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Abstract. Cloud computing is a paradigm that has the potential to
transform and revolutionalize the next generation IT industry by mak-
ing software available to end-users as a service. A cloud, also commonly
known as a cloud network, typically comprises of hardware (network of
servers) and a collection of softwares that is made available to end-users
in a pay-as-you-go manner. Multiple public cloud providers (ex., Ama-
zon) co-existing in a cloud computing market provide similar services
(software as a service) to its clients, both in terms of the nature of an
application, as well as in quality of service (QoS) provision. The decision
of whether a cloud hosts (or finds it profitable to host) a service in the
long-term would depend jointly on the price it sets, the QoS guaran-
tees it provides to its customers , and the satisfaction of the advertised
guarantees. In the first part of the paper, we devise and analyze three
inter-organizational economic models relevant to cloud networks. We for-
mulate our problems as non co-operative price and QoS games between
multiple cloud providers existing in a cloud market. We prove that a
unique pure strategy Nash equilibrium (NE) exists in two of the three
models. Our analysis paves the path for each cloud provider to know
what prices and QoS level to set for end-users of a given service type,
such that the provider could exist in the cloud market.
A cloud provider services end-user requests on behalf of cloud customers,
and due to the uncertainty in user demands over time, tend to over-
provision resources like CPU, power, memory, storage, etc., in order to
satisfy QoS guarantees. As a result of over-provisioning over long time
scales, server utilization is very low and the cloud providers have to bear
unnecessary wasteful costs. In this regard, the price and QoS levels set
by the CPs drive the end-user demand, which plays a major role in CPs
estimating the minimal capacity to meet their advertised guarantees.
By the term ‘capacity’, we imply the ability of a cloud to process user
requests, i.e., number of user requests processed per unit of time, which
in turn determine the amount of resources to be provisioned to achieve
a required capacity. In the second part of this paper, we address the
capacity planning/optimal resource provisioning problem in single-tiered
and multi-tiered cloud networks using a techno-economic approach. We
develop, analyze, and compare models that cloud providers can adopt
to provision resources in a manner such that there is minimum amount
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of resources wasted, and at the same time the user service-level/QoS
guarantees are satisfied.

Keywords: cloud markets; competition; Nash equilibrium; capacity;
single-tier; multi-tier

1 Introduction

Cloud computing is a type of Internet-based computing, where shared resources,
hardware, software, and information are provided to end-users in an on demand
fashion. It is a paradigm that has the potential to transform and revolutionalize
the IT industry by making software available to end-users as a service [1]. A
public cloud typically comprises of hardware (network of servers) and a collec-
tion of softwares that is made available to the general public in a pay-as-you-go
manner. Typical examples of companies providing public clouds include Ama-
zon, Google, Microsoft, E-Bay, and commercial banks. Public cloud providers
usually provide Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS).The advantage of making software available as
a service is three-fold [1], 1) the service providers benefit from simplified software
installation, maintenance, and centralized versioning, 2) end-users can access the
software in an ‘anytime anywhere’ manner, can store data safely in the cloud
infrastructure, and do not have to think about provisioning any hardware re-
source due to the illusion of infinite computing resources available on demand,
and 3) end-users can pay for using computing resources on a short-term basis
(ex., by the hour or by the day) and can release the resources on task comple-
tion. Similar benefit types are also obtained by making both, platform as well
as infrastructure available as service.

Cloud economics will play a vital role in shaping the cloud computing in-
dustry of the future. In a recent Microsoft white paper titled “Economics of the
Cloud”, it has been stated that the computing industry is moving towards the
cloud driven by three important economies of scale: 1) large data centers can
deploy computational resources at significantly lower costs than smaller ones, 2)
demand pooling improves utilization of resources, and 3) multi-tenancy lowers
application maintenance labor costs for large public clouds. The cloud also pro-
vides an opportunity to IT professionals to focus more on technological innova-
tion rather than thinking of the budget of ”keeping the lights on”. The economics
of the cloud can be thought of having two dimensions: 1) intra-organization eco-
nomics and 2) inter-organization economics. Intra-organization economics deals
with the economics of internal factors of an organization like labor, power, hard-
ware, security, etc., whereas inter-organization economics refers to the economics
of market competition factors between organizations. Examples of some popular
factors are price, QoS, reputation, and customer service. In this paper, we focus
on inter-organizational economic issues.

Multiple public cloud providers (ex., Amazon, Google, Microsoft, etc.,) co-
existing in a cloud computing market provide similar services (software as a
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service, ex., Google Docs and Microsoft Office Live) to its clients, both in terms
of the nature of an application, as well as in quality of service (QoS) provision.
The decision of whether a cloud hosts (or finds it profitable to host) a service
in the long-term would (amongst other factors) depend jointly on the price it
sets, the QoS guarantees it provides to its customers3, and the satisfaction of the
advertised guarantees. Setting high prices might result in a drop in demand for
a particular service, whereas setting low prices might attract customers at the
expense of lowering cloud provider profits. Similarly, advertising and satisfying
high QoS levels would favor a cloud provider (CP) in attracting more customers.
The price and QoS levels set by the CPs thus drive the end-user demand, which,
apart from determining the market power of a CP also plays a major role in CPs
estimating the minimal resource capacity to meet their advertised guarantees. By
the term ‘capacity’, we imply the ability of a cloud to process user requests, i.e.,
number of user requests processed per unit of time. The estimation problem is
an important challenge in cloud computing with respect to resource provisioning
because a successful estimation would prevent CPs to provision for the peak,
thereby reducing resource wastage.

The competition in prices and QoS amongst the cloud providers entails the
formation of non-cooperative games amongst competitive CPs. Thus, we have
a distributed system of CPs (players in the game), where each CP wants to
maximize its own profits and would tend towards playing a Nash equilibrium4

(NE) strategy (i.e., each CP would want to set the NE prices and QoS levels.),
whereby the whole system of CPs would have no incentive to deviate from the
Nash equilibrium point, i.e., the vector of NE strategies of each CP. However,
for each CP to play a NE strategy, the latter should mathematically exist. In the
first part of the paper, we address the important problem of Nash Equilibrium
characterization of different types of price and QoS games relevant to cloud
networks, its properties, practical implementability (convergence issues), and
the sensitivity analysis of NE price/QoS variations by any CP on the price and
QoS levels of other CPs. Our problem is important from a resource provisioning
perspective as mentioned in the previous paragraph, apart from it having obvious
strategic importance on CPs in terms of sustenance in the cloud market. In the
second part of our paper we develop and analyze models that will be useful to
cloud providers to provision resources in a manner such that there is minimum
amount of resources wasted, and at the same time the user service-level/QoS
guarantees are satisfied.

3 A cloud provider generally gets requests from a cloud customer, which in turn accepts
requests from Internet end-users. Thus, typically, the clients/customers of a cloud
provider are the cloud customers. However, for modeling purposes, end-users could
also be treated as customers. (See Section 2)

4 A group of players is in Nash equilibrium if each one is making the best deci-
sion(strategy) that he or she can, taking into account the decisions of the others.
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1.1 Related Work

In regard to market competition driven network pricing, there exists research
work in the domain of multiple ISP interaction and tiered Internet services [2][3],
as well as in the area of resource allocation and Internet congestion management
[4][5][6]. However, the market competition in our work relates to optimal ca-
pacity planning and resource provisioning in clouds. There is the seminal work
by Songhurst and Kelly [7] on pricing schemes based on QoS requirements of
users. Their work address multi-service scenarios and derive pricing schemes for
each service based on the QoS requirements for each, and in turn bandwidth
reservations. This work resembles ours to some extent in the sense that the price
and QoS determined can determine optimal bandwidth provisions. However, it
does not account for market competition between multiple providers and only
focus on a single service provider providing multiple services, i.e., the paper
addresses an intra-organization economics problem. However, in this paper, we
assume single-service scenarios by multiple service providers. In a recent work
[8], the authors propose a queueing driven game-theoretic model for price-QoS
competition amongst multiple service providers. The work analyzes a duopolistic
market between two service providers, where providers first fix their QoS guaran-
tees and then compete for prices. Our work extends the latter cited work in the
following aspects: (1) we generalize our model to incorporate n service providers,
(2) we address two additional game models which are of practical importance,
i.e., price-QoS simultaneous competition and prices fixed first, followed by QoS
guarantees competition, (3) we provide an efficient technique to compute mul-
tiple equilibria in games, and (4) our models explicitly characterize percentile
performance of parameters, which is specific to cloud networks provisioning re-
sources on a percentile basis. We also want to emphasize the fact that research
on price/QoS competition amongst organizations is not new in the economics
domain. However, in this paper we model networking elements in price/QoS
games via a queueing theoretic approach and analyze certain price/QoS games
that are mainly characteristic of Internet service markets.

Recent research efforts on cloud resource provisioning have devised static and
dynamic provisioning schemes. Static provisioning [19][20] is usually conducted
offline and occurs on monthly or seasonal timescales5, whereas dynamic provi-
sioning [21][22] dynamically adjusts to workload fluctuations over time. In both
the static and the dynamic case, VM sizing is identified as the most important
step, where VM sizing refers to the estimation of the amount of resources to
be allocated to a VM or jointly to many VMs [23]. However, none of the above
cited works have accounted for external factors such as cloud provider price
competition, in determining the optimal capacity of a cloud provider for a given
time-slot. Market competition between cloud providers is a vital factor in ca-
pacity planning because cloud providers set prices to primarily to make profits
and the prices they set influence demands from end-users, and user demands

5 Several cloud management softwares like VMWare Capacity Planner, CapacityIQ,
and IBM WebSphere CloudBurst adopt this functionality.
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drive the provisioning of optimal capacities. Other factors like scheduling poli-
cies (ex., FCFS, Processor Sharing, etc.) employed by cloud providers, as well
as the number of tiers a web application needs for service, also contribute to
optimal capacity provisioning. Recent works on cloud network provisioning have
accounted for parameters like scheduling and multi-tier services [24], but do not
provide any analytical results on the impact of these parameters on optimally
provisioned capacity, nor do they evaluate the optimal provisioned capacity. In
contrast with existing approaches, we take a techno-economic approach to eval-
uating the optimal provisioned capacity and provide theoretical insights for our
problem. Our optimal provisioned capacity is metricized by the number of user
requests processed per unit of time. However, this notion of capacity can be
mapped to physical resource capacity metrics like bandwidth, CPU, etc. Our
proposed models aims to focus on how certain technical and economic parame-
ters influence optimal provisioned capacity of a cloud provider, as well as other
competing cloud providers, which is important when it comes to network design.

1.2 Contributions Statement

Our proposed theory analyzes a few basic inter-organizational economic models
through which cloud services could be priced under market competition. The
evolution of commercial public cloud service markets is still in its inception.
However, with the gaining popularity of cloud services, we expect a big surge in
public cloud services competition in the years to come. The models proposed in
this paper take a substantial step in highlighting relevant models to the cloud
networking community for them adopt so as to appropriately price current and
future cloud services. In practice, scenarios of price and/or QoS competition be-
tween organizations exist in the mobile network services and ISP markets. For
example, AT&T and Verizon are competing on service, i.e., Verizon promises
to provide better coverage to mobile users than AT&T, thereby increasing its
propensity to attract more customers. Similarly, price competition between ISPs
always existed for providing broadband services at a certain given bandwidth
guarantee. Regarding our work, we also want to emphasize 1) we do not make
any claims about our models being the only way to model inter-organizational
cloud economics6 and 2) there is a dependency between intra-organizational and
inter-organizational economic factors, which we do not account in this paper
due to modeling simplicity. However, through our work, we definitely provide
readers with a concrete modeling intuition to go about addressing problems in
cloud economics. To the best of our knowledge, we are the first to provide an
analytical model on inter-organizational cloud economics.

Our Contributions - We make the following contributions in this paper.

6 We only model price and QoS as parameters. One could choose other parameters (in
addition to price and QoS, which are essential parameters) and a different analysis
mechanism than ours to arrive at a different model.
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1. We formulate a separable end-user demand function for each cloud provider
w.r.t. to price and QoS levels set by them and derive their individual utility
functions (profit function). We then define the various price-QoS games that
we analyze in the paper. (See Section 2.)

2. We develop a model where the QoS guarantees provided by public CPs to
end-users for a particular application type are pre-specified and fixed, and
the cloud providers compete for prices. We formulate a non-cooperative price
game amongst the players (i.e., the cloud providers) and prove that there
exists a unique Nash equilibrium of the game, and that the NE could be
practically computed (i.e., it converges). (See Section 3.)

3. We develop a non-cooperative game-theoretic model where public cloud
providers jointly compete for the price and QoS levels related to a particular
application type. We show the existence and convergence of Nash equilibria
(See Section 4). As a special case of this model, we also analyze the case
where prices charged to Internet end-users are pre-specified and fixed, and
the cloud providers compete for QoS guarantees only. The models mentioned
in contributions 3 and 4 drive optimal capacity planning and resource pro-
visioning in clouds, apart from maximizing CP profits. (See Section 4.)

4. We conduct a sensitivity analysis on various parameters of our proposed
models, and study the effect of changes in the parameters on the equilibrium
price and QoS levels of the CPs existing in a cloud market. Through a
sensitivity analysis, we infer the effect of price and QoS changes of cloud
providers on their respective profits, as well as the profits of competing CPs.
(See Sections 3 and 4.)7

5. We develop an optimization framework for single-tiered and multi-tiered
cloud networks to compute the optimal provisioned capacity once the equi-
librium price and QoS levels for each CP have been determined. (See Section
5.)

2 Problem Setup

We consider a market of n competing cloud providers, where each provider ser-
vices application types to end-users at a given QoS guarantee. We assume that
end-users are customers of cloud providers in an indirect manner, i.e., Internet
end-users use online softwares developed by companies (cloud customers), that
depend on cloud providers to service their customer requests. Each CP is in
competition with others in the market for services provided on the same type of
application w.r.t functionality and QoS guarantees. For example, Microsoft and
Google might both serve a word processing application to end-users by providing

7 We study Nash equilibrium convergence as its proves the achievability of an equilib-
rium point in the market. We emphasize here that the existence of Nash equilibrium
does not imply achievability as it may take the cloud market an eternity to reach
equilibrium, even though there may exist one theoretically.
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similar QoS guarantees. Here, the word processing application represents a par-
ticular ‘type’. For a given application type, we assume that each end user signs
a contract with a particular CP for a given time period8, and within that period
it does not switch to any other CP for getting service on the same application
type. Regarding contracts between a CP and its end-users, we assume that a
cloud customer forwards service requests to a cloud provider on behalf of end-
users, who sign up with a cloud customer (CC) for service. The CP charges its
cloud customer, who is turn charges its end-users. We approximate this two-step
charging scheme by modeling a virtual one-step scheme, where a CP charges
end-users directly9.

In a given time period, each CP i positions itself in the market by selecting
a price pi and a QoS level si related to a given application type. Throughout
the paper, we assume that the CPs compete on a single given type10. We define
si as the difference between a benchmark response time upper bound, rt, and
the actual response time rti, i.e., si = rt − rti. For example, if for a particular
application type, every CP would respond to an end-user request within 10
seconds, rt = 10. The response time rti may be defined, either in terms of
the expected steady state response time, i.e., rti = E(RTi), or in terms of φ-
percentile performance, rti(φ), where 0 < φ < 1. Thus, in terms of φ-percentile
performance11, P (RTi < rti(φ)) = φ.

We model each CP i as an M/M/1 queueing system, where end-user requests
arrive as a Poisson process with mean rate λi, and gets serviced at a rate µi. We
adopt an M/M/1 queueing system because of three reasons: 1) queueing theory
has been traditionally used in request arrival and service problems, 2) for our
problem, assuming an M/M/1 queueing system ensures tractable analyses pro-
cedures that entails deriving nice closed form expressions and helps understand
system insights in a non-complex manner, without sacrificing a great deal in
capturing the real dynamics of the actual arrival-departure process, and 3) The
Markovian nature of the service process helps us generalize expected steady state
analysis and percentile analysis together. According to the theory of M/M/1
queues, we have the following standard results [17].

rti =
1

µi − λi
, (1)

8 In this paper, the term ‘time-period’ refers to the time duration of a contract between
the CP and end-users.

9 We assume here that prices are negotiated between the CP, CC, and end-users and
there is a virtual direct price charging connection between the CP and its end-users.
We make this approximation for modeling simplicity.

10 In reality, each CP may in general service several application types concurrently.
We do not model this case in our paper and leave it for future work. The case for
single application types gives interesting results, which would prove to be useful in
analyzing the multiple concurrent application type scenario.

11 As an example, in cloud networks we often associate provisioning power according
to the 95th percentile use. Likewise, we could also provision service capacity by
accounting for percentile response time guarantees.
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rti(φ) =
ln( 1

1−φ )
µi(φ)− λi

, (2)

µi = λi +
1

rti
, (3)

and

µi(φ) = λi +
ln( 1

1−φ )
rti(φ)

(4)

Equations 2 and 4 follow from the fact that for M/M/1 queues, P (RTi <
rti(φ)) = φ = 1 − e−(µi−λirti(φ)). Without loss of generality, in subsequent sec-
tions of this paper, we conduct our analysis on expected steady state parameters.
As mentioned previously, due to the Markovian nature of the service process,
the case for percentiles is exactly similar to the case for expected steady state
analysis, the only difference in analysis being due to the constant, ln( 1

1−φ ). Thus,
all our proposed equilibrium related results hold true for percentile analysis as
well.

Each cloud provider i incurs a fixed cost ci per user request served and a fixed
cost ρi per unit of service capacity provisioned. ci arises due to the factor λi in
Equation 3 and ρi arises due to the factor 1

rti
in the same equation. In this sense,

our QoS-dependent pricing models are queueing-driven. A cloud provider charges
pri to service each end-user request, where pri ε [prmin

i , prmax
i ]. It is evident that

each CP selects a price that results in it accruing a non-negative gross profit
margin. The gross profit margin for CP i is given as pri − ci − ρi, where ci + ρi

is the marginal cost per unit of end-user demand. Thus, the price lower bound,
prmin

i , for each CP i is determined by the following equation.

prmin
i = ci + ρi, ∀i = 1, ..., n (5)

We define the demand of any CP i, λi, as a function of the vectors pr =
(pr1, ....., prn) and s = (s1, ......, sn). Mathematically, we express the demand
function as

λi = λi(pr, s) = xi(si)− yipri −
∑

j "=i

αij(sj) +
∑

j "=i

βijprj , (6)

where xi(si) is an increasing, concave, and thrice differentiable function in si sat-
isfying the property of non-increasing marginal returns to scale, i.e., equal-sized
reductions in response time results in progressively smaller increases in end-user
demand. The functions αij are assumed to be non-decreasing and differentiable.
A typical example of a function fitting xi(si) and αij(sj) is a logarithmic func-
tion. We model Equation 6 as a separable function of price and QoS vectors, for
ensuring tractable analyses as well as for extracting the independent effects of
price and QoS changes on the overall end-user demand. Intuitively, Equation 6
states that QoS improvements by a CP i result in an increase in its end-user de-
mand, whereas QoS improvements by other competitor CPs result in a decrease
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in its demand. Similarly, a price increase by a CP i results in a decrease in its
end-user demand, whereas price increases by other competing CPs result in an
increase in its demand. Without loss of practical generality, we also assume 1) a
uniform increase in prices by all n CPs cannot result in an increase in any CP’s
demand volume, and 2) a price increase by a given CP cannot result in an in-
crease in the market’s aggregate end-user demand. Mathematically, we represent
these two facts by the following two relationships.

yi >
∑

j "=i

βij , i = 1, ......, n (7)

and
yi >

∑

j "=i

βji, i = 1, ......., n (8)

The long run average profit for CP i in a given time period, assuming that
response times are expressed in terms of expected values, is a function of the
price and QoS levels of CPs, and is given as

Pi(pr, s) = λi(pri − ci − ρi)−
ρi

rt− si
, ∀i (9)

The profit function for each CP acts as its utility/payoff function when it is
involved in price and QoS games with other competing CPs. We assume in this
paper that the profit function for each CP is known to other CPs, but none of
the CPs know the values of the parameters that other competing CPs adopt as
their strategy.

Problem Statement: Given the profit function for each CP (public information),
how would each advertise its price and QoS values (without negotiating with
other CPs) to end-users so as to maximize its own profit. In other words, in a
competitive game of profits played by CPs, is there a situation where each CP is
happy with its (price, QoS) advertised pair and does not benefit by a positive or
negative deviation in the values of the advertised pair.

In this paper, we study games involving price and QoS as the primary param-
eters, i.e., we characterize and analyze the existence, uniqueness, and convergence
of Nash equilibria. Our primary goal is to compute the optimal price and QoS
levels offered by CPs to its end-users under market competition. Our analysis
paves the path for each cloud provider to 1) know what price and QoS levels
to set for its clients (end-users) for a given application type, such that it could
exist in the cloud market, and 2) practically and dynamically provision appro-
priate capacity for satisfying advertised QoS guarantees, by taking advantage
of the property of virtualization in cloud networks. The property of virtualiza-
tion entails each CP to allocate optimal resources dynamically in a fast manner
to service end-user requests. Using our pricing framework, in each time period,
cloud providers set the appropriate price and QoS levels after competing in a
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Symbol Meaning
Ui = Pi Utility function of CP i

pri Price charged by CP i per end-user
pr Price vector of CPs
pr∗ Nash equilibrium price vector
ci Cost incurred by CP i to service each user
λi Arrival rate of end-users to CP i
ρi cost/unit of capacity provisioning by CP i
rt response time upper bound guarantee
rti response time guarantee by CP i
Ci Capacity cost of CP i for provisioning its user demands
φ percentile parameter
si QoS level guarantee provided by CP i to its users
s QoS vector of CPs
s∗ Nash equilibrium QoS vector

xi() increasing, concave, and a thrice differentiable function
αij() non-decreasing and differentiable function

Table 1. List of Symbols and Their Meaning

game; the resulting prices drive end-user demand; the CPs then allocate optimal
resources to service demand.

Remark. We decided to not analyze a competitive market, i.e., where CPs
are price/QoS taking and a Walrasian equilibrium results when demand equals
supply, because a competitive market analysis is mainly applicable when the
resources traded by an organization are negligible with respect to the total re-
source in the system [9][10]. In a cloud market this is definitely not the case as
there are a few cloud providers and so the resource traded by one is not negligible
with respect to the total resources traded in the system. Therefore we analyze
oligopolistic markets where CPs are price/QoS anticipating.

We consider the following types of price-QoS game models in our work.

1. CP QoS guarantees are pre-specified; CPs compete with each other for prices,
given QoS guarantees. (Game 1)

2. CPs compete for price and QoS simultaneously. (Game 2)
3. CP price levels are pre-specified; CPs compete for QoS levels. (Game 3).

Game 3 is a special case of Game 2 and in Section 4, we will show that it is
a Game 2 derivative.

List of Notations: For reader simplicity, we provide a table of most used notations
related to the analysis of games in this paper.

3 Game 1 - Price Game

In this section we analyze the game in which the QoS guarantees of CPs are
exogenously specified and the CPs compete for prices.
Game Description
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Players: Individual cloud providers; Game Type: Non-cooperative, i.e., no inter-
action between CPs; Strategy Space: Choosing a price in range [prmin

i , prmax
i ];

Player Goal: To maximize its individual utility Ui = Pi

Our first goal is to show that this game has a unique price Nash equilibrium,
pr∗(an instance of vector pr), which satisfies the following first order condition

∂Pi

∂pri
= −yi(pri − ci − ρi) + λi, ∀i, (10)

which in matrix notation can be represented as

M · pr = x(s) + z, (11)

where M is an n × n matrix with Mii = 2yi, Mij = −βij , i $= j, and where
zi = yi(ci + ρi).

We have the following theorem and corollary regarding equilibrium results
for our game. The readers are referred to the Appendix for the proofs.
Theorem 1: Given that the QoS guarantees of CPs are exogenously specified,
the price competition game has a unique Nash equilibrium, pr∗, which satisfies
Equation 11. The Nash equilibrium user demand, λ∗i , for each CP i evaluates to
yi(pr∗i − ci− ρi), and the Nash equilibrium profits, P ∗i , for each CP i is given by
yi(pr∗i − ci − ρi)2 − ρi

rt−si
.

Corollary 1: a) pr∗ and λ∗ are increasing and decreasing respectively in each of
the parameters {ci, ρi, i = 1, 2, ..., n}, and b) ∂pr∗i

∂sj
= 1

yi

∂λ∗i
∂sj

= (M−1)ijx′j(sj) −∑
l "=j(M

−1)ilx′lj(sj).

Corollary 1 implies that 1) under a larger value for CP i′s degree of positive
externality δi, it is willing to make a bolder price adjustment to an increase in any
of its cost parameters, thereby maintaining a larger portion of its original profit
margin. The reason is that competing CPs respond with larger price themselves,
and 2) there exists a critical value 0 ≤ s0

ij ≤ rt such that as CP j increases its
QoS level, pr∗i and λ∗i are increasing on the interval [0, s0

ij), and decreasing in
the interval [s0

ij , rt).
Sensitivity Analysis: We know the following relationship

∂P ∗i
∂sj

= 2yi(pr∗i − ci − ρi)
∂pr∗i
∂sj

(12)

From it we can infer that CP i’s profit increases as a result of QoS level improve-
ment by a competing CP j if and only if the QoS level improvement results in
an increase in CP i’s price. This happens when P ∗i increases on the interval
[0, s0

ij ] and decreases on the remaining interval (s0
ij , rt]. In regard to profit vari-

ation trends, on its own QoS level improvement, a dominant trend for a CP is
not observed. However, we make two observations based on the holding of the
following relationship

∂P ∗i
∂sj

= 2yi(pr∗i − ci − ρi)
∂pr∗i
∂sj

− ρi

(rt− si)2
(13)
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If a CP i increases its QoS level from 0 to a positive value and and this results in
its price decrease, i’s equilibrium profits become a decreasing function of its QoS
level at all times. Thus, in such a case i is better off providing minimal QoS level
to its customers. However, when CP i’s QoS level increases from 0 to a positive
value resulting in an increase in its price charged to customers, there exists
a QoS level sb

i such that the equilibrium profits alternates arbitrarily between
increasing and decreasing in the interval [0, sb

i ), and decreases when si ≥ sb
i .

Convergence of Nash Equilibria: Since the price game in question has a unique
and optimal Nash equilibria, it can be easily found by solving the system of first
order conditions, ∂Pi

∂pri
= 0 for all i.

Remark. It is true that the existence of NE in convex games is not surprising
in view of the general theory, but what is more important is whether a realistic
modeling of our problem at hand results in a convex game. Once we can establish
that our model results in a convex game, we have a straightforward result of the
existence of NE from game theory literature. This is exactly what we do in the
paper, i.e., to show that our model is realistic and indeed leads to a convex game
thus leading further to the existence of NE.

4 Game 2 - Price-QoS Game

In this section, we analyze the game in which the CPs compete for both, price
as well as QoS levels. In the process of analyzing Game 2, we also derive Game
3, as a special case of Game 2, and state results pertaining to Game 3.
Game Description
Players: Individual cloud providers; Game Type: Non-cooperative, i.e., no inter-
action between CPs; Strategy Space: price in range [prmin

i , prmax
i ] and QoS level

si; Player Goal: To maximize its individual utility Ui = Pi

We have the following theorem regarding equilibrium results.

Theorem 2: Let rt ≤ 3

√
4yρ

(x′)2
, where y = mini yi, ρ = mini ρi, x′ = maxi x′i(0).

There exists a Nash equilibrium (pr∗, s∗), which satisfies the following system of
equations:

∂Pi

∂pri
= −yi(pri − ci − ρi) + λi = 0, ∀i, (14)

and satisfies the condition that either si(pri) is the unique root of x′i(si)(pri −
ci − ρi) = ρi

(rt−si)2
if pri ≥ ci + ρi(1 + 1

rt
2
x′i(0)

) or si(pri) = 0 otherwise. Con-
versely, any solution of these two equations is a Nash equilibrium.

Sensitivity Analysis: We know that si(pri) depends on x′i(si) and pri. Thus,
from the implicit function theorem [11] we infer that the QoS level of CP i
increases with the increase in its Nash equilibrium price. We have the following
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relationship for pri > ci + ρi(1 + 1
rt

2
x′i(0)

),

s′i(pri) =
x′i(si)

x′′i (si)(pri − ci − ρi)− ρi

(rt−si)2
> 0, (15)

whereas s′i(pri) = 0 for pri < ci + ρi(1 + 1
rt

2
x′i(0)

). We also notice that for

pri > ci + ρi(1 + 1
rt

2
x′i(0)

), s∗i increases concavely with pr∗i . The value of si(pi)

obtained from the solution of the equation x′i(si)(pri − ci − ρi) = ρi

(rt−si)2
if

pri ≥ ci + ρi(1 + 1
rt

2
x′i(0)

), can be fed into Equation 15 to compute the price
vector. The system of equations that result after substitution is non-linear in
vector pr and could have multiple solutions, i.e., multiple Nash equilibria.

Inferences from Sensitivity Analysis: Games 1, 2, and 3 gives us non-intuitive
insights to the price-Qos changes by individual CPs. We observe that the obvious
intuitions of equilibrium price decrease of competing CPs with increasing QoS
levels and vice-versa do not hold under all situations and sensitivity analysis
provide the conditions under which the counter-result holds. Thus, the intricate
nature of non-cooperative strategy selection by individual CPs and the interde-
pendencies of individual strategies on the cloud market make cloud economics
problems interesting.

Convergence of Nash Equilibria: Since multiple Nash equilibria might ex-
ist for the price vectors for the simultaneous price-QoS game, the tatonnement
scheme [9][12] can be used to prove convergence. This scheme is an iterative
procedure that numerically verifies whether multiple price equilibria exist, and
uniqueness is guaranteed if and only if the procedure converges to the same
limit when initial values are set at prmin or prmax. Once the equilibrium price
vectors are determined, the equilibrium service levels are easily computed. If
multiple equilibria exist the cloud providers select the price equilibria that is
component-wise the largest.

Regarding the case when CP price vector is given, we have the following
corollary from the result of Theorem 2, which leads us to equilibrium results of
Game 3, a special case of Game 2.
Corollary 2. Given any CP price vector, prf , the Nash equilibrium s(prf ) is the
dominant solution in the QoS level game between CPs, i.e., a CP’s equilibrium
QoS level is independent of any of its competitors cost or demand characteris-
tics and prices. When si(prf ) > 0, the equilibrium QoS level is increasing and
concave in prf

i , with s′i(prf
i ) = −x′i(si)

x′′i (si)(prf
i −ci−ρi)−

2ρi
(rt−si)3

.

We observe that Game 3 being a special case of Game 2 entails a unique
Nash equilibrium, whereas Game 2 entails multiple Nash equilibria.
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5 Optimization Framework for Capacity Provisioning

In this section, we develop optimization models for optimally provisioning ca-
pacity in both, single-tier as well as multi-tier cloud networks. As mentioned in
previous sections, the term ‘capacity’ has a queueing-theoretic notion to it and
is the service rate of a queueing system processing user requests, i.e., it is the
number of user requests processed per unit of time. The capacity measure can
be translated to allocating hardware and other system resources optimally so
as to satisfy user QoS demands. In the following subsections, we first deal with
the capacity analysis in single tier clouds, which is followed by the analysis in
multi-tier cloud networks.

5.1 Single-Tier Case

We model each CP i as an M/M/1 queueing system with first-come, first-serve
(FCFS) scheduling, where end-user requests arrive as a Poisson process with
mean rate λi, and gets serviced at a rate µi. We adopt an M/M/1 queueing
system because of three reasons: 1) queueing theory has been traditionally used
in request arrival and service problems, 2) for our problem, assuming an M/M/1
queueing system ensures tractable analyses procedures that entails deriving nice
closed form expressions and helps understand system insights in a non-complex
manner, without sacrificing a great deal in capturing the real dynamics of the
actual arrival-departure process, and 3) The Markovian nature of the service
process helps us generalize expected steady state analysis and percentile analysis
together. We assume that each CP adopts the FCFS scheduling policy because
they serve a single class of end-users with the same QoS level guarantees.

The metric for end-user satisfaction in queueing systems is response/waiting
time. The response time rti may be defined, either in terms of the expected
steady state response time, i.e., rti = E(RTi), or in terms of φ-percentile perfor-
mance, rti(φ), where 0 < φ< 1. Thus, in terms of φ-percentile performance12,
P (RTi < rti(φ)) = φ. According to the theory of M/M/1 queues, we have the
following standard results [17].

rti =
1

µi − λi
, (16)

rti(φ) =
ln( 1

1−φ )
µi(φ)− λi

, (17)

µi = λi +
1

rti
, (18)

12 As an example, in cloud networks we often associate provisioning power according the
95th percentile use. Likewise, we could also provision service capacity by accounting
for percentile response time guarantees.



15

and

µi(φ) = λi +
ln( 1

1−φ )
rti(φ)

(19)

Equations 20 and 22 follow from the fact that for M/M/1 queues, the follow-
ing result holds,

P (RTi < rti(φ)) = φ = 1− e−(µi−λirti(φ)) (20)

The inverse of rti(rti(φ)) is si(si(φ)), which is the advertised QoS level guaran-
tee of CP i to its end-users. Thus, we observe from Equations 21 and 22 that the
queueing service rate (capacity) is linear in λi and si(si(φ)). Since Ci is propor-
tional to µi(µi(φ)), we infer that Ci is linear in λi and si(qi(φ)). Our aim in this
paper is to find the optimal µi(µi(φ)) for each CP i such that its advertised QoS
level guarantees to its end-users are satisfied, without wasting any resources.

Assuming that it takes a cost of ρi for CP i to provision a single unit of
service capacity, we have the following optimization problems considering the
expected value and percentile value of response time respectively.

min ρiµi

subject to
1

µi − λi
≤ rti ∀i

and
min ρiµi(φ)

subject to
log( 1

1−φ )
µi(φ)− λi

≤ rti(φ) ∀i

5.2 Multi-tier Case

In order to model the multi-tier case, we model a given cloud network for CP i as
a network of queues. Each queue in the network acts as a M/M/1 queue serving
end-user requests in a FCFS manner. We assume that the queueing network is
an open Jackson network [17]. We also assume the queueing network for any CP
is distinct from other CP queuing networks, i.e., for CP i, there is no queue in
its network that serves any other CP j, ∀j $= i. Each queue is representative
of a tier in a cloud network and is represented as a vertex/node in the open
Jackson network. The departure process of one tier/level is an arrival process
for the next tier. We define the following notations in relation to our analysis of
queueing networks for CP i

V i - set of n vertices in an open Jackson network for CP i.

πi
j - fraction of end user requests that start servicing at node j.
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pi
jk - probability that a user request moves to node k after getting service from

node j.

P i - matrix of pi
jk values and is sub-stochastic in nature, i.e., Ltn→∞(P i)n = 0

µi
j - service rate of node j ε V i

ρi
j - capacity cost per unit of service rate at node j.

Ωi - vector of aggregate arrival rates for CP i.

The vector of arrival rates for each CP i is expressed as recursive expression
of the form

Ωi = λiπ
i + (P i)T Ωi (21)

Solving the above equation, we get

Ωi = λiδ
i, (22)

where the vector δi = (I − (P i)T )−1πi. According to queueing theory results
regarding networks of queues, we get the following for expressions for each CP i
(for the expected value case of response time)13

E[requests atnode j] =
Ωi

j

µi
j −Ωi

j

(23)

and

E[total number systemrequests] = λi

∑

j ε V i

δi
j

µi
j −Ωi

j

(24)

By Little’s Law, we have

s−1
i =

∑

j ε V i

δi
j

µi
j − λiΩi

j

(25)

We now prove through the following theorem that even in multi-tier cloud net-
works, Ci is linear in λi and si, for each CP i. This fact regarding linearity is
important when it comes to the ease of analyzing price-QoS games.

Theorem 3. The capacity provisioning cost, C, for each cloud provider in a
multi-tier cloud network is linear in their user arrival rate and the advertised
QoS level guarantee.
13 Due to the Markovian nature of the service process, the case for general percentiles

is exactly similar to the case for expected steady state analysis. The expressions
remain nearly the same apart from a constant factor multiplication.
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Proof. Each cloud provider i is willing to minimize their capacity costs. Thus it
selects µi = (µi

j : j ε V i) such that it is the solution of the following constrained
optimization problem

min
∑

j ε V i

ρi
jµ

i
j

subject to
∑

j ε V i

δi
j

µi
j − λiδi

j

≤ s−1
i

Applying Karush-Kuhn-Tucker (KKT) conditions [25] for optimality, we have

ρi
j =

γδi
j

(µi
j(opt) − λiδi

j)2
, j ε V i, (26)

where γ is the Lagrange multiplier. From the previous equation we get

µi
j(opt) − λiδ

i
j =

√
γ

√
δi
j

ρi
j

, j ε V i (27)

The minimum cost of CP i evaluates to
∑

j ε V i ρi
jµ

i
j(opt), which is of the form

A1λi + A2si, where
A1 =

∑

j ε V i

ρi
jδ

i
j (28)

and
A2 = (

∑

j ε V i

√
δi
jρ

i
j)

2 (29)

Thus, the capacity provisioning cost per CP in a multi-tier cloud network is linear
in their user arrival rate and the advertised QoS level guarantee. We emphasize
that the theorem holds (due to the Markovian nature of the service times) when
we consider the response-time as a percentile parameter, rather than an expected
value. Q.E.D.

Optimization Problems: We have the following two optimization problems
for multi-tier networks considering the expected value and percentile value of
response time respectively.

min
∑

j ε V i

ρi
jµ

i
j

subject to
∑

j ε V i

δi
j

µi
j − λiδi

j

≤ s−1
i

and
min

∑

j ε V i

ρi
jµ

i
j(φ)
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subject to
∑

j ε V i

log(
1

1− φ
)

δi
j

µi
j(φ)− λiδi

j

≤ s−1
i (φ)

The optimization problems for the single-tier and multi-tier cases provide a
framework via which resources can be provisioned in the cloud in a manner so
as to minimize over-provisioning in a dynamic manner.

6 Conclusion and Future Work

In the first part of the paper, we developed inter-organizatinal economic mod-
els for pricing cloud network services when several cloud providers co-exist in a
market, servicing a single application type. We devised and analyzed three price-
QoS game-theoretic models relevant to cloud networks. We proved that a unique
pure strategy Nash equilibrium (NE) exists in two of our three QoS-driven pric-
ing models. In addition, we also showed that the NE’s converge; i.e., there is
a practically implementable algorithm for each model that computes the NE/s
for the corresponding model. Thus, even if no unique Nash equilibrium exists in
some of the models, we are guaranteed to find the largest equilibria (preferred by
the CPs) through our algorithm. Regarding convergence to Nash equilibria, it is
true that it could take a long time for convergence of Nash equilibria (computing
NE is PPAD Complete [18]), however in 95% of the cases in practical economic
markets, NE is achieved in a decent amount of time.

Our price-QoS models can drive optimal resource provisioning in cloud net-
works. The NE price and QoS levels for each cloud provider drives optimal
end-user demand in a given time period w.r.t. maximizing individual CP profits
under competition. Servicing end-user demands requires provisioning capacity.
Once the optimal values are computed, the power of virtualization in cloud net-
works makes it possible to execute dynamic resource provisioning in a fast and
efficient manner in multiple time periods. In this regard, in the second part of
the paper, we developed an optimization framework for single-tiered and multi-
tiered cloud networks to compute the optimal provisioned capacity once the
equilibrium price and QoS levels for each CP have been determined. As part of
future work, we plan to extend our analysis to the case where cloud providers
are in simultaneous competition with other CPs on multiple application types.

7 Appendix

Proof of Theorem 1.
Proof: For a given service level vector s, each CP i reserves a capacity of

1
rti

= 1−→rt−si

. Consider the game G with profit/utility functions for each CP i

represented as

Pi = (xi(si)− yipi −
∑

j "=i

αij(sj) +
∑

j "=i

(βijpj)(pri − ci − ρi)−W, (30)
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where
W =

ρi

rt− si

Since ∂2Pi
∂pri∂prj

= βij , the function Pi is supermodular14. The strategy set of
each CP i lies inside a closed interval and is bounded, i.e., the strategy set is
[prmin

i , prmax
i ], which is a compact set. Thus, the pricing game between CPs

is a supermodular game and possesses a Nash equilibrium [13]. Since yi >∑
j "=i βij , i = 1, ......, n (by Equation 7),−∂2Pi

∂pr2
i

>
∑

i "=j
∂2Pi

∂pri∂prj
and thus the

Nash equilibrium is unique. Rewriting Equation 11 and using Equation 6, we
get λ∗i = yi(pr∗i − ci − ρi). Substituting λ∗i in Equation 9, we get P ∗i = yi(pr∗i −
ci − ρi)2 − ρi

rt−si
Q.E.D.

Proof of Corollary 1.
Proof: Since the inverse of matrix M, i.e., M−1 exists and is greater than or

equal 0[14], from pr∗ = M−1(x(s) + z) (Equation 11), we have pr∗i is increasing
in {ci, ρi i = 1, 2, ..., n}. Again, from Lemma 2 in [14], we have δi ≡ yi(M−1)ii ⇒
0.5 ≤ δi < 1, where δi is the degree of positive externality15 faced by CP i from
other CP (price, QoS) parameters, and it increases with the β coefficients. This
leads us to ∂pri

∂ci
= ∂pri

∂ρi
= yi(M−1)ii = δi > 0. Therefore, we show in another

different way that pr∗ is increasing in {ci, ρi, i = 1, 2, ..., n}. Since M−1 exists
and is greater than or equal to 0, we again have ∂λi

∂ci
= ∂λi

∂ρi
= yi(∂pri

∂ρi
− 1) =

yi(∂pri

∂ci
− 1) = yi(δi − 1) < 0, from which we conclude that λ∗ is decreasing in

{ci, ρi, i = 1, 2, ..., n}. Part b) of the corollary directly follows from the fact that
the inverse of matrix M, i.e., M−1 exists, is greater than or equal 0, and every
entry of M−1 is increasing in βij coefficients. Q.E.D.
Proof of Theorem 2.

Proof: To prove our theorem, we just need to show that the profit function Pi

is jointly concave in (pri, si). Then by the Nash-Debreu theorem [15], we could
infer the existence of a Nash equilibria. We know the following results for all CP
i

∂Pi

∂pri
= −yi(pri − ci − ρi) + λi (31)

and
∂Pi

∂θi
= x′i(si)(pri − ci − ρi)−

ρi

(rt− si)2
(32)

Thus, ∂2Pi

∂pr2
i

= −2yi < 0, ∂2Pi

∂s2
i

= x′′i (si)(pri − ci − ρi) − 2ρi

(rt−si)3
< 0, ∂2Pi

∂si∂pri
=

x′i(si). We determine the determinant of the Hessian as −2yi(x′′i (si)(pri − ci −
ρi)− ρi

(rt−si)2
≥ 0 (the sufficient condition for Pi to be jointly concave in (pri, si)),

14 A function f : Rn → R is supermodular if it has the following increasing difference
property, i.e., f(m1

i , m−i)−f(m2
i , m−i), increases in mi for all m1

i > m2
i in (pri, prj).

The readers are referred to [16] for more details on supermodularity.
15 A positive externality is an external benefit on a user not directly involved in a

transaction. In our case, a transaction refers to a CP setting its price and QoS
parameters.
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if the following condition holds:

4yiρi

∂pr2
i

≥ (x′i(si))2 ⇔ rt ≤ minsi
3

√
4yiρi

(x′i(si))2
= 3

√
4yiρi

(x′i(0))2
, (33)

where the last equality follows from the fact that x′i > 0 and x′i is decreasing.
Now since pr∗ = pr∗(s∗), by Theorem 1 it is in the closed and bounded interval
[prmin, prmax] and must therefore satisfy Equation 15. Again from Equation 31,
we have ∂Pi

∂si
→ −∞ as si tends to rt, which leads us to the conclusion that si(pri)

is the unique root of x′i(si)(pri − ci − ρi) = ρi

(rt−si)2
if pri ≥ ci + ρi(1 + 1

rt
2
x′i(0)

)

or si(pri) = 0 otherwise. Q.E.D.
Proof of Corollary 2.

Proof: Substituting prmax = prmin = prf into Theorem 2 leads us to the fact
that s(prf ) is a Nash equilibrium of the QoS level competition game amongst
CPs and that it is also a unique and a dominant solution, since s(prf ) is a
function of pri, ci, and ρi only. (Following from the fact that si(pri) is the
unique root of x′i(si)(pri − ci − ρi) = ρi

(rt−si)2
if pri ≥ ci + ρi(1 + 1

rt
2
x′i(0)

) or

si(pri) = 0 otherwise.) Q.E.D.
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