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ABSTRACT
Rising competition among gas distribution companies, grow-
ing availability of smart metering devices, and increasingly 
strict requirements on agreed service levels stimulate re-
search on advanced modeling and solution techniques for 
quantitative evaluation of gas distribution networks. We 
propose a novel methodology for modeling and evaluation 
of the transient network behavior after a component failure.

The approach relies on a topological model of the fluid dy-
namics and a stochastic timed model of the actions started 
after a component failure. Fluid dynamic analysis evalu-
ates the service level of end-users in each possible operating 
condition of the network, also supporting the derivation of 
stochastic parameters for the failure management model. In 
turn, such model is analyzed to evaluate the probability over 
time of the network operating conditions. Transient prob-
abilities are then aggregated on the basis of the results of 
fluid dynamic analysis to derive availability measures. Spe-
cial attention is paid to make the structure of the stochastic 
model independent of the network topology. To provide a 
proof of concept, the approach is exemplified on a small-
sized network equipped with a backup pipe, evaluating for 
each end-user the transient probability of not being served 
after a component failure as well as the mean outage time. 
These measures comprise a valid ground for the evaluation 
of different failure management processes and the definition 
of demand-response strategies.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Performance, Algorithms
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1. INTRODUCTION
Quantitative evaluation of expected availability is taking

growing relevance for the efficient operation of gas distri-
bution networks (i.e., middle/low pressure networks), due
to several drivers including competitive challenges raised by
novel industrial organization of utilities, emphasis on home-
land security and serviceability, automation capabilities of-
fered by smart monitoring and actuation devices, increasing
interest in demand-response control applications [23]. This
motivates investigation in modeling and solution methods,
both in the tactical perspective that supports decision dur-
ing run-time operation, and in the strategic perspective that
supports planning of topology, localization of sensing and ac-
tuation devices, preventive maintenance, and evaluation of
sustainable service levels.

The subject of network reliability and availability has been
widely investigated in electric and telecommunication sys-
tems, seeking for efficient infrastructures that facilitate in-
teroperability among innovative technological solutions [27].
As notable examples, a real-time optimization model of de-
mand response is solved in [11] to maximize the consumer
utility while minimizing energy costs [11]; a Markov model of
the actions taken in reaction to a failure in a telecommunica-
tion network is leveraged in [2] to assess survivability metrics
with respect to distributed generation, demand response,
and smart grids; hierarchical composition is exploited in
[18] to derive availability and performability measures for
telecommunication systems. Yet, various major differences
characterize gas networks with respect to telecommunica-
tion and electric systems, with notable issues such as: the
localization of the point of failure and network reconfigu-
ration, which may involve much less automation and may
result in a large variability of timings; the regulation of con-
trollable inputs, which involves processes running on a much
slower and more variable time scale; a lower level of network
redundancy and a different perspective on the criticality of
interruptions; the possibility to operate the network at dif-
ferent levels of pressure, trading the efficiency of operation
for the resilience to transient faults.

Modeling targeted to natural gas networks is less explored.
In particular, most of the literature on the analysis and sim-
ulation of gas networks focuses on the fluid-dynamics per-
spective, mainly oriented to assess flow rates and pressures
across network elements [15, 12, 22]. Optimization of op-
erations has been addressed in various aspects, notably to
favor efficient integration within multi-carrier systems com-
bining provisioning of electric and gas power [21, 19, 17,
20]. Stochastic modeling is applied in [5] to consider dif-



ferent rates of leakage that may occur in a pipe fault and
thus predict the impact that this may have on pressures and
flow rates across the network, supporting the planning of
appropriate actions to mitigate risks. In [24] fluid-dynamic
analysis of a section of a real gas network is repeated for
different configurations of demand reflecting the statistics
of usage in different day hours and seasons. The effects of
sequential restoration and constrained network capacity are
considered in [14] to support reliability assessment by deriv-
ing average measures of interruption rate and outage time
experienced by end-users, exemplifying the approach on a
small-sized gas network.

In this paper, we propose a method for modeling and eval-
uation of availability of middle/low pressure gas networks.
To this end, we assume that changes of the operating condi-
tions of the network due to daily/seasonal demand variations
or demand-response mechanisms are independent of the ac-
tions taken in reaction to a failure of a network element.

In the modeling stage, this permits to separate the rep-
resentation of the fluid dynamics from the stochastic char-
acterization of the failure management steps. On the one
hand, the fluid dynamics model follows a relatively conven-
tional graph-theoretical representation of the network topol-
ogy, supporting well known techniques for the evaluation of
pressures and flow rates under a given configuration of com-
ponents and parameters. On the other hand, the failure
management model provides a representation of the differ-
ent functional behaviors that may occur when a network
component fails, with stochastic distributions depending on
the failure localization and the consequent pressure regu-
lation within the network. As a salient trait, stochastic
modeling affords the use of non-Markovian temporal param-
eters that overcome the limits of validity induced by un-
bounded support and exponential distribution. Moreover,
the model structure is independent of the network topol-
ogy, which makes the model general and almost guarantees
a constant level of complexity of the stochastic analysis.

In the evaluation stage, the evolution over time of the
failure management actions is analyzed through transient
analysis based on stochastic state classes and generalized
Markov renewal equations, as proposed in [16]. This pro-
vides the probability over time of any feasible operating con-
dition of the network after a failure. Such probabilities are
then aggregated on the basis of the results of fluid dynamic
analysis (identifying the service status of each end-user in
each network condition), providing transient and average
availability measures for end-users. The approach is exper-
imented on a small example of the literature, providing a
proof of concept of the overall methodology and paving the
way for future developments concerned with the evaluation
of different failure management processes and the definition
of demand-response strategies.

The rest of the paper is organized in four sections. In Sec-
tion 2, we present the fluid-dynamics model (Section 2.1),
discuss a characterization of stochastic temporal parameters
of the failure management actions (Section 2.2), and present
the failure-management model (Section 2.3). In Section 3,
we recall the salient aspects of the solution technique of [16]
(Section 3.1) and discuss how transient and average avail-
ability measures are derived (Section 3.2). In Section 4, we
exemplify the approach on a small-sized network of the lit-
erature (Section 4.1) and we present the obtained results
(Section 4.2). Finally, conclusions are drawn in Section 5.

2. MODELING
A gas distribution network is a hybrid system combining

the fluid dynamic behavior of gas pressure and flow rate
with the temporal behavior of the actions that are taken to
recover from the failure of a network element. To decouple
the topological representation of the fluid dynamics from the
stochastic temporal characterization of the failure manage-
ment process, we assume that the operating conditions of
the network are completely determined by given pressures
and mass flow rates when a failure occurs, thus neglecting
any change of the network operation during the steps of fail-
ure management. This results in a fluid-dynamics model and
a failure management model.

In standard operating conditions, gas enters the network
through supply nodes and is withdrawn at load nodes (i.e.,
end-users). While the pressure at the supply nodes is kept at
a constant value controlled by pressure-regulating devices,
the pressure at the load nodes depends on flow patterns
in the network. To guarantee the correct operation of the
overall network as well as to meet commercial standards, the
pressure at each load node is required to be greater than a
certain threshold. According to this, whenever a network
component fails, a set of actions are taken to restore the
correct network behavior. It is worth noting that, while
we consider failures of network pipes, the approach can be
easily extended to encompass failures of other components
(e.g., regulating devices, valves, etc).

A pipe failure is detected by people (because gas is smelled)
or by some automated system. While in the former case a
failure detection entails its localization, in the latter case the
network is scanned to locate the leak (as a safety measure,
a sub-network is shut down while it is scanned). Then, the
network is reconfigured to guarantee safety at load nodes
and allow the faulty pipe to be repaired (e.g., the nearest
valves positioned upstream and downstream of the leak are
closed to isolate the faulty section, while other sectioning
valves are opened if needed to reduce the number of end-
users disconnected from the network). After reconfigura-
tion, the load nodes are distinguished into: i) offline nodes,
which are disconnected due to the network topology (i.e., no
path exists from any of the supply nodes to such load nodes);
ii) online served nodes, which are connected with sufficient
pressure to meet their respective requirements; and, iii) on-
line not served nodes, which are connected but with pressure
lower than the required threshold. During the pipe repair,
the supplied pressure is raised by a certain amount ∆P so
as to make all online nodes served. We arbitrarily divide
the regulation operation into four steps, considering the on-
line nodes that become served after a pressure increase of
0.25 ∆P , 0.5 ∆P , 0.75 ∆P , and ∆P , respectively (the num-
ber of steps could be increased to obtain a finer grained eval-
uation without impairing the subsequent analyses). When
the faulty pipe has been repaired, the network is brought
back to the original configuration and the pressure in sup-
ply nodes is lowered, undoing the changes made during the
reconfiguration and regulation phases, respectively.

2.1 Fluid-dynamics model
Given a set of boundary conditions, represented by pres-

sure at supply nodes and mass flow rates withdrawn at load
nodes, fluid-dynamic analysis is performed to assess the net-
work state in terms of pressures at nodes and mass flow rates
in pipes [10]. Specifically, two sets of equations are consid-



ered. Equation 1 states that the signed sum of mass flow
rates that enter or exit from each node n (i.e., Qin and Qnj ,
respectively), must be equal to zero or to the withdrawn
mass flow rate Qwn depending on whether n is a passive node
(i.e., neither a supply nor a load node) or a load node, re-
spectively, i.e.,:∑

i∈Ientn

Qin −
∑
j∈Iexn

Qnj =

{
0 ∀ passive node n,
Qwn ∀ load node n,

(1)

where Ientn and Iexn are the sets of indexes of pipes that en-
ter and exit from node n, respectively. This yields a set of
Nq equations in M unknowns, where Nq is the number of
passive/load nodes, M is the number of pipes in the net-
work, the unknowns are the mass flow rates in the pipes,
and the Nl mass flow rates withdrawn at load nodes are
given as an input. Equation 2 states that the pressure loss
per unit length in each pipe m is calculated through the
Darcy-Weisbach formula:

∂Pm
∂Lm

=
f

Dm
· ρ V

2

2
∀ network pipe m, (2)

where ρ is the gas density, V is the average gas velocity, Dm
is the pipe diameter, and f is the Darcy friction factor calcu-
lated by means of the Colebrook equation for turbulent flows
and the Poiseuille formula for laminar flows. This leads to a
set of M equations in Nq unknowns, where the unknowns are
the pressure values at load/passive nodes and the Ns pres-
sure values at supply nodes are given as an input. Coupling
Equations 1 and 2 leads to a non-linear system of Nq + M
equations in Nq +M unknowns, which is solved through an
iterative procedure based on the Newton-Raphson method.

For each possible pipe failure, fluid-dynamic analysis is
repeated under different boundary conditions which refer to
a specific step in the failure management process. More
specifically, fluid-dynamic analysis is performed:

• after the automated detection of a failure, to assess
whether each load node that does not belong to the
faulty subnetwork is either offline or online and, in the
latter case, to determine whether the pressure level
meets the contractual requirements of the node (note
that the nodes of the faulty subnetwork are definitely
offline, as such subnetwork is shut down and isolated
while the fault is being localized);

• after the network reconfiguration, to determine whether
each load node is offline or online with sufficient or in-
sufficient pressure level;

• after the network reconfiguration in the presence of
online load nodes that are not able to withdraw the gas
with sufficient pressure, to find out whether a pressure
increase in some of the supply nodes can re-establish
the proper service level for such nodes (i.e., an inverse
fluid-dynamic analysis is carried out to evaluate the
minimum pressure increase ∆P to be achieved at some
supply nodes so that all online load nodes are served);

• after each step of pressure regulation, to discern the
load nodes that are still not served, and the total mass
flow rate required by the load nodes but not delivered
at a sufficient pressure level.

2.2 Stochastic timed characterization of
the process of failure management

Each step of the failure management process has an execu-
tion time characterized by a probability distribution, which
can be derived from the results of fluid-dynamic analysis
(i.e., pressure regulation and undo regulation), or the net-
work topology and the failed pipe (i.e., failure localization),
or practice-based considerations (i.e., automated/manual fail-
ure detection, network reconfiguration, pipe repair, and undo
network reconfiguration). This requires a deep knowledge of
the network operation and the failure management proce-
dure (e.g., the working principles of some smart devices may
notably reduce the time needed to disconnect a faulty pipe,
the maximum time needed to repair a component may de-
scend from contractual requirements established with third-
party companies, etc). In the practice, it may be quite hard
to get a good knowledge of such processes, as companies usu-
ally avoid disclosure of classified information. Therefore, we
discuss stochastic characterization of a possible failure man-
agement procedure, defined on the basis of reasonable as-
sumptions and the lessons learned so far in the research col-
laboration with Terranova [1]. While the issue is addressed
for the completeness of discussion to provide a proof of con-
cept of the approach, it is worth remarking that the focus
of this research is not measuring/fitting stochastic tempo-
ral parameters of the process of failure management, but
rather the methodology of modeling as well as the quantita-
tive measures that can be evaluated through the subsequent
stochastic analysis once such parameters are known.

Manual failure detection and localization. We as-
sume that this step takes a time supported over [0,∞), as,
in principle, a gas leak may be smelled immediately or not
smelled at all. From a practical point of view, it does not
appear likely to measure a statistics of the time elapsed be-
tween the occurrence of a gas leak and a notice from people,
mainly because the time at which a pipe failed is actually
unknown. Moreover, it may be hard to define a valid model
as well, due to the many variables involved (e.g., popula-
tion density, leak extent, wind speed and direction, etc) and
thus an accurate estimation of variance and higher order mo-
ments is unlikely. Therefore, we assume that only the mean
value µm is known and adopt an EXP distribution with rate
1/µm (in the experiments, we arbitrarily assume µm = 8 h).

Automated failure detection and localization. We
consider a system that periodically compares cumulative
mass balances in closed sub-networks (i.e., the integral over
time of involved mass flow rates) so that the probability that
a leak is detected depends on how long it has been active
when a check is performed, yielding a quasi-triangular distri-
bution. We assume that the mean value µa and variance σ2

a

of such distribution are known, and we approximate it with
an Erlang distribution having the same mean value and vari-
ance. In the experiments, we assume µa = 24 h, σ2

a = 96 h2,
and an Erlang distribution with k = 6 and λ = 0.25.

We assume that a gas leak is located by means of a sensors-
equipped vehicle, which scans the leak-affected sub-network
by circulating on the streets above the pipes at a constant
speed vloc. We consider a time tlocStart to start the local-
ization procedure and a time tdispl to displace the vehicle
to another location to start scanning a new pipe (as a con-
tinuous path covering all the pipes only once may not ex-
ist). Once the vehicle path is established, the number of



needed displacements Nd is derived and the min/max local-
ization time is evaluated as the sum of the setup time (i.e.,
tlocStart + N tdispl) and the min/max scan time (easily cal-
culated given the length of scanned pipes). As each point of
each pipe has the same probability to suffer a leak, a uniform
distribution over the identified min-max interval is assumed.

Network reconfiguration and undo reconfiguration.
We arbitrarily assume that network reconfiguration and its
undoing take a uniformly distributed time over [1, 2] h. In
a more accurate model, the network topology and the spe-
cific reconfiguration actions should be taken into account,
e.g., the presence of manually/remotely operated valves, the
length of the pipes and the vehicle used to drive across the
network in case of manually operated valves.

Pressure regulation and undo regulation. The du-
ration treg of a regulation step is easily calculated given the
pressure increase rate rpress (allowed by the adopted regu-
lating devices) and the pressure increase of each step (de-
termined by the number of steps K and the total pressure
increase ∆ P derived by fluid-dynamic analysis). To allow
a margin of laxity, we assume a uniform distribution over a
0.25 h-width domain centered around treg. The whole time
needed for undoing the pressure regulation is easily obtained
as K treg and, in a similar manner to the previous case, we
assume a uniform distribution supported over a 1 h-width
domain centered around K treg.

Pipe repair. On the basis of conventional contractual
requirements with end-users, we assume that the time to
repair a pipe has a uniform distribution over [24, 72] h.

2.3 Failure management model
The model is defined as a stochastic Time Petri Net (sTPN)

[26, 6] extended with enabling and flush functions [7], which
change the enabling condition of transitions and the token
moves after each firing, augmenting the modeling conve-
nience without restricting the expressivity of the model or
disrupting stochastic analysis. We briefly recall sTPN syn-
tax and semantics (Sections 2.3.1 and 2.3.2, respectively)
and discuss the failure management model (Section 2.3.3).

2.3.1 STPN syntax
An sTPN is a tuple 〈P ;T ;A−;A+;A•;m0;EFT s;LFT s;
F ; C; E; L〉. The elements 〈P ; T ; A−; A+; A•; m0; EFT s;
LFT s;F ; C〉 comprise the model of stochastic Time Petri
Nets (sTPN) [26, 6]. Specifically, P is a set of places; T is a
set of transitions disjoint from P ; A− ⊆ P ×T , A+ ⊆ T ×P ,
and A• ⊆ P ×T are the sets of precondition, postcondition,
and inhibitor arcs; m0 : P → N is the initial marking associ-
ating each place with an initial non-negative number of to-
kens; EFT s : T → Q+

0 and LFT s : T → Q+
0 ∪{∞} associate

each transition t ∈ T with a static Earliest Firing Time and
a (possibly infinite) static Latest Firing Time, respectively,
with EFT s(t) ≤ LFT s(t) ∀ t ∈ T ; C : T → R+ associates
each transition t ∈ T with a weight; F : T → F st associates
each transition t ∈ T with a static Cumulative Distribution
Function (CDF) supported over [EFT s(t), LFT s(t)].

As typical in Petri Nets (PNs), a place p is called an in-
put, an output, or an inhibitor place for a transition t if
〈p, t〉 ∈ A−, 〈t, p〉 ∈ A+, or 〈p, t〉 ∈ A•, respectively. As
usual in Stochastic Petri Nets (SPNs), a transition t is
called immediate (IMM) if [EFT s(t), LFT s(t)] = [0, 0]

and timed otherwise; a timed transition t is said to be expo-
nential (EXP) if F st (x) = 1 − eλx over [0,∞] for some rate
λ ∈ R+

0 and general (GEN) otherwise; a GEN transition t is
called deterministic (DET) if EFT s(t) = LFT s(t) > 0 and
distributed otherwise, i.e., if EFT s(t) 6= LFT s(t). For each
distributed transition t ∈ T , we assume that its CDF F st is
absolutely continuous over its support [EFT s(t), LFT s(t)]
and, thus, that there exists a Probability Density Function
(PDF) fst such that F st (x) =

∫ x
0
fst (y)dy.

E : T → {true, false}N
P

relates each transition with
an enabling function E(t) : NP → {true, false} associ-
ating each marking m : P → N with a boolean value.

L : T → P(P )N
P

relates each transition to a flush function
L(t) : NP → P(P ) associating each marking m : P → N
with a subset of P .

2.3.2 STPN semantics
The state of an sTPN is a pair 〈m, τ〉 where marking m :

P → N associates each place with a non-negative number
of tokens and τ : T → R+

0 associates each transition with
a dynamic time-to-fire. A transition t is enabled by m if:
i) each of its input places contains at least a token, i.e.,
m(p) ≥ 1 ∀ 〈p, t〉 ∈ A−, ii) none of its inhibitor places
contains any token, i.e., m(p) = 0 ∀ 〈p, t〉 ∈ A•, and iii)
its enabling function evaluates to true in m, i.e., E(t)(m) =
true. An enabled transition t is firable in s = 〈m, τ〉 if its
time-to-fire is not higher than that of any other enabled
transition, i.e., τ(t) ≤ τ(t′) ∀ t′ ∈ T e(m) where T e(m) is
the set of transitions enabled by m. If multiple transitions
are firable in s, one of them is selected according to the
random switch determined by C, i.e., Prob{t selected} =
C(t)/

∑
ti∈Tf

C(ti), where T f (s) is the set of transitions that

are firable in s.
The state of an sTPN evolves depending on the times-

to-fire sampled by transitions and the resolution of random
switches according to the weights of transitions. Specifically,
when a transition t fires, the state s = 〈m, τ〉 is replaced by
a new state s′ = 〈m′, τ ′〉. Marking m′ is derived from m by:
i) removing a token from each input place of t and assign-
ing zero tokens to the places belonging to the set L(t)(m)
identified by the value of the flush function of t in m, which
yields an intermediate marking mtmp, and ii) adding a token
to each output place of t, which finally yields m′, i.e.,

mtmp(p) =


m(p)− 1 ∀ p . 〈p, t〉 ∈ A−

∧ p 6∈ L(t)(m),
0 ∀ p . p ∈ L(t)(m),
m(p) otherwise

m′(p) =

{
mtmp(p) + 1 ∀ p . 〈t, p〉 ∈ A+,
mtmp otherwise

(3)

Transitions that are enabled both by mtmp and by m′ are
said persistent, while those that are enabled by m′ but not
by mtmp or m are said newly-enabled. If the fired transition
t is still enabled after its own firing, it is always regarded as
newly enabled [3, 25]. For any transition tp that is persistent
after the firing of t, the time-to-fire is reduced by the time
elapsed in the previous state s (which is equal to the time-
to-fire of t measured at the entrance in s):

τ ′(tp) = τ(tp)− τ(t). (4)

For any transition tn that is newly-enabled after the firing
of t, the time-to-fire takes a random value sampled in the



static firing interval according to the static CDF F stn :

EFT s(tn) ≤ τ ′(tn) ≤ LFT s(tn),
P rob{τ ′(tn) ≤ x} = F stn(x).

(5)

2.3.3 The model structure
The failure management model accounts for sequencing

and timing constraints of the actions taken in reaction to
the failure of a network pipe. As a characterizing trait, the
structure of the model as well as the distribution of various
of its temporal parameters are independent of both the net-
work topology and the failed pipe. This almost guarantees
a constant level of complexity in the subsequent stochas-
tic analysis based on the theory of stochastic state classes,
which largely depends on the degree of concurrency among
the active timers of the model and on the length of behaviors
in which timers overlap their activities [6].

As shown in Figure 1, the IMM transition fail models the
occurrence of a pipe failure. Its output places p0 and p2 are
chained with i) the sequence of GEN transitions autoDet
and loc, which model the automated failure detection and
the subsequent failure localization, respectively, and ii) the
EXP transition manualDetLoc, which accounts for the man-
ual failure detection and localization.

Flush functions are associated with manualDetLoc and loc
to account for the fact that the automated detection or the
subsequent localization of a failure is stopped as soon as the
failure is detected (and located) by report, and viceversa.
According to this, L(manualDetLoc)(m) = {p0, p1} ∀ m :
P → N s.t. m(p2) = 1, which flushes places p0 and p1
whenever manualDetLoc fires. Note that, in a similar man-
ner, L(loc)(m) = {p2} ∀ m : P → N s.t. m(p1) = 1, which
empties place p2 whenever loc fires.

When either loc or manualDetLoc fires, a token arrives
in p3, enabling the GEN transition reconfig which models
the network reconfiguration. When reconfig fires, a token
arrives in both p4 and p6, which enables i) the four chained
GEN transitions reg1 through reg4 representing the steps of
pressure regulation, and ii) the GEN transition rep modeling
the repair operation of the failed pipe. When both rep and
reg4 have fired and, thus, both places p5 and p10 contain a
token, the IMM transition undo becomes enabled and fires.
This deposits a token in both places p11 and p13, enabling
the concurrent GEN transitions undoReconfig and undoReg ,
which model the restoration of the network configuration
and pressure level, respectively. When both these transitions
have fired, both places p12 and p14 contain a token. This
enables transition end , whose firing models the completion
of the procedure of failure management.

3. EVALUATION
As a relevant trait, the failure management model includes

multiple concurrent GEN transitions, which goes beyond the
limits of the so called enabling restriction and motivates the
use of the solution technique proposed in [16] to perform
transient stochastic analysis. Such theory of analysis sup-
ports the evaluation of the outage time of each load node,
both in the transient regime and on the average. We recall
here the salient traits of the analysis technique (Section 3.1),
referring the reader to [16] for more details. We also discuss
in detail the evaluated availability measures (Section 3.2).

3.1 Quantitative transient analysis
The solution technique of [16] supports the transient anal-

ysis of models with multiple concurrent GEN transitions,
which has an underlying Generalized Semi-Markov Process
(GSMP) with equal-speed timers [13, 9]. The state of the un-
derlying GSMP is sampled after each transition firing and an
additional timer called τage is maintained in order to account
for the absolute elapsed time. This identifies an embed-
ded Discrete Time Markov Chain (DTMC) called transient
stochastic graph whose states are named transient stochastic
state classes (transient classes for short).

Each transient class is made of a marking plus the joint
support and PDF of τage and the times-to-fire of the enabled
transitions. The marginal PDF of τage permits to derive the
PDF of the absolute time at which a transient class can
be entered, enabling the evaluation of continuous-time tran-
sient probabilities of reachable markings within a given time
horizon, provided that the number of transient classes that
can be reached within that time interval is either bounded
or can be truncated under the assumption of some approxi-
mation threshold on the total unallocated probability.

The complexity of the solution technique can be reduced
by applying the regenerative analysis of [16] in the case that
the model underlies a Markov Regenerative Process (MRP)
that always reaches a regeneration point, i.e., a state where
the future behavior is independent from the past behav-
ior through which it has been reached. The regenerative
approach limits transient analysis to the first regeneration
epoch and repeats it from every regenerative point, support-
ing the derivation of the local and global kernels that char-
acterize the behavior of the MRP [8, 9, 4] and enabling the
evaluation of the transient probabilities of reachable mark-
ings at any time through the numerical integration of gen-
eralized Markov renewal equations.

It is worth noting that, in the approach of [16], regener-
ation points can be easily identified as the transient classes
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Figure 1: The sTPN specification of the failure management model. IMM, EXP, and GEN transitions are
represented by thin bars, thick empty bars, and thick black bars, respectively. The distributions associated
with timed transition refer to the example analyzed in Section 4.



where each times-to-fire is either i) newly-enabled, or ii) ex-
ponentially distributed, or iii) deterministic, or iv) bounded
to take a deterministic delay with respect to a time-to-fire
satisfying any of the previous conditions. According to this,
the failure management model defined in Section 2.3 is guar-
anteed to reach a regeneration point at the completion of the
following operations: automated/manual detection & local-
ization of a failure, network reconfiguration, and repair &
regulation. Therefore, transient evaluation through the re-
generative analysis technique of [16] is allowed.

3.2 Evaluated measures
Availability measures are derived by leveraging and com-

bining the results of fluid dynamic and stochastic analysis.
On the one hand, for each pipe that can suffer a gas leak, re-
generative analysis of the corresponding failure management
model provides the probability over time of any marking
that can be reached within a given time bound. A reachable
marking comprises a logical state of the failure management
model and corresponds to a specific operating condition of
the network, e.g., in the failure management model of Fig-
ure 1, marking p1 p2 corresponds to the condition in which
a fault has been automatically detected and it is being local-
ized, marking p4 p6 corresponds to the condition in which
the network has been reconfigured and the first step of pres-
sure regulation is ongoing, etc. According to this, stochastic
analysis permits to derive the transient probability of any
operating condition of the network after the failure of one
of its components.

On the other hand, fluid dynamic analysis is performed
for each operating condition of the network (under the cor-
responding boundary conditions) in order to derive the ser-
vice level of each load node (i.e., offline, online with insuf-
ficient pressure level, online with sufficient pressure level).
According to this, the sum of the transient probability of
network conditions in which a node experiences the same
service level yields the transient probability that such node
receives that service level, e.g., if a load node is online but
with an insufficient pressure level starting from the network
reconfiguration until the end of the third step of pressure reg-
ulation, then the probability over time that it is not served
can be evaluated as the sum of the transient probability of
any marking such that p6, or p7, or p8 contains a token (see
the model of Figure 1). In doing so, the results of fluid dy-
namic analysis comprise a criterion to aggregate transient
probabilities evaluated by stochastic analysis with the aim
to derive availability measures for each load node.

In addition, the failure management model can be aug-
mented with an absorbing place for each transition that rep-
resents the completion of a step of the failure management
process, as shown in Figure 2. In doing so, for each added
absorbing place pa, the sum of the transient probability of
any marking such that pa contains a token comprises the
CDF of the completion time of the input transition of pa
(measured since the entrance in the initial state). This en-
ables the evaluation of the CDF of the completion time of
any step of the failure management process, also permitting
to derive average availability measures such as the mean
value. For instance, the CDF of the completion time of the
first step of pressure regulation can be evaluated as the sum
of the transient probability of any marking such that place
reg1 done contains a token.

autoDetLoc_done

p14

end

p1

[0,∞] expol

reg1_done

[24,72] uni

end_donemanualDetLoc_done reconfig_done

reconfig

rep

0.125

loc

p6

[0.5,1.5] uni

autoDet

reg1

autoDet_done

p4

[1,2] uni

p2

fail p3

[0.4625,0.5125] uni

p0

manualDetLoc

rep_done

start

p12

u

u

...

...

Figure 2: A fragment of a variant of the sTPN model
shown in Figure 1, where an absorbing output place
is added to each transition that represents the com-
pletion of a step of the failure management process.

The distribution of the time elapsed along a sequence of
state transitions in the failure management model can be
computed from the transient stochastic graph. In particu-
lar, a DET transition can be enabled in the initial state of
the sequence with time-to-fire higher than the maximum se-
quence duration. Such transition, always enabled but never
firable, keeps track of the time elapsed along the sequence
of states without affecting the model behavior; its marginal
PDF in the last state of the sequence provides the PDF of
the sequence duration by a linear transformation, and it al-
lows to compute moments such as the mean time.

To compute the mean time between a given pair of states
m1 and m2, all the sequences from m1 to m2 need to be con-
sidered in the transient stochastic graph: the average time
of each sequence is weighted by the probability of starting
its execution (provided by the transient stochastic graph).
Moreover, if regenerations can occur before the start of the
sequence, the number of sequences to be analyzed can be
reduced by leveraging the results of Markov renewal theory.

4. AN EXAMPLE
We illustrate here the gas distribution network considered

in the experimental validation (Section 4.1) and we discuss
the obtained results (Section 4.2).

4.1 Experimental setting
Figure 3 shows a topological representation of the gas

distribution network analyzed in the experiments, which is
identical to that presented in [14]. The network is made of
a supply node, four load nodes marked as A through D, and
eight pipes numbered from 4 to 12 (note that pipes num-
bered from 1 to 3 in [14] are not considered here as they
are part of a high-pressure transmission network). The gas
is provided by the supply node, while the sectioning valve
belonging to pipe 9 is kept closed in ordinary operating con-
ditions. According to this, the gas is supplied radially, so
that load nodes A and B are served by pipes 4 and 7 (which
comprise the upper branch), while load nodes C and D are
served by pipes 5 and 11 (which comprise the lower branch).

With respect to [14], the operating parameters of the net-
work components have been chosen so as to experience dif-
ferent degrees of network unavailability following different
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Figure 3: A gas distribution network.

pipe failures. Specifically, Table 1 reports the mass flaw
rates withdrawn at load nodes and the pressure at the supply
node (which are considered as input values for fluid dynamic
analysis) as well as the minimum pressure required by each
load node. During the regular operation of the network, the
pressure in each load node is greater than the corresponding
pressure threshold, so that all nodes are properly served.

Node
Flow Setup Pressure
rate pressure threshold

(m3/h) (bar) (bar)
supply - 3.5 -

A 200 - 3.0
B 200 - 3.0
C 150 - 3.0
D 200 - 3.0

Table 1: Operating parameters of the nodes of the
gas distribution network shown in Figure 3 in ordi-
nary operating conditions.

When a pipe failure is automatically detected on either
the upper or the lower branch (the valve belonging to pipe 9
is closed), the gas supply to the entire branch is interrupted
to safely search for the leak. Hence, all the load nodes be-
longing to the shut off branch become offline. Conversely,
when a pipe failure is detected (and located) by human re-
port, all load nodes remain online as the branch shut off
is not performed. Once the failure is detected and located
(either manually or automatically), two scenarios are distin-
guished depending on whether the failed pipe belongs to the
ring or not, respectively.

• If the failed pipe belongs to the ring, then it is excluded
from the network through a reconfiguration operation
and the valve belonging to pipe 9 is opened. This
permits to identify a path from the supply node to each
load node so that all of them are online again. If some
online load node experiences an insufficient pressure
level, fluid dynamics calculations can be performed to
determine the minimum pressure increase ∆P to be
achieved at the supply node so that all online load
nodes return to be properly served.

• If the failed pipe does not belong to the ring, then
only the load node directly connected with that pipe
remains offline and becomes served again at the end
of the failure management process. In this special
case, the activities of network reconfiguration, pressure
regulation, undo reconfiguration, and undo regulation
are skipped. Therefore, in the corresponding failure
management model, transitions reconfig , reg1 through
reg4 , undoReconfig and undoReg are IMM.

We consider failures of pipes 4 through 12, except for fail-
ures of pipe 9 which are not taken into account. In fact,
as the sectioning valve belonging to pipe 9 is closed in ordi-
nary operating conditions, its failures as well as failures of
pipe 9 cannot be detected through the approach described
in this paper, and would appear only during the step of net-
work reconfiguration after the occurrence of a gas leak in
another pipe. This envisages a different problem concerned
with failures of spare components, which is not addressed in
the present experiments.

For failures of pipes 4 through 8 and 10 through 12, the
temporal parameters that characterize the failure manage-
ment process can be derived as discussed in Sections 2.1
and 2.2. Specifically, given the length of each pipe reported
in [14] and here shown in Table 2, the localization time is
characterized by assuming a start-up time tlocStart = 0.5 h,
a vehicle speed vloc = 5 km/h, and a time tdispl = 0.5 h
to move the vehicle from a pipe to another not contiguous
pipe. For failures of pipes belonging to the ring, the pressure
regulation time is characterized by assuming a pressure in-
crease rate rpress = 0.2 bar/h and by using the results of the
fluid dynamic analysis which provides the minimum pres-
sure increase ∆P to be actuated at the supply node so that
all online nodes are served (also shown in Table 2). Tables 3
and 4 finally show the obtained stochastic parameters.

pipe length (km) ∆P (bar)
4 5 0.63
5 5 0.39
6 3 -
7 4 0.2
8 5 -
10 3 -
11 5 0.12
12 3 -

Table 2: For the network shown in Figure 3, the
length of pipes and the minimum pressure increase
∆P relative to failures of pipes on the ring.

pipe localiz. regulation step undo regulation
4 [0.5, 1.5] [0.7625, 0.8125] [3.05, 3.25]
5 [0.5, 1.5] [0.4625, 0.5125] [1.85, 2.05]
6 [3.6, 4.2] - -
7 [1.5, 2.1] [0.225, 0.275] [0.9, 1.1]
8 [2.1, 3.1] - -
10 [3.6, 4.2] - -
11 [1.5, 2.5] [0.125, 0.175] [0.5, 0.7]
12 [2.5, 3.1] - -

Table 3: For the network of Figure 3, supports of
the uniform distributions of the failure management
model that depend on the network topology and the
faulty pipe (times are expressed in hours).



automated manual detection network pipe
detection & localization reconfig. repair

Erlang EXP uniform uniform
(6, 0.25) (0.125) [1, 2] [24, 72]

Table 4: For the network shown in Figure 3, distri-
butions of the failure management model that are
independent of both the network topology and the
faulty pipe (times are expressed in hours).

4.2 Experimental results
Without loss of generality, from now on we consider the

case of a failure of pipe 5 as an example for discussion. Note
that we deliberately focus on a failure of a pipe that belongs
to the network ring, as such failures will leave more load
nodes not served than failures of radial pipes.

As illustrated in Section 2.1, fluid dynamic analysis is re-
peated under different boundary conditions to assess the ser-
vice level experienced by each load node after each step of
the failure management process that changes either the net-
work topology or the pressure at the supply node, i.e., the
steps of automated failure detection, network reconfigura-
tion, and pressure regulation (note that it is not necessary
to evaluate service levels after the concurrent steps of un-
doing network reconfiguration and undoing pressure regu-
lation, as they restore the ordinary operation conditions).
Table 5 reports such results for failures of pipe 5.

failure management
online online

offline
step

served not served
nodes

nodes nodes
automated detection A,B - C,D

network reconfiguration - A,B,C,D -
pressure regulation step 1 A B,C,D -
pressure regulation step 2 A B,C,D -
pressure regulation step 3 A,B C,D -
pressure regulation step 4 A,B,C,D - -

Table 5: Service level of each load node after each
step of failure management that changes either the
network topology or the pressure at the supply node,
referred to a failure of pipe 5.

Stochastic analysis yields the transient probability of each
logical state of the model, which corresponds to a specific
operating condition of the network. Such probabilities are
then aggregated on the basis of the results of fluid dynamic
analysis reported in Table 5, which assess the service level
received by each load node in each operating condition and
thus permit to derive availability measures for end-users.
Figure 4 shows the transient probability that nodes A, B,
C, and D are not served after a failure of pipe 5.

• Node A experiences regular service during the phase of
automated/manual failure detection and localization;
after the network reconfiguration, node A is still online
but with an insufficient pressure level, and it returns to
be properly served at the completion of the first step
of pressure regulation. The probability over time that
node A is not served is initially zero, has a peak of
0.0558 in a neighborhood of 2.6 h, and then decreases
up to being in the order of 5 · 10−3 from time 35 h on.

• Node B is not properly served since the network re-

configuration until the completion of the third step of
pressure regulation, respectively. Thus, the probabil-
ity over time that node B is not served has a similar
trend to the probability of node A, almost coincident
in the interval [0, 2] h, but it reaches a higher peak
equal to 0.1585 at around 3.5 h.

• Conversely, nodes C and D are offline or not adequately
served since the completion of automated or manual
failure detection until the end of the fourth step of
pressure regulation. Thus, their probability of being
not served starts increasing from time 0 with a higher
slope than the probability of nodes A and B; it has a
peak equal to 0.3405 in a neighborhood of time 3.8 h;
then, it progressively decreases up to being lower than
5 · 10−3 from time 35 h on.
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Figure 4: Probability that nodes A, B, C, and D
are not served after a failure of pipe 5 (times are
expressed in hours).

Table 6 shows the average availability measures obtained
for load nodes A through D. Note that, if a statistics of
failures is known, average availability measures for end-users
could be derived over a long period of time.

• Given that node A is not served since the completion
of the network reconfiguration until the end of the first
regulation step, its average outage time is equal to the
mean value of the stochastic distribution associated
with the execution time of the first regulation step.
As the latter is a uniform distribution supported over
[0.4625, 0.5125] h, the average outage time experienced
by node A is equal to 0.4875 h.

• As node B is not served since the completion of the
network reconfiguration until the end of the third reg-
ulation step, its average outage time is equal to the
mean value of the stochastic distribution associated
with the sum of the execution times of the first two
regulation steps. Since all regulation steps have an ex-
ecution time uniformly distributed between 0.4625 and
0.5125 h, and given that the mean value of the sum of
two uniformly distributed random variables is equal to
the sum of their mean values, the average outage time
experienced by node B is equal to 0.9750 h.



• Given that nodes C and D are not served since the
manual or automated failure detection until the com-
pletion of the last regulation step, their average outage
time can be evaluated using an additional DET tran-
sition as illustrated in Section 3.2. This permits to
derive the probability distribution of the outage time
of C and D (shown in Figure 5), which has a mean
value equal to 3.5318 h.

load node
mean outage time experienced

after a failure of pipe 5
A 0.4875
B 0.9750
C 3.5318
D 3.5318

Table 6: Average availability measures a failure of
pipe 5 (times are expressed in hours).
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As illustrated in Section 3.2, additional absorbing places
can be used to derive the completion time CDF of any opera-
tion performed in reaction to a pipe failure. As a significant
example, Figure 6 shows the completion time CDF of the
overall failure management process, which has a mean value
equal to 58.8866 h. Specifically, it was evaluated as the sum
of the transient probability of any marking such that place
end done contains a token.

5. CONCLUSIONS
We have presented the initial results of an on-going re-

search project co-funded by Terranova [1], a company that
provides innovative software solutions for support and au-
tomation of tele-metering and tele-management processes in
gas, water, and electricity distribution networks. As a part
of this collaboration, we have developed an approach for
modeling and evaluation of the transient behavior of a gas
distribution network after a pipe failure, with the intent to
derive availability measures for each end-user. To this end,
we have assumed that changes of the operating conditions of
the network due to demand variations or demand-response
applications occur in isolation, so as to be separated in time
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from the actions taken to recover from a pipe failure. This
permits to decompose the system into a topological model of
the fluid dynamics and a stochastic model of the failure man-
agement actions. As a characterizing trait, the outcomes of
fluid dynamic analysis are used both to derive a stochas-
tic characterization for parameters of the failure manage-
ment model and to aggregate the results of stochastic anal-
ysis, providing transient and average availability measures
for each end-user of the gas network. This comprises a valid
basis for the evaluation of quality of service metrics such as
the System Average Interruption Duration Index (SAIDI),
and opens the way to the evaluation of different failure man-
agement processes and demand-response strategies.

It is worth remarking that the stochastic model includes
concurrently enabled temporal parameters that have a non-
Markovian distribution over a bounded support, which mo-
tivates the analysis through the method of transient stochas-
tic state classes [16]. Moreover, while the approach has been
experimented on a small-sized network of the literature to
provide a proof of concept of the overall approach, the com-
plexity of stochastic analysis is substantially independent of
the network topology, thus appearing suitable to afford the
analysis of cases of real complexity.

The proposed approach is open to many extensions that
we are presently developing in collaboration with Terranova.
As a remarkable aspect, we are working to relax the as-
sumption that the actions executed to recover from a failure
do not overlap with variations of the operating conditions
of the network. To this end, we are analyzing several fac-
tors that may result in changes of the operation mode, in-
cluding: drift of loading conditions (e.g., in reaction to sea-
sonal/daily weather variations or due to demand-response
processes); drift of physical parameters of the network com-
ponents; discontinuities in the feed from the higher pressure
level; planned operations on network actuators; unplanned
failure and recovery of the network components.

Such an extension requires that the model of the failure
management actions is recurrently rejuvenated with up-to-
date results of the fluid-dynamic analysis, paving the way for
the realization of a predictive analysis engine able to support
on-line monitoring of gas distribution networks. In the the-



oretical perspective, this will raise various issues of scientific
relevance, mainly concerned with the derivation of a time
horizon within which the operating conditions of the network
must be sampled at least once to maintain a reliable estimate
on the future behavior. In the applicative perspective, this
will lay the foundations for the development of innovative
applications able to support multiple activities including the
scheduling of measurement actions of the network operation,
planning of ordinary maintenance/substitution operations of
components subject to wear and tear, arranging of vehicle
routes for regular scan operations in search of gas leaks, and
triggering of escalation policies whenever a potentially crit-
ical condition is detected.
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Leão, E. de Souza e Silva, M. C. Diniz, K. Trivedi,
L. Happe, and A. Koziolek. Survivability models for
the assessment of smart grid distribution automation
network designs. In Proc. of the 4th ACM/SPEC Int.
Conf. on Performance Engineering, ICPE ’13, pages
241–252, New York, NY, USA, 2013. ACM.

[3] B. Berthomieu and M. Diaz. Modeling and Verification
of Time Dependent Systems Using Time Petri Nets.
IEEE Trans. on SW Eng., 17(3):259–273, March 1991.

[4] A. Bobbio and M. Telek. Markov regenerative SPN
with non-overlapping activity cycles. Int. Computer
Performance and Dependability Symp. - IPDS95,
pages 124–133, 1995.

[5] A. J. Brito, A. T. de Almeida, and C. M. Mota. A
multicriteria model for risk sorting of natural gas
pipelines based on ELECTRE TRI integrating Utility
Theory . European Journal of Operational Research,
200(3):812 – 821, 2010.

[6] L. Carnevali, L. Grassi, and E. Vicario. State-Density
Functions over DBM Domains in the Analysis of
Non-Markovian Models. IEEE Trans. on SW Eng.,
35(2):178–194, 2009.

[7] L. Carnevali, M. Paolieri, K. Tadano, and E. Vicario.
Towards the quantitative evaluation of phased
maintenance procedures using non-markovian
regenerative analysis. In Proc. 10th European
Workshop on Perf. Eng. (EPEW13), Sept. 2013.

[8] H. Choi, V. G. Kulkarni, and K. S. Trivedi. Markov
regenerative stochastic petri nets. Perform. Eval.,
20(1-3):337–357, 1994.

[9] G. Ciardo, R. German, and C. Lindemann. A
characterization of the stochastic process underlying a
stochastic Petri net. IEEE Trans. on SW Eng.,
20(7):506–515, 1994.

[10] C. Colebrook. Turbulent flow in pipes, with particular
reference to the transition region between smooth and
rough pipe laws. Journal of the Institution of Civil
Engineers (London).

[11] A. Conejo, J. Morales, and L. Baringo. Real-time
demand response model. IEEE Trans. on Smart Grid,
1(3):236–242, 2010.

[12] A. Costa, J. d. Medeiros, and F. Pessoa. Steady-state
modeling and simulation of pipeline networks for
compressible fluids. Brazilian Journal of Chemical
Engineering, 15:344 – 357, 12 1998.

[13] P. W. Glynn. A gsmp formalism for discrete-event
systems. Proceedings of the IEEE, 77:14–23, 1989.

[14] A. Helseth and A. T. Holen. Reliability modeling of
gas and electric power distribution systems;
similarities and differences. In Proc. of 9th Int. Conf.
on Probabilistic Methods Applied to Power Systems,
June 2006.
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