any algorithm O (O(i − 1, t) is defined

similarly to OPT (i − 1, t) for an algorithm O). Hence,

∑D
j=1 Uj(i− 1, t) ≤

∑D
j=1 U

O
j (i− 1, t). Since Uk(i−1, t) =

A(i−k) ≥ UO
k (i−1, t) for all k < D, therefore, UD(i−1, t) ≤

UO
D (i−1, t) for any O. This completes the proof of Theorem 2.

V. ONLINE PROBLEM: HARDNESS

So far we have studied an offline version of the 95th
percentile problem, where it is assumed that the sequence

A(i), i = 1, 2, ..., N is known before OPT is carried out.

In this section, we relax this assumption and assume that

A(i) cannot be observed until time slot i. This relaxation

makes the problem more realistic because in many scenarios,

it is difficult to predict the volume of future job arrivals.

However, it also makes the problem much more difficult.

In fact, for the 95th percentile problem, performance of any

online algorithm can be quite bad, as stated in Theorem 3.

For simplicity, we use NX
A to denote the 95th percentile

of the service schedule generated by algorithm X for arrival

sequence A(1) through A(N).

Theorem 3. For any online algorithm there exists an arrival

series A(i), i = 1, 2, ..., N for unit delay, such that
N

OL
A

NOPT
A

cannot be bounded by any constant.

To prove the theorem, we show that an adversary is able

to construct an arrival sequence, such that no matter how the

jobs are being served, the ratio of the optimal solution and the

one achieved by the online algorithm goes to infinity.

Proof: The adversary constructs the arrival sequence as

follows: Let A(1) = x, and then A(i) = αx, where α > 1
for i = 2, 3, .... Generate such arrivals until the number of

time slots with non-zero job service (S(·)) is exactly T for

the online algorithm. Suppose this happens at time slot T ∗.

Clearly, T ∗ ≤ 2T .
If T ∗ < 2T , then let A(T ∗+1) = x, A(T ∗+2), ..., A(n) =

0. In this case, we can construct SOPT (2k − 1) = 0 and

SOPT (2k) = A(2k−1)+A(2k) for k = 1, 2, ..., T ∗/2. Since
T ∗ + 1 ≤ 2T , all these non-zero services are not accounted.

Thus NOPT
A = 0. On the other hand, NOL

A > 0. The reason

is that in time slot 1 through T ∗ + 2 there are at least T + 1
time slots with non-zero job service for the online algorithm.

Therefore,
N

OL
A

NOPT
A

can be arbitrarily large.

On the other hand, if T ∗ = 2T , then it must be the case

that, SOL(1) = 0, SOL(2) = (1 + α)x, SOL(2k) = 2αx and

SOL(2k − 1) = 0 for k = 2, 3, ..., T . Now let A(T ∗ + 1) =
4αx. A(T ∗+2), ..., A(n) = 0, and we have NOL

A ≥ min{(1+
α)x, 2αx} ≥ (1+α)x. On the other hand, NOPT

A = x/2. The
corresponding optimal job service sequence is SOPT (1) =
SOPT (2) = x/2, SOPT (2k + 1) = A(2k) + A(2k + 1) and

SOPT (2k + 2) = 0 for k = 1, 2, ..., T . Then the competitive

ratio is at least
(1+α)x
x/2 = 2(1+α) and cannot be bounded.

VI. THE MIN-MAX ONLINE PROBLEM

In Section V we showed that the original online problem has

no constant competitive algorithm. From the proof we can see

that the difficulty lies in the correct identification and usage
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of “free” time slots. This motivates our next step on a similar

problem where no “free” time slots are allowed. Specifically,

we consider the problem of minimizing the maximum number

of jobs served in a slot, instead of the 95th percentile.

Formally, let A(i) and S(i) be the number of job arrivals

(with unit work) and the vector of jobs served in time slot i,
respectively.

Again, jobs can be delayed for at most D time slots, and

our goal is to minimize the maximum of the sum of S(i), i.e.,
total number of jobs served in a time slot, over a potentially

infinite time horizon (N →∞).

We refer to this problem as the min-max problem. We note

that the offline version of this problem is a special case of

the problem solved by Yao et al. [13]. Here we consider the

online version of the problem.

A. An efficient online algorithm for the min-max problem

We term our approach ES as short for “Equal Split”.

Without loss of generality, we define A(i) = 0 when i ≤ 0.
With this, the algorithm is quite simple.

Algorithm 1 ES: Calculate SES(i), i = 1, 2, ...

1: for time slot i = 1, 2, ... do
2: Obtain A(i)
3: S(i)← 1

D+1 (A(i−D), A(i−D + 1), ..., A(i))
4: end for

Consider Algorithm 1, in each time slot, the arriving jobs

are split into D+1 sets of equal size. In this time slot, as well

as each of the following D time slots, one set will be served.

The competitive ratio of this simple algorithm is given in

Theorem 4.

Theorem 4. The competitive ratio of ES is 2D+1
D+1 .

Proof: Let FA(i)
△

=
∑i

j=i−D A(j) be the number of job

arrivals during consecutive D+1 time slots ending with time

slot i. Additionally, let FA
△

=maxi FA(i). Let M
AL
A refer to

the maximum number of jobs served in one time slot for an

arrival sequence A, by an algorithm AL. Then we have:

MES
A =

FA

D + 1
. (1)

This is because in scheme ES, the number of jobs served in

time slot i is exactly
∑i

j=i−D A(j)

D+1 .

However, in an optimal solution we have:

MOPT
A ≥

FA

2D + 1
. (2)

This is the case since all jobs arriving between time slots i−D
and i have to be served between time slot i−D and time slot

i+D, a consecutive of 2D + 1 time slots.

Comparing (1) and (2) we can see that the competitive

ratio of ES is at most 2D+1
D+1 . On the other hand, consider the

following arrival series: A(1) = (D + 1)2, A(2) = A(3) =
... = A(D+ 1) = D+ 1 and A(i) = 0 ∀i > D+ 1. It can be

verified thatMOPT
A = D+1 andMES

A = 2D+1. Therefore,
the competitive ratio is tight.

B. Lower bound for online algorithms

Above we showed that ES is 2D+1
D+1 competitive. In fact, this

ratio is not far from what any online algorithm can possibly

achieve. We now give a lower bound on the performance of

any online algorithm.

Theorem 5. For the min-max problem with maximum al-

lowed delay D, the competitive ratio of any deterministic

online algorithm denoted by OL is at least 2D+1
D+F (D) , where

F (D) =
∑D+1

i=1
i

D+i . In other words,

MOL
A

MOPT
A

≥
2D + 1

D + F (D)
. (3)

The proof approach is to show that an adversary can force

any online algorithm to achieve a competitive ratio of at least
2D+1

D+F (D) .

Proof: Let α = 2D+1
(D+F (D))(D+1) . We need to show that the

competitive ratio of any online algorithm is at least (D+1)α.
We useMOPT

A (i) to denote the optimal solution to the min-

max problem when A(i+1) and all follow up arrivals are set

to 0.
Let the adversary first set A(1) = 1. It is obvious that

MOPT
A (1) = 1

D+1 . If the online algorithm serves SOL(1) ≥
α, then the adversary stops, and the competitive ratio is at

least (D + 1)α. Otherwise, the carry-over UOL
A (1) ≥ 1 − α.

Now the adversary sets A(2) to be 1 also.MOPT
A (2) = 2

D+2 .

If the online algorithm results in SOL(2) ≥ 2(D+1)
D+2 α, then the

adversary stops, and the competitive ratio is at least (D+1)α.
Otherwise, the adversary sets A(3) = 1. Then MOPT

A (3) =
3

D+3 . If the online algorithm results in SOL(3) ≥ 3(D+1)
D+3 α,

then the adversary stops, and the competitive ratio is at least

(D+1)α. Continuing in this manner, the adversary sets A(1)
through A(D+1) to be 1, then A(D+2) through A(2D+2)
to be D + 1, and so on. At any time step i, if the online

algorithm does no less than (D+ 1)α of the optimum offline

algorithm in the time slot i, or (D + 1)αMOPT
A (i), the

sequence stops, and the adversary has forced a competitive

ratio of (D + 1)α. Otherwise, the sequence of jobs faced

by the online algorithm from time slot 1 to k(D + 1) is

1, D+1, (D+1)2, ..., (D+1)k−1, each repeated D+1 times.

From the work of Yao et al. [13], we know that

MOPT
A (p(D + 1) + r) =

r(D + 1)p

D + r
,

p = 0, 1, ..., k − 2, r = 1, 2, ..., D + 1

Thus, the carry-over to time slot k(D + 1) + 1 satisfies

UOL
A (k(D + 1)) ≥

k(D+1)∑

i=1

[A(i)− SOL
A (i)]

≥ (D + 1)

k−1∑

i=0

(D + 1)i
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− (D + 1)α(

D+1∑

i=1

i

D + i
)(

k−1∑

j=0

(D + 1)j)

= (D + 1)
(D + 1)k − 1

D
(1− F (D)α)

Now let A(k(D + 1) + 1) = (D + 1)k. In this case we have

MOPT
A (k(D+1)+ 1) = (D+1)k−1. If the online algorithm

results in SOL(k(D+1)+1) ≥ α(D+1)k, then the adversary

stops, and the competitive ratio is at least (D+1)α. Otherwise,

UOL
A (k(D + 1) + 1) ≥ UOL

A (k(D + 1) + 1)

+ (1− α)(D + 1)k

= (D + 1)
(D + 1)k − 1

D
(1− F (D)α) + (1− α)(D + 1)k

= [
2D + 1

D
− (

D + 1

D
F (D) + 1)α](D + 1)k

− o((D + 1)k−1) (4)

Note that the last term on the right side of Equation (4) is
(D+1)(1−F (D)α)

D . It is much less than (D + 1)k−1 when k is

large, so we use o((D + 1)k−1) to represent it.

Next the adversary lets all subsequent number of arrivals

be 0. We know that MOPT
A = (D + 1)k−1. Moreover,

UOL
A (k(D+1)+1) has to be served in the following D time

slots. Thus

MOL
A ≥

UOL
A (k(D + 1) + 1)

D

Thus the competitive ratio

MOL
A

MOPT
A

≥
UOL
A (k(D + 1) + 1)

D(D + 1)k−1

=
(D + 1)k[ 2D+1

D − (D+1
D F (D) + 1)α]− o((D + 1)k−1)

D(D + 1)k−1

(5)

Let k →∞ in Equation (5) and plug in α = 2D+1
(D+F (D))(D+1) ,

we have

MOL
A

MOPT
A

≥
(D + 1)(2D + 1)

D2
− [

(D + 1)2

D2
F (D) +

D + 1

D
]α

=
(D + 1)(2D + 1)

D2
−

(2D + 1)((D + 1)F (D) +D)

D2(D + F (D))

=
2D + 1

D + F (D)
= (D + 1)α

This completes the proof.

We note that when D = 1, the lower bound is 2D+1
D+F (D) =

18
13 . At the same time, ES achieves a ratio of 2D+1

D+1 = 3
2 ,

which is quite close to the lower bound. When D → ∞,

we have that F (D)→ (1− ln 2)D+1. Thus the lower bound
2D+1

D+F (D) →
2

2−ln 2 ≈ 1.53. At the same time, ES’s competitive

ratio approaches 2.

VII. APPLYING OPT

In Section III, we have shown OPT gives an offline op-

timal solution to the 95th percentile problem. However, it

relies on knowledge of future job arrivals. This limits the

practicability of the algorithm. In this section, we provide a

heuristic approach based on OPT that is more practical. We

term this algorithm HEuristic for onLine PErcentile Reduction,

HELPER in short.

A. The HELPER approach

In many cases, network traffic in real systems exhibits

a pattern that repeats over the accounting cycle, which is

typically 24 hours. For example, traffic volume at the same

times on two consecutive weekdays days often shows strong

correlations. Such correlation can be leveraged to obtain good

performance in practice without having a priori knowledge of

arrivals. Thus we can use traffic information obtained today

as a prediction for tomorrow. Below we propose a simple

heuristic approach based on this observation and OPT.

Let the job arrivals of day x be denoted by Ax(1)
through Ax(N). We record job arrivals of day x. At the

end of the day, we apply OPT and obtain Sx(1), ..., Sx(N)

and Ux(1), ..., Ux(N). Now let rx(i) = Sx(i)−Ux(i−1)
Ax(i)

, i =

1, 2, ..., N , be the fraction of Ax(i) that are not being delayed.

With rx(i), i = 1, 2, ..., N , the arrivals on day x + 1 can be

served according to the following algorithm.

Algorithm 2 HELPER: Calculate Sx+1(i), i = 1, 2, ..., N

Require: rx(i), i = 1, 2, ..., N, T = 0.05N
1: Ux+1(0)← 0
2: for time slot i = 1, 2, ..., N do

3: Obtain Ax+1(i)
4: s← rx(i)Ax+1(i) + Ux+1(i− 1)
5: m← (T + 1)th largest in Sx+1(j), j = 1, 2, ..., i− 1
6: if s > m then

7: Sx+1(i)← s
8: else

9: Sx+1(i)← min{m,Ax+1(i) + Ux+1(i− 1)}
10: end if

11: Ux+1(i)← Ax+1(i) + Ux+1(i− 1)− Sx+1(i)
12: Record Ax+1(i)
13: end for

Let us consider Ax+1(i), i = 1, 2, ..., N . Intuitively, when

Ax+1(i) = K × Ax(i), i = 1, 2, ..., N , where K > 0 is a

constant, following the service schedule of day x results in

optimal 95th percentile for day x + 1. Such a schedule is

characterized by the sequence rx(1) through rx(N). Thus, in
day x + 1, when Ax+1(i) comes in, we should serve s =
rx(i)Ax+1(i)+(1−rx(i−1))Ax+1(i−1) jobs. This is stated
in line 4 of Algorithm 2. On the other hand, the 95th percentile

will not be increased unless more than m jobs are served,

where m is the (T + 1)st largest value from S(1) through

S(i − 1), which is already computed in previous time slots.

(line 5). Thus we can serve up to the maximum of s and m,

as expressed in lines 5 to 10. The idea here is that if s < m,

we can still serve up to m jobs without increasing the 95th
percentile. At the same time Ax+1(i) is recorded and then used
to learn rx+1(i). Then the sequence of rx+1(i), i = 1, 2, ..., N
is used to schedule jobs arrive in day x+ 2, and so forth.
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B. Discussions

In HELPER, we use Ax(i) as a simple prediction of

Ax+1(i). We note that more sophisticated algorithms such as

ARIMA[14] can be applied here to predict Ax+1(i). These

prediction algorithms might result in better performance of

HELPER, but also bring in more computation overhead, while

as shown in Section IX, our simple model already brings in

significant results.

Also, it is easy to see that this heuristic approach does not

come with any performance guarantee. It is not surprising that

it can perform arbitrarily bad if Ax+1(i) is not correlated with

Ax(i).

VIII. EXTENSIONS

One extension of the original problem is the case where

the incoming jobs are not of the same size. Suppose now

that each job consists of a number of tasks, and all tasks

are of the same size. An additional constraint is that there

are dependencies among these tasks, such that all the tasks of

a job cannot be split and served in different time slots. For

example, suppose a job that contains 3 tasks arrives in time

slot 1. Due to dependency, it can be served as a whole in time

slot 1 or 2. But it is not allowed to serve 2 tasks of this job

in time slot 1, then 1 task in time slot 2. In this case, the

min-max problem becomes NP-complete.

Theorem 6. When jobs are not of unit size, the problem of

minimizing the maximum number of job served is NP-complete

Proof: The proof follows trivially by a reduction from

PARTITION.

IX. EXPERIMENTS

We now evaluate the performance of our approach through

simulations. First, we describe our simulation setting.

A. Experimental settings

1) Workload data: We use hit records of Wikipedia as the

basis, on top of which we generate our workload datasets.

Wikipedia records its hourly hit rate of the previous month [1].

We use these records between August 11, 2010 and October

25th, 2010. Since the length of one time slot is usually 5

minutes, we interpolate this data so that the sample frequency

is once every 5 minutes. Based on this record, we generate 6
time series with different characteristics. The statistics of these

datasets are listed in Table I. Note that the “autocorr” column

shows the auto-correlation with 24 hour lag. From the table

we can see that the datasets show medium to high 24 hour lag

auto-correlation and small (datasets 1 and 2) to high (datasets

5 and 6) coefficient of variation.

As an example, a portion of dataset 1 is depicted in Figure 1.

It can be seen from this figure that these workload time series

include diurnal patterns, as well as some “anomalies”, such as

change of traffic volume.
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Change in Traffic Volume

Diurnal Pattern

Fig. 1. An example of arrival dataset.

dataset max×10
6 min×10

6 mean×10
6 autocorr coef of var

1 4.35 1.04 2.01 0.93 0.34

2 2.32 1.00 1.58 0.82 0.17

3 3.30 0.23 1.66 0.74 0.54

4 3.34 0.25 1.71 0.78 0.54

5 2.35 0.00 0.72 0.71 0.89

6 2.34 0.04 0.86 0.72 0.70

TABLE I
STATISTICS OF DATASETS.

2) Experimental methodology: We implement OPT,

HELPER and ES. In the first set of simulations, we study

the effect of different delays and percentile.

We run OPT with different D values against all datasets.

We also modify OPT so that the minimization objective varies:

95th, 98th, and 99th percentile. (Recall that OPT can be

adapted to find the optimal service schedule of any percentile;

all that is needed is a change in the value of T .) We then

drive all algorithms using all of the data sets and calculate

the relative change in the 95th percentile and the maximum

number of jobs served for each of the 74 days, as compared to

the original scenario, where workload was served without any

delay. Note that OPT and HELPER are originally designed

to reduce the percentile value. We modify them so that OPT

also computes the optimal solution for the min-max problem.

Adopting this version of OPT, HELPER can also be used to

reduce the maximum number of jobs served.

For each dataset, we obtain 3 sets of results. For OPT and

ES the sets have 74 elements, whereas for HELPER there are

73 elements because no predictions are available for the first

24 hours.

B. Experimental results

In Figure 2 we plot the average performance of OPT in

reducing the 95th, 98th and 99th percentile with different delay
values, as compared with the original scheme. Each point in

the figure is the average reduction in corresponding percentile

over all 6 datasets. As D increases, OPT offer greater re-

duction. This is intuitive because increasing D allows greater

flexibility in service. With this OPT is able to “accumulate”
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Fig. 2. Average reduction with different D values

more jobs in time slots that are not being accounted. Also,

when the objective percentile decreases, OPT performs better

since more “free” time slots are available.
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Fig. 3. 95th percentile results for OPT, HELPER and ES

In Figure 3 we show the performance of all algorithms in

reducing the 95th percentile for all datasets. In this set of

simulations D is set to be 1. As mentioned earlier, for each

dataset, each algorithm generates more than 70 results. We

use bars with different colors to show the mean value of these

results generated by different algorithms. We also use the dark

bars on top of each color bar to show the 95% (two sigma)

confidence interval.

From Figure 3 we can see that OPT achieves significant

reduction of the 95th percentile (18% to 35%) for all datasets.

In the worst case, OPT provides more than 15% reduction

as compared to the no delay scheme. HELPER reduces the

95th percentile by about 5% to 13% on average for different

datasets. Moreover, the results of HELPER show a larger

variation as compared to those of OPT. This is understandable

because the predictions are not accurate, and this may cause

HELPER to perform worse than the no delay scheme on some

days, although on average HELPER results in better perfor-

mance. Additionally, we can observe from Figure 3 that the

variation in performance of HELPER increases significantly

in datasets 5 and 6, where (1) the coefficients of variation are

larger than those of datasets 1 through 4, and (2) the 24 hour

lag autocorrelation is smaller than those of datasets 1 through

4. This makes sense because a high coefficient of variation and

low autocorrelation indicate more “randomness” in the dataset.

This makes accurate prediction of future traffic more difficult.

Finally, ES does not show much improvement than the no

delay scheme on average. It also shows increased variation

as the coefficient of variation of the dataset increases. This

is because ES is designed to reduce the maximum instead of

the 95th percentile. It tends to “smooth” the number of jobs

served instead of “accumulate” jobs arrived in several time

slots into one “free” time slot, as OPT and HELPER do.

Thus the “free” time slots may not be fully utilized in ES to

serve more jobs.

To conclude, we see that for all datasets there is significant

room for reduction, as demonstrated by results of OPT. Al-

lowing larger deadline values brings in more potential reduc-

tions in percentiles. HELPER, while giving no performance

guarantees, is effective in reducing the 95th percentile in all

datasets. However, the performance of HELPER shows larger

variance when the datasets include more “randomness”. ES is

not effective in reducing the 95th percentile.
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Fig. 4. Min-max results for OPT, HELPER and ES

Figure 4 depicts the reduction achieved (by the various algo-

rithms) in the maximum number of jobs served. We observe

that OPT reduces the maximum value by ≈ 4% − 10% on

average. HELPER does not result in very good performance.

For datasets 2, 5, and 6 it results in a larger maximum value

than the no delay scheme. For other datasets, it gives at

most a 3% reduction. Moreover, the variance in HELPER’s

performance is larger than that of both OPT and ES on all

datasets. In summary, HELPER is not effective in reducing

the maximum number of jobs served. Finally, ES shows a

small reduction (< 2% on average, about 5% at most) in the

maximum number of jobs served with very small variance in

performance. The intuition here is that ES is designed for

bounded worst case performance. There is no guarantee it

would perform better than the no delay scheme in practice.



9

X. RELATED WORK

In this paper, our main focus was on scheduling algorithms

with uniform delay bound. As mentioned in Section I, the

problem we consider is somewhat similar to bounded de-

lay buffer management problem widely studied in literature.

Although there are quite a few works in this area, none

of them focus on the 95th percentile. For example, [7],

[11], [8] studied online algorithms that try to maximize total

weight of served jobs. They provide deterministic as well as

randomized algorithms that achieve constant competitive ratio

on throughput, which is the total weight of jobs served. The

jobs that are not served before their deadlines are dropped.

In our work, we study the problem of minimizing the 95th
percentile or the maximum of the total number of jobs served

in a time slot. No jobs are allowed to be dropped. Although

these two problems appear to be related, it is not obvious that

these techniques can be easily adapted to solve the problems

we consider in this work.

In the CPU scheduling literature, specifically, in the domain

of minimizing the energy and power consumed by a server

through speed scaling, the works of Yao et al. [13] and Bansal

et al. [2] are relevant. These works minimize the maximum

number of jobs served with general deadline constraints.

Yao, Demers and Shenker [13] provide an optimal offline

algorithm for minimizing the maximum energy consumed by

a processor when the power consumed is a convex function of

the speed. Their algorithm also minimizes the maximum speed

of the processor at any point in time, subject to the constraint

that all jobs are completed by their deadline.

Further, Bansal, Kimbrel and Pruhs [2] gave an optimal

e-competitive algorithm for the online version of the energy

minimization problem. This is also e-competitive for the online

problem of minimizing the maximum speed at any instant

such that all jobs are completed by their deadline. In general,

we have a different goal of minimizing the 95th percentile.

However in Section VI we study a similar problem to theirs

and show that under the assumption of uniform delay our

approach achieves a better competitive ratio.

A few papers do study the impact of the 95th percentile. For

example, Dimitropoulos et al. [4] study the impact of time slot

size through modeling and measurement study. Further, this

accounting property is leveraged to reduce the cost of bulk

data transfer by Laoutaris et al. [10]. Goldenberg et al. [5]

design smart routing algorithms for data streams on multiple

ISPs with the consideration of the 95th percentile model. In

contrast, the main problems we consider are the following:

minimize the 95th percentile through job level scheduling, and

exploit the 95th percentile model.

In the broadcast scheduling literature, a related problem was

studied by Charikar and Khuller [3]. They studied the problem

of minimizing the response time for a fixed fraction of the total

requests, ignoring the response time of a few requests, which

is allowed to be large.

XI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied scheduling algorithms aimed at

reducing the 95th percentile of jobs served, which is the

basis of bandwidth cost accounting. We provided an offline

algorithm that minimizes the 95th percentile for uniform delay

constraints. We also showed that the online problem is hard.

But for a slightly different problem, where the maximum is

minimized, we provided a simple algorithm and prove that it

achieves close to optimal performance.

As part of future work, we would like to close the perfor-

mance gap between Equal Split ( 2D+1
D+1 ) and the lower bound

( 2D+1
D+F (D) ). Here we presented a simple heuristic approach

based on our offline algorithm. As part of future efforts, we are

also interested in designing heuristics that are more effective

in reducing the 95th percentile. Additionally, we would like

to extend our work to the case of non-uniform delay, where

different jobs can be delayed for different number of time

slots.
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