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Abstract. The concept of Phased Mission Systems (PMS) can be used
to describe maintenance procedures made of sequential actions that use
a set of resources and may severely a�ect them, for instance opera-
tions that require outage of hardware and/or software components to
recover from a failure or to perform upgrades, tests, and con�guration
changes. We propose an approach for modeling and evaluation of this
class of maintenance procedures, notably addressing the case of actions
with non-exponential and �rmly bounded duration. This yields stochastic
models that underlie a Markov Regenerative Process (MRP) with multi-
ple concurrent timed events having a general (GEN) distribution over a
bounded support, which can be e�ectively analyzed through the method
of stochastic state classes. The approach allows evaluation of transient
availability measures, which can be exploited to support the selection of
a rejuvenation plan of system resources and the choice among di�erent
feasible orderings of actions. The experiments were performed through a
new release of the Oris tool based on the Sirio framework.
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1 Introduction

Phased Mission Systems (PMS) perform multiple tasks with possibly di�erent
requirements during non-overlapping phases of operation, typically achieving
the mission success only if each phase is completed without failure [8]. The
abstraction of PMS is �t by several critical applications, which notably include:
aircrafts �ights comprising distinct steps from take-o� to landing, command
sequences executed by aerospace systems, recovery operations performed to bring
back automated systems from the breakdown state to a recovery point, and
maintenance procedures requiring the safe shutdown and restart of hardware
(HW) and software (SW) subsystems [27, 14, 30].

Reliability analysis of PMS faces challenges concerned with the evaluation
of the success probability and the distribution of the completion time, for the



overall mission or for intermediate phases. This often con�icts with the possible
failure and recovery of resources supporting the di�erent steps. Steady state
analysis is usually applied to evaluate the system availability in the presence of
recurrent phased procedures, while transient analysis is more appropriate in the
case of one-shot operations where the focus is rather on the probability that the
procedure is completed within a given deadline.

Various modeling approaches have been proposed in the literature, and in
particular di�erent causes of failure and policies for error detection, rejuvenation,
and repair have been addressed. Methods based on state-space analysis address
PMS with complex behaviors deriving from �xed or random phase sequence,
deterministic or random phase duration, permanent or transient components
failures, and dependencies among components. Notable examples include: the
approach of [15], which leverages Markovian analysis to support the reliability
evaluation of PMS with deterministic sojourn time in each phase; the method
proposed in [18], where the Markov Renewal Theory [13, 1, 2] is tailored to the
evaluation of PMS with random phase sequence and duration, forcing a repeti-
tion or a premature completion of un�nished repair works at each phase end to
guarantee that phase completion times are regeneration points for the underlying
stochastic process; the methodology of [6] for performance evaluation of com-
posed web services, which derives steady state and transient measures through
WebSPN [5] by relying on the approximation of GEN timers with discrete phase
type distributions over unbounded supports.

If the events order does not a�ect the mission outcome, the problem of
state-space explosion can be circumvented by applying combinatorial solution
techniques, which achieve a lower computational complexity at the expense of
reducing the modeling expressivity. In this area, several approaches have been
developed on the structure of Binary Decision Diagrams (BDD) [31, 28], also
encompassing phase uncovered failures that cause a mission failure [29]. More
recently, approaches that integrate methods based on state-space analysis and
combinatorial techniques have been proposed. The joint probability method of
[19] combines results obtained by independently solving static and dynamic sys-
tem components through BDD and Markovian analysis, respectively. In [26], a
hierarchical approach is presented which addresses PMS with repairable com-
ponents, modeling their aging process as a Continuous Time Markov Chain
(CTMC). The modular technique developed in [21] also encompasses the case of
unordered and ordered component states.

When the overall process duration is much shorter than the mean time be-
tween failures of used resources, concentrated failure or error probabilities in-
duced by the usage itself become more relevant in the evaluation of the overall
reliability. This is for instance the case of system level maintenance procedures,
where HW and SW resources are subject to operations exposed to various types
of faults, such as disk failures at shutdown and restart, or erroneous restoration
of exposed services in infrastructural SW components.

In this paper, we model such classes of phased missions as a sequence of
non-concurrent actions that may a�ect and downgrade a set of resources, evalu-



ating the impact that the operations may have on the system availability in the
transient regime. According to a two-mode failure scheme, resources may reach
an error state before incurring a breakdown. While quite onerous repair actions
are necessary to restore failed resources, lighter rejuvenation operations can be
performed to prevent failures of already �awed resources. Actions are subject to
a timeout mechanism that limits their repetitions due to subsequent resource
failures and to precedence constraints that restrain their feasible orderings.

As a salient trait of the contribution, we face the representation and analy-
sis of steps with non-exponential and �rmly bounded duration, which may take
relevance in the synchronization of events. To this end, we leverage the method
of stochastic state classes [25, 9, 17], which supports the analysis of models with
multiple concurrent timed events having a non-Markovian distribution over a
possibly bounded support. This enables evaluation of transient availability mea-
sures that can be used to support the choice among the possible orderings of
actions and the selection of a rejuvenation plan. Computational experience is
reported on a case of real complexity to show the potentialities of the approach.
The experiments have been performed through a new release of the Oris tool
based on the Sirio framework [10, 12, 7].

The rest of the paper is organized as follows. In Section 2, we illustrate
the proposed modeling framework of maintenance procedures and we introduce
a running case study. In Section 3, we present an extension of stochastic Time
Petri Nets (sTPNs) that leaves unchanged their analysis complexity while largely
enhancing their modeling convenience, and we discuss the structure of the sTPN
model of maintenance procedures with reference to the running case study. In
Section 4, we brie�y recall the main results of the solution technique of [17] for
transient analysis of non-Markovian models and we discuss the conditions that
must be satis�ed to guarantee its applicability, referring the reader to [17] for
more details. In Section 5, we present the experimental results. Conclusions are
�nally sketched in Section 6.

2 Problem formulation

We address sequential maintenance procedures performing potentially critical
operations that require usage of system resources and may a�ect their status
(Section 2.1). This �ts the class of PMS provided that adequate assumptions
are made to guarantee that the executed operations do not overlap. A running
example illustrates model speci�cation (Section 2.2).

2.1 A general class of phased maintenance procedures: stylized facts

We consider phased mission procedures intended to perform non-overlapping
operations that may severely a�ect a set of system resources. When the procedure
duration is much shorter than the mean time between age-related failures, then
the probability of maintenance-induced failures turns out to be prevailing for
the purposes of the evaluation of transient availability measures and can be



well accounted by concentrated failures or error probabilities. This in particular
�ts the case of maintenance procedures requiring outage of HW and/or SW
components, for instance to recover from a failure or to perform upgrades, tests,
and con�guration changes. Figure 1 illustrates involved concepts.

Fig. 1. An UML class diagram representing the maintenance procedure model.

Actions and resources. A procedure is a sequence of non-concurrent actions
subject to precedence constraints that restrict their possible orderings. An action
may need to use one or more system resources to perform its assigned task and
its execution may impact on some of them, possibly causing errors or failures.

Resource failures. At the beginning of a procedure, all resources are in a safe
state. During the execution of a maintenance action, a resource may reach an
error state (from a safe state) or a failure state (either from an error state or
directly from a safe state). The switch probabilities that represent the state
transitions of resources may vary from action to action. While a resource is
being used by an action, if the resource reaches an error state then the action is
nevertheless successfully completed, whereas if the resource reaches a failure state
then the action also fails. The execution time of an action may vary depending
on whether the resources in use become �awed or failed. A resource can be
recovered from a failure through a repair operation.

Failure management. If a resource fails while it is used by an action, then
the action is interrupted and a repair operation is started. When the resource
has been repaired, the action is restored. Repetitions of the same action due to
subsequent failures of its requested resources occur according to the Preemptive
Repeat Di�erent (PRD) semantics , i.e., no memory is carried across repetitions.
Repetitions are also limited by a timeout, which is activated when the action is
started for the �rst time. When the timeout elapses, the action is stopped and the
overall procedure is restarted, possibly waiting for ongoing repair operations to
be completed. In a variant of this policy, when the timeout of an action expires,
the procedure is restarted from that action.

Policy at action completion. At the end of each action, a procedure waits for
the completion of ongoing repair operations and possibly performs a rejuvenation



of system resources. Speci�cally, an error detection operation can be executed
to identify the �awed resources and a rejuvenation activity of failed resources
can be started to bring them back to the safe state. This can be performed
according to various schemes, e.g., every n executed actions or at the end of
selected actions. In a variant of this policy, the rejuvenation of �awed resources
that are not used by the remaining actions is avoided and performed only if the
procedure is repeated due to the failure of other resources.

2.2 An example

A maintenance procedure can be speci�ed by detailing its actions according to
the procedure model shown in Figure 1. As a running example, we consider a
procedure made of a sequence of 10 maintenance actions a1, a2, ..., a10 which
may a�ect a system resource r1. Table 1 shows a fragment of the speci�cation of
such procedure, which pertains to the maintenance action a1 and to the repair,
error detection, and rejuvenation actions performed on r1. Action a1 may a�ect
r1 while performing its requested task. When a1 is in execution, if r1 is in a safe
state then it remains safe, reaches an error state, or fails with probability 0.75,
0.23, and 0.02, respectively, and the execution time of a1 is uniformly distributed
over [8, 10], [8, 10], and [2, 5] min, respectively. Conversely, if r1 is in an error
state, then it remains �awed or fails with probability 0.75 and 0.25, respectively,
and the time spent in the execution of a1 has a uniform distribution over [8, 10]
and [2, 5]min, respectively. The repair of r1 requires a uniformly distributed time
over [30, 45] min. Error detection is performed on r1 at the completion of a1 and
a6, triggering a subsequent rejuvenation if r1 is in an error state. The error
detection time and the rejuvenation time have a uniform distribution supported
over [0, 1] minutes and [12, 15] minutes, respectively.

Maintenance actions

Act.
Time

Res.
Safe2Safe Safe2Err Safe2Fail Err2Err Err2Fail Fail2Fail

Out Ex. time Ex. time Ex. time Ex. time Ex. time Ex. time

a1 60 r1
p = 0.75 p = 0.23 p = 0.02 p = 0.75 p = 0.25 p = 1

[8, 10], unif [8, 10], unif [2, 5], unif [8, 10], unif [2, 5], unif [2, 5], unif

Repair actions

Action Res. Execution time Triggering condition

rep1 r1 [30, 45], unif r1 failed

Error detection actions

Act. Res. Execution time Triggering condition

errd1 r1 [0, 1], unif a1 completed || a6 completed

Rejuvenation actions

Act. Res. Execution time Triggering condition

rej1 r1 [12, 15], unif r1 error detected

Table 1. A fragment of the speci�cation of a procedure (times expressed in minutes).



3 Modeling

The speci�cation of a maintenance procedure can be translated into a formal
model that supports the deployment of a theory of analysis. We formulate the
model as an extension of stochastic Time Petri Nets (sTPN) [25, 9] with en-
abling and �ush functions, which change the enabling condition of transitions
and the rule according to which tokens are moved after each �ring (Section 3.1).
This augments the modeling convenience by facilitating the representation of
dependent actions and decision-making activities, without restricting the model
expressivity or impacting on the subsequent analysis (Section 3.2). The proposed
sTPN extension is basically equivalent to SRNs [23].

3.1 An extension of stochastic time Petri nets

Syntax. An sTPN is a tuple 〈P ;T ;A−;A+; A·;m0;EFT
s;LFT s;F ; C;E;L〉.

The �rst ten elements are the model of stochastic Time Petri Nets (sTPN)
[25, 9]. Speci�cally, P is a set of places; T is a set of transitions disjoint from
P ; A− ⊆ P × T , A+ ⊆ T × P , and A· ⊆ P × T are the sets of precondition,
postcondition, and inhibitor arcs; m0 : P → N is the initial marking associat-
ing each place with an initial non-negative number of tokens; EFT s : T → Q+

0

and LFT s : T → Q+
0 ∪ {∞} associate each transition with a static Earliest

Firing Time and a (possibly in�nite) static Latest Firing Time, respectively
(EFT s(t) ≤ LFT s(t) ∀ t ∈ T ); C : T → R+ associates each transition with a
weight; F : T → F st associates each transition with a static Cumulative Distribu-
tion Function (CDF) supported over its static �ring interval [EFT s(t), LFT s(t)].

As usual in Petri Nets, a place p is said to be an input, an output, or an
inhibitor place for a transition t if 〈p, t〉 ∈ A−, 〈t, p〉 ∈ A+, or 〈p, t〉 ∈ A·,
respectively. As typical in Stochastic Petri Nets, a transition t is called immediate
(IMM) if [EFT s(t), LFT s(t)] = [0, 0] and timed otherwise. A timed transition t is
called exponential (EXP) if F st (x) = 1−eλx over [0,∞] for some rate λ ∈ R+

0 and
general (GEN) otherwise. A GEN transition t is called deterministic (DET) if
EFT s(t) = LFT s(t) > 0 and distributed otherwise (i.e., EFT s(t) 6= LFT s(t)).
For each distributed transition t, we assume that F st is absolutely continuous
over its support [EFT s(t), LFT s(t)] and, thus, that there exists a Probability
Density Function (PDF) fst such that F st (x) =

∫ x
0
fst (y)dy.

E and L extend the model of sTPN with enabling and �ush functions, re-

spectively. E : T → {true, false}NP

associates each transition t ∈ T with an
enabling function E(t) : NP → {true, false} that, in turn, associates each mark-

ing m : P → N with a boolean value; L : T → P(P )N
P

associates each transition
t ∈ T with a �ush function L(t) : NP → P(P ) that, in turn, associates each
marking m : P → N with a subset of P , i.e., an element of the power set of P .

Semantics. The state of an sTPN is a pair 〈m, τ〉, where m : P → N is a
marking that associates each place with a non-negative number of tokens and
τ : T → R+

0 associates each transition with a (dynamic) real-valued time-to-�re.



A transition t is enabled by marking m if: i) each of its input places contains
at least one token (i.e., m(p) ≥ 1 ∀ 〈p, t〉 ∈ A−), ii) none of its inhibitor places
contains any token (i.e., m(p) = 0 ∀ 〈p, t〉 ∈ A·), and iii) its enabling function
evaluates to true in marking m (i.e., E(t)(m) = true). An enabled transition t is
�rable in state s = 〈m, τ〉 if its time-to-�re is not higher than that of any other
transition enabled by marking m (i.e., τ(t) ≤ τ(t′) ∀ t′ ∈ T e(m), where T e(m)
is the set of transitions that are enabled by m). When multiple transitions are
�rable, one of them is selected as the �ring transition according to the random
switch determined by C. Speci�cally, Prob{t is selected} = C(t)/

∑
ti∈T f (s) C(ti),

where T f (s) is the set of transitions that are �rable in s.

The state of an sTPN evolves depending on the times-to-�re sampled by
transitions and the resolution of random switches according to the weights of
transitions. Speci�cally, when a transition t �res, the state s = 〈m, τ〉 is replaced
by a new state s′ = 〈m′, τ ′〉. Marking m′ is derived from marking m by: i)
removing a token from each input place of t and assigning zero tokens to the
places belonging to the subset L(t)(m) of P (identi�ed by the value of the �ush
function of t in m), which yields an intermediate marking mtmp, ii) adding
a token to each output place of t, which �nally yields m′. Transitions that are
enabled both bymtmp and bym

′ are said persistent, while those that are enabled
by m′ but not by mtmp or m are said newly-enabled. If the �red transition t is
still enabled after its own �ring, it is always regarded as newly enabled [4, 24].
For any transition tp that is persistent after the �ring of t, the time-to-�re is
reduced by the time elapsed in the previous state s (which is equal to the time-
to-�re of t measured at the entrance in s), i.e., τ ′(tp) = τ(tp) − τ(t). For any
transition tn that is newly-enabled after the �ring of t, the time-to-�re takes a
random value sampled in the static �ring interval according to the static CDF
F stn , i.e., EFT

s(tn) ≤ τ ′(tn) ≤ LFT s(tn), with Prob{τ ′(tn) ≤ x} = F stn(x).

3.2 Deriving an sTPN model of maintenance procedures

The speci�cation of a maintenance procedure can be translated into a corre-
sponding sTPN model, which is made of a submodel for each action and a
submodel for each resource that the actions may a�ect. The sTPN shown in
Figure 2 is a model fragment of the procedure introduced in Section 2.2, specif-
ically corresponding to action a1 and resource r1 speci�ed in Table 1.

The IMM transition start models the outset of the overall procedure and
its output place is chained with the IMM transition a1start representing the
beginning of action a1. When a1start �res, a token arrives in a1timeout_start,
enabling the DET transition a1timeout which models the timeout of 60 minutes
associated with a1. The �ring of a1start also deposits a token in a1switch,
which is an input place for the 6 IMM transitions that model the concentrated
probabilities of error/failure a�ecting r1 as a consequence of the usage by a1.
Speci�cally, if r1 is safe, then it may remain safe or become either �awed or
failed with probability 0.75, 0.23, and 0.02, respectively. This is modeled by the
random switch among the IMM transitions a1r1safe2safe, a1r1safe2err, and



(a)

Transition Enabling function Flush function Weight
a1start r1rep_started==0 - 1

a1r1safe2safe r1safe>0 - 75
a1r1safe2err r1safe>0 - 23
a1r1safe2fail r1safe>0 - 2
a1r1err2err r1err>0 - 75
a1r1err2fail r1err>0 - 25
a1r1fail2fail r1fail>0 - 1
a1r1s2s_exec - {a1_timeout} 1
a1r1s2e_exec - {a1_timeout} 1
a1r1e2e_exec - {a1_timeout} 1
a1r1_repaired r1safe>0 - 1

a1timeout -
{a1_switch, safe2safe, safe2err, safe2fail,

1
err2err, err2fail, a1_r1repaired}

a2start r1errdet==0 - 1
r1safe2err safe2err>0 - 1
r1err2fail err2fail>0 - 1
r1safe2fail safe2fail>0 - 1
r1repstart a1r1rep>0 - 1

r1safe_errdet r1_errdet==1 {r1_errdet} 1
r1err_errdet r1_errdet==1 - 1

r1rej - {r1_errdet} 1

(b)

Fig. 2. An sTPN fragment of the example procedure of Section 2.2, representing the
action a1 and the resource r1 speci�ed in Table 1 (a). A table that details the enabling
functions, the �ush functions, and the weights of the transitions that appear in the
model fragment (b). The entire model of the procedure integrates the r1 submodel
and 10 action submodels like the a1 submodel.

a1r1safe2fail, which are actually enabled if r1safe contains a token and have
a weight equal to 75, 23, and 2, respectively. In a similar manner, if r1 is �awed,
then it may remain �awed or become failed, which is represented by the random
switch between a1r1err2err and a1r1err2fail. Conversely, if r1 is failed, then
the only enabled transition of the 6 mentioned IMM transitions is a1r1fail2fail,
which models the fact that r1 remains failed until a repair operation is started.



When the outcome of the random switch in the a1 submodel corresponds to
an r1 state transition, then the corresponding IMM transition in the r1 submodel
becomes �rable. Speci�cally, if a1r1safe2err, a1r1safe2fail, or a1r1err2fail
�res, then a token arrives in a1r1s2e, a1r1s2f , or a1r1e2f , respectively, thus
making r1safe2err, r1safe2fail, or r1err2fail �reable, respectively.

The �ring of a1r1safe2safe, a1r1safe2err, and a1r1err2err enables
a1r1s2s_exec, a1r1s2e_exec, and a1r1e2e_exec, respectively, which model the
execution time of a1 in the cases of successful completion. When one of the latter
transitions �res, a token is removed from a1timeout_start (i.e., the timeout is
stopped) and a token is added to a1ok. This enables a1r1errdet which triggers an
error detection operation on r1. Speci�cally, when a token arrives in r1errdet,
either r1safe_errdet or r1err_errdet (in the r1 submodel) becomes enabled
depending on whether r1 is safe or �awed, respectively: i) If r1 is safe, the �ring
of r1safe_errdet simultaneously removes and adds a token to r1safe (in the
r1 submodel) and removes a token from r1errdet (in the a1 submodel), thus
enabling a1start which models the beginning of the subsequent action. ii) If r1
is �awed, the �ring of r1err_errdet removes a token from r1err and deposits
a token in r1rej_started (in the r1 submodel), enabling r1rej which models a
rejuvenation. The �ring of r1rej adds a token to r1safe (in the r1 submodel)
and removes a token from r1errdet (in the a1 submodel), thus enabling a2start.

The �ring of a1r1safe2fail, a1r1err2fail, and a1r1fail2fail enables
a1r1s2f_exec, a1r1e2f_exec, and a1r1f2f_exec, respectively, which model
the execution time of a1 in the cases of unsuccessful completion. The �ring of
one of the latter transitions adds a token to a1r1rep enabling r1rep_start (in
the r1 submodel), whose �ring in turn enables r1repair which models a repair
operation performed on r1. When r1repair �res, a token is moved in r1safe,
enabling a1r1repaired (in the a1 submodel) whose �ring brings a token back to
a1switch so that a1 is repeated.

If a1timeout �res before a token arrives in a1ok, then all the tokens in the a1
submodel are removed, a token is deposited in a1repwait, and a1start becomes
�reable as soon as r1repstarted contains no tokens (i.e., if the timeout elapses
before the successful completion of a1, then a1 is restarted, possibly waiting for
an on-going repair of r1 to be completed).

4 Quantitative analysis

We discuss the conditions that guarantee the applicability of the solution tech-
nique of [17] to the analysis of procedure models that underlie a Generalized
Semi-Markov Process (GSMP) [20, 1] (Section 4.1) or a Markov Regenerative
Process (MRP) [13, 1, 2] (Section 4.2). The approach is e�ciently implemented
in the new release of the Oris tool based on the Sirio framework [10, 12, 7] un-
der the assumption that all timed transitions have expolynomial PDF. For space
limitations, the reader is referred to [17] for the details on the analysis technique.



4.1 Transient analysis

The sTPN model derived in Section 3.2 includes multiple concurrent GEN tran-
sitions with bounded support, e.g., a repair action enabled together with the
timeout associated with a maintenance action. According to this, the model
underlies a GSMP [20, 1] with equal-speed timers, for which a viable approach
to transient analysis within any given time bound is the solution technique of
[17]. The approach samples the state of the underlying GSMP after each transi-
tion �ring, maintaining a timer τage that accounts for the absolute time elapsed
since the entrance in the initial state. This identi�es an embedded Discrete Time
Markov Chain (DTMC) called transient stochastic graph. A state in the embed-
ded DTMC is named transient stochastic state class (transient class for short)
and provides the marking of the sTPN plus the joint support and PDF of τage
and the times-to-�re of the enabled transitions. The marginal PDF of τage per-
mits to derive the PDF of the absolute time at which the transient class can
be entered. This enables evaluation of continuous-time transient probabilities of
reachable markings within a given time horizon, provided that either the number
of transient classes that can be reached within that time interval is bounded (ex-
act analysis) or it can be truncated under the assumption of some approximation
threshold on the total unallocated probability (approximated analysis).

The number of transient classes enumerated within a given time bound is
guaranteed to be �nite by Lemma 3.4 of [17] provided that the state class graph
of the underlying TPN model is �nite and does not include a cycle that can be
executed in zero time. The state class graph of the underlying TPN model can
be regarded as a non-deterministic projection of the transient stochastic class
graph and its �niteness is assured under fairly general conditions by Lemma 3.2
of [17], which is not addressed here for the shortness of discussion.

If the state class graph of the underlying TPN model includes cycles that can
be executed in zero time, then the number of transient classes enumerated within
a given time bound is not �nite. In this case, termination can be guaranteed in
probability by Lemma 3.5 of [17] if cycles that must be executed in zero time are
not allowed. This permits to stop the enumeration when the total probability
of reaching one of the discarded successor transient classes within a given time
bound is lower than a prede�ned threshold. In particular, approximated analysis
can be leveraged also when the number of transient classes enumerated within
a given time bound is theoretically �nite but practically too large to a�ord the
enumeration within a reasonable computation time.

The complexity of the analysis actually grows with the number of enumerated
transient classes and, thus, with the time horizon. In the experiments performed
in this paper, approximated analysis turned out to be feasible with a computation
time lower than 5 minutes up to procedures made of 4-5 maintenance actions.

4.2 Transient analysis of Markov regenerative processes

The issue of complexity can be overcome for models that underlie an MRP that
within a �nite number of steps always reaches a regeneration point, which is a



state where the future behavior of the stochastic process is independent from
the past behavior through which the state has been reached. In the approach
of [17], regeneration points can be identi�ed as the transient classes where all
times-to-�re are either i) newly-enabled, or ii) exponentially distributed, or iii)
deterministic, or iv) bounded to take a deterministic delay with respect to a time-
to-�re satisfying any of the previous conditions. According to this, the sTPN
model derived in Section 3.2 is guaranteed to reach a regeneration point at the
completion of each action, since the subsequent action is not started until any
ongoing repair is completed. When the underlying stochastic process satis�es this
condition, the solution technique of [17] can be limited to the �rst regeneration
epoch and repeated from every regenerative point. This supports the derivation
of the local and global kernels that characterize the behavior of the MRP [13, 1, 2]
and enables the evaluation of the transient probabilities of reachable markings
at any time through the numerical integration of generalized Markov renewal
equations (regenerative exact analysis). Termination is guaranteed if the number
of transient classes reached within the �rst regeneration epoch is bounded. This
is assured by Lemma 4.1 of [17] if the state class graph of the underlying TPN
model is �nite and every cycle that it contains visits at least one state class that
is a (non-deterministic) projection of a regenerative transient class. If the number
of transient classes reached within the �rst regeneration epoch is not �nite or
practically too large, termination can be guaranteed in probability by Lemma 3.5
of [17] under the assumption of a time bound and an approximation threshold
on the total unallocated probability (approximated regenerative analysis).

In the experiments performed in this paper, regenerative analysis permitted
to a�ord cases of real complexity concerning procedure made of 10 or more
maintenance actions, and it seems to be a solid ground for future developments.

5 Computational Experience

We consider the procedure introduced in Section 2.2, which is made of 10 main-
tenance actions a1, a2, ..., a10 that use and may a�ect a resource r1. For the
simplicity of interpretation of experimental results, we adopt for each mainte-
nance action the speci�cation given in Table 1. According to this, the sTPN
model of such procedure is a composition of the r1 submodel shown in Figure 2
with 10 action submodels equal to the a1 submodel shown in Figure 2. The switch
probabilities and the supports of the temporal parameters appearing in Table 1
were selected according to general experience at NEC Corporation [22], with the
aim of experimenting the approach on plausible data. The way how experimental
data are acquired and interpreted to derive not only the expected min-max du-
ration of temporal parameters but also their distribution is still matter of study.
In such cases, the principle of insu�cient reason, or maximum entropy can be
advocated to motivate the assumption of a uniform distribution [3].

To illustrate the potentialities of the approach, the experimentation is �nal-
ized to evaluate, for each maintenance action ai, the transient probability that ai
is completed and the subsequent action ai+i (if any) is still ongoing. Speci�cally,



this measure of interest is derived as the sum of the transient probabilities of any
marking such that: i) the submodel of any action that precedes ai or follows ai+1

(if any) contains no tokens, and ii) aiok in the ai submodel contains a token,
or aiok and air1errdet in the ai+1 submodel contain no tokens. This permits
to derive the time at which a given action or the overall procedure has been
successfully completed with an assigned probability or, vice-versa, the probabil-
ity that a given action or the overall procedure has been successfully completed
within a given time bound. The considered performance measures also permit
to evaluate di�erent strategies for error detection and rejuvenation, also with
respect to di�erent feasible orderings of the maintenance actions.

The experiments were performed through the new release of the Oris tool
based on the Sirio framework [10, 12, 7]. Regenerative analysis with approxima-
tion threshold equal to 0.01 and time bound equal to 300 minutes was repeated
for four di�erent policies of error detection and rejuvenation. In all the cases,
the analysis took 1 s to enumerate transient classes and less than 4 minutes to
solve Markov renewal equations.

Error detection & rejuvenation never performed. Figure 3a shows that
the probability of successful completion of the overall procedure within 125, 150,
and 175 minutes is nearly 0.29, 0.35, and 0.74, respectively, while the time by
which the procedure has been successfully completed with probability higher
than 0.99 is 293 minutes.

Error detection & rejuvenation performed every 5 actions. Figure 3b
shows that rejuvenation improves the probability of successful completion of
the overall procedure within 150 and 175 minutes to nearly 0.48 and 0.78, re-
spectively, while decreasing the probability of successful completion within 125
minutes to 0.136134. The time by which the procedure has been successfully
completed with probability higher than 0.99 is 269 minutes.

Error detection & rejuvenation performed every 3 actions. Figure 3c
shows that the probability of successful completion of the overall procedure
within 150 minutes is increased to nearly 0.54, while the probability of successful
completion within 125 minutes is further decreased to 0.11 and the probability of
successful completion within 175 minutes is slightly reduced to nearly 0.77. The
time by which the procedure has been successfully completed with probability
higher than 0.99 is 267 minutes.

Error detection & rejuvenation performed after each action. Figure 3d
shows that the probability of successful completion of the overall procedure
within 125 minutes is nearly halved and it is equal to 0.06; the probability of
successful completion within 150 minutes is decreased to nearly 0.47, while the
probability of successful completion within 175 minutes is increased to 0.79. The
time by which the procedure has been successfully completed with probability
higher than 0.99 is 258 minutes.
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Fig. 3. Transient probability that ai is completed and ai+i (if any) is ongoing for each
action ai of the procedure speci�ed in Section 2.2, under the assumption that error
detection and rejuvenation are: never performed a), performed every 5 actions b),
performed every 3 actions c), and performed after each action (except a10) d).

6 Conclusions

We experimented with the approach of stochastic state classes [17] in quanti-
tative evaluation of maintenance procedures that may induce errors or failures
of system resources. To this end, we considered a general modeling framework,
including precedence and timeout constraints on maintenance actions, repair op-
erations of system resources, and strategies for error detection and rejuvenation
of resources. As a relevant aspect, the execution times of such actions may have
a non-Markovian distribution over a bounded support. This yields models that
underlie an MRP with multiple concurrently enabled GEN timers, which can
be e�ectively solved through the regenerative approach to transient analysis de-
veloped in [17]. The method permits to derive transient availability measures,
which can be used to support the selection of a rejuvenation plan and the choice
among feasible orderings of actions. Computational experience addresses a rela-
tively challenging case study that is able to �t the complexities of reality beyond



the enabling restriction. In so doing, a major contribution of this paper consists
in a proof of the applicability of the solution technique of [17], which seems to
be extremely promising for the analysis of models of higher complexity and size.
While applied to the solution of a speci�c problem pertaining to the evaluation
of critical maintenance procedures, the proposed approach is formulated as a
method for modeling and analysis of a more general class of critical applications
referred to the abstraction of PMS.

The proposed approach is amenable to integration within a model driven
development process where the results of quantitative analysis can be used to
support iterative feedback cycles [11, 16]. Speci�cally, the temporal parameters
with unknown distribution are initially associated with a uniform distribution
or with a distribution guessed by analogy with previous implementations. Then,
they are progressively re�ned on the basis of quantitative measures and the
results of a pro�ling technique for the estimation of execution times.
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