
Software Rejuvenation Impacts on  
a Phased-Mission System for Mars Exploration 

 

Stefano Ballerini, Laura Carnevali, Marco Paolieri 
Dipartimento di Ingegneria dell'Informazione 

Università di Firenze, Italy 
{stefano.ballerini1@stud., laura.carnevali@, 

marco.paolieri@}unifi.it 

Kumiko Tadano, and Fumio Machida 
Knowledge Discovery Research Laboratories 

NEC, Japan 
{k-tadano@bq, f-machida@ab}.jp.nec.com

 
 

Abstract—When software contains aging-related faults and 
the system has a long mission period, phased-mission systems 
consisting of several software components can suffer from 
software aging, which is a progressive degradation of the 
software execution environment. Failures caused by software 
aging might impact on the mission success probability. In this 
paper, we present a model for a phased-mission system with 
software rejuvenation, and analyze the impacts of software 
rejuvenation on the success probability and completion time 
distribution of the mission. The mission of Mars exploration 
rover is considered as an example of phased-mission system. The 
analysis results show that the mission success probability is 
improved by software rejuvenation at the cost of the mission 
completion time. 

Keywords—Mars exploration rover, phased-mission system, 
software aging, software rejuvenation, stochastic time Petri nets. 

I. INTRODUCTION 
A Phased Mission System (PMS) performs a sequence of 

phases to accomplish a specific mission. Each phase may 
include several actions that have to be performed in order to 
proceed with the execution of the subsequent phase. System 
configuration, actions duration, and used resources may vary 
from phase to phase. Examples of PMSs are found in many 
industrial fields which notably include those related to nuclear, 
aerospace, chemical, and electronic systems [1]. 

An important reliability measure of PMSs is the mission 
success probability which is affected by operational errors as 
well as intrinsic resource failures. While operational errors 
directly impact on the success of a phase, resource failures can 
occur according to the life cycle of resources. The resulting 
mission success probability can be evaluated by techniques 
based on reliability block diagrams [2], fault trees [1], [2], [3], 
Markov chains [4], [5], and Petri nets [6], [7]. Such methods 
support quantitative evaluation of system reliability, allowing 
system designers to implement effective measures to improve 
the mission success probability. When software components 
are resources of the PMS, also failure and recovery behaviors 
of software need to be taken into account. In particular, faults 
in software components might generate errors during the 
execution and cause a system failure compromising the entire 
system functionality. 

Software aging is the phenomenon of progressive 
degradation of the software execution environment caused by a 
special type of software faults called aging-related bugs [8]. As 
the development of PMSs is often completed within a limited 
period of time, residual aging-related bugs tend to manifest 
themselves during the mission period, thus reducing the 
mission success probability. Software rejuvenation [9] is a 
known and effective measure that counteracts software aging 
during the PMS operation by restarting the software execution 
environment before aging-related failures are encountered. 
Although software rejuvenation clears the aging state of 
resources, it requires additional downtime and hence might 
affect the mission completion time.  

In this paper, we extend the approach of [7] for modeling 
and analysis of PMSs in order to evaluate the impact of 
software rejuvenation of resources affected by software aging. 
To this end, we consider the example of a Mars Exploration 
Rover (MER) [10], a robotic exploration system that performs 
a set of daily activities organized as a phased mission. 
Specifically, the mission is modeled as a stochastic Time Petri 
Net (sTPN) [11] and then analyzed through the approach of 
stochastic state classes [12] to evaluate the impact of software 
aging and rejuvenation on the mission success probability and 
duration. 

The rest of the paper is organized as follows: Section II 
introduces the MER example as a typical instance of PMS; 
Section III describes the sTPN formalism and the MER model; 
Section IV presents the analysis results; Section V discusses 
related work; Section VI draws the conclusions. 

II. MARS EXPLORATION ROVER 
The main intent of the mission of a MER [10] is to drive 

the rover to specific locations to perform on-site scientific 
investigations. In particular, the rover is programmed to 
complete a sequence of daily routine activities including: i) 
waking up at a specific time, ii) receiving commands from the 
base on Earth (uplink), iii) navigating to a specific destination, 
iv) carrying out surface operations, v) summarizing data and 
sending it to the base (downlink), and vi) entering a sleep 
mode. Although the rover activities may include other actions 
to be performed, we consider the above mentioned six phases. 



Since the rovers are solar-powered, they are usually 
designed to sleep through the night and wake up 
autonomously at predefined communication windows [13]. 
The wake-up step is performed to warm up some actuators 
which will be used in the subsequent phases. During the 
communication windows, data uplink of key activity-related 
information with the overhead orbiters takes place, and once 
such commands necessary to execute the day activities are 
loaded, the operational stage is started. This usually includes 
some exploration (a few meters per day) and a specific activity 
like brushing a rock through the Rock Abrasion Tool [13]. At 
the end of the predefined goal, the engineering and science 
data is transmitted to Earth to determine the status of the rover 
and its surroundings. Such information is processed, stored in 
a database, and analyzed by an engineering team planning the 
activities for the next day. During the sleep time, most of the 
rover electronics are turned off, while the mission clock and 
the battery charger board remain on [13]. 

Rovers do not have traditional disk drives but rely on 
FLASH memory for their storage and all the previously cited 
activities use the FLASH. Software aging inside the FLASH 
memory might cause a serious impact on the mission of the 
Rover. On January 4th 2004, NASA's MERs Spirit and 
Opportunity landed successfully on Mars. An anomaly 
occurred on the Spirit vehicle on Sol (Martian day) 18 because 
of a design error in the software module that provides file 
system services [13]. Specifically, it suffered a debilitating 
FLASH anomaly precluding normal operation on the vehicle. 
The root cause of the problem was identified in the logical 
representation of deleted files in the DOS library, which 
affected the size of interlinked data structures in the storage of 
name and location of files in the private memory area. The 
outage was caused by a software bug (i.e., an internal human-
made non-malicious permanent software development fault) 
which led to the accumulation of errors due to aging-related 
faults. This comprises an example of aging-related behaviors 
in space missions and points out the need to minimize their 
impact on the mission success probability. 

III. MODELING 
We model the MER mission using sTPNs [11]. An sTPN 

is , where: 
P is a set of places, T is a set of transitions, is a set 
of precondition arcs,  is a set of postcondition 
arcs, is a set of inhibitor arcs, is the initial 
marking associating each place with a non-negative number of 
tokens,  and associate each 
transition with a static earliest firing time and a (possibly 
infinite) static latest firing time, respectively 

),  associates each transition  
with a static Cumulative Distribution Function (CDF)  
supported over . We assume that  is 
absolutely continuous over its support and that there exists a 
Probability Density Function (PDF)  such that 

 associates each transition with a 
weight used to resolve the random switch between concurrent 
transitions with the same firing time. A transition t is called 
immediate (IMM) if  = [0,0] and timed 

otherwise; a timed transition t is called exponential (EXP) 
if  over [0,∞] for some and 
general (GEN) otherwise; a GEN transition t is called 
deterministic (DET) if  and distributed 
otherwise. associates each transition 
with an enabling function that, in turn, associates each 
marking with a boolean value. associates each 
transition with a flush function that, in turn, associates each 
marking with a set of places. For space limitations, we refer 
the reader to [11], [7] for a complete discussion on syntax and 
semantics of sTPNs. 

We model a daily mission of MER as a PMS with six 
phases, each made of one action, i.e., i) waking up, ii) 
commands uplink, iii) navigation, iv) surface operation, v) data 
downlink, and vi) sleep. The resource considered in this work 
is a FLASH memory, which is used in all the phases of the 
mission and might suffer from software aging as described in 
Section II. Although other resources such as CPUs, buses, and 
solar panels are also essential parts of the system and can fail 
during the mission as well, we primarily focus on the FLASH 
memory as a representative example of aging-affected 
resource. Activities and resources are modeled as in [7]; 
Figures 1 and 2 report the model of an activity (named a1) and 
a resource (named R), respectively.  

 
 

Figure 1. The model of an activity. IMM and timed transitions are drawn as 
thin and black rectangular boxes, respectively. 

 

 
Figure 2. The model of a resource. EXP transitions are drawn as white 

rectangular boxes. 
 



The action model and the resource model are mutually 
dependent through enabling and flush functions. The resource 
can be in a safe, aged or failed state, modeled by places RSafe, 
RAged and RFailed, respectively (Figure 2). The EXP 
transitions RSafe2Aged_exp and RAged2Failed_exp represent 
the aging behavior; the IMM transitions RSafe2Failed_imm 
and RAged2Failed_imm model the direct impact of the actions 
on the resource; the IMM transition RRej accounts for the 
successful completion of a rejuvenation action.  

When a token arrives in a1Started (Figure 2), the action 
starts with a probabilistic switch modeling the concentrated 
probabilities of failure due the resource usage by the action. 
Depending on the state of the resource (Figure 2), distinct sets 
of transitions are enabled: i) a1Safe2Safe and a1Safe2Fail if 
the token is in RSafe; ii) a1Aged2Aged and a1Aged2Fail if the 
token is in RAged; or iii) a1FailDetect if the token is in 
RFailed. In cases i and ii, the choice between the enabled 
transitions is performed according to a discrete distribution 
given by transition weights, while the action duration is 
determined by the PDF of the subsequent GEN transition, i.e., 
a1Safe2SafeFire, a1Safe2FailFire, a1Aged2AgedFire, and 
a1Aged2AgedFailFire, respectively. Conversely, in case iii, 
the only enabled transition a1FailDetect also models the 
action duration. The successful completion of the action is 
modeled by a token in a1Done, while the failure of the action 
is represented by a token in a1Repair. 

Note that, in the present model, resource repairs are not 
considered and, thus, the failure of an action causes a failure 
of the overall procedure. Also note that, if a resource does not 
fail due to usage, it could nevertheless fail due to software 
aging, thus causing a failure of the action that is using it. Such 
behavior is modeled by the IMM transitions a1Safe2SafeAging 
and a1Aged2AgedAging (Figure 1), which become enabled as 
soon as RAged2Failed_exp  (Figure 2) fires. 

Figure 3 shows the model of a rejuvenation action, which is 
similar to the model reported in Figure 1. A rejuvenation 
requires a preliminary step for aging detection (modeled by the 
GEN transition rejAgingDet), which is subject to potential 
aging failure (represented by the IMM transition 
rejAgingDetAging, which becomes enabled as soon as 
RAged2Failed_exp in Figure 2 fires). If the resource is safe, no 
aged state is detected and the sequence of IMM transitions 
rejSafe2Safe and rejSafe2SafeFire is fired. Conversely, if the 
resource is aged, the IMM transition rejAged2Safe fires, 
enabling the GEN transition rejAged2SafeFire modeling the 
rejuvenation duration. 

While we assume that rejuvenation cannot directly impact a 
resource leading it to a failure state or leaving it in an aged 
state, we take into consideration that a resource could fail 
because of software aging during rejuvenation. In fact, during 
the initial steps of rejuvenation, a system usually has to 
perform operations such as internal state backup and 
information storage, which may encounter aging and lead to 
the action failure. Such behavior is modeled by the IMM 
transition rejAged2SafeAging, which becomes enabled as soon 
as RAged2Failed_exp (Figure 2) fires. 

 
Figure 3. The model of a rejuvenation action. 

 

IV. EXPERIMENTAL RESULTS 
Figure 4 shows a sketch of the model of the MER mission, 

which is made of a resource model for the FLASH memory 
(like the one of Figure 2, not shown in Figure 4) and six 
chained action models (like the one of Figure 1) for the MER 
daily activities, here named a1, a2, ..., a6. Each action is 
outlined using a box with three circles: the upper left, upper 
right, and lower right circles correspond to places a1started, 
a1Done, and a1Repair in the action model of Figure 1, 
respectively. The overall mission is considered successfully 
completed when a token is placed in a6Done, which represents 
the successful completion of the last phase; conversely, it is 
considered failed if any of the actions is not correctly 
performed because of the failure of the resource (due to aging 
or the direct impact of the action itself).  

Resource rejuvenation can be performed at the completion 
of specific actions. In the example of Figure 4, rejuvenation 
can be performed between actions a5 and a6, and thus the 
mission model also includes a rejuvenation model (like the one 
of Figure 3) connected with the action models of a5 and a6. 
Tables 1a, 1b, and 1c specify the enabling functions associated 
with transitions of the action model (the table applies to all the 
six actions and thus no action name is specified), the 
rejuvenation model, and the resource model, respectively. 

Due to the absence of real data, we suppose a mean 
execution time of 1 h for the wakeup and sleep phases, 2 h for 
the communication phases (both uplink and downlink), 3 h for 
the exploring as well as the surface operation. Given the 
stressing environment the rover has to deal with, for each 
action it has to perform, we assume a duration equal to the 
mean value  (6 minutes) associated with a uniform 
distribution, supposing that the processing performance is not 
changed when the FLASH resource is safe or aged (i.e., the 
duration of the actions is not influenced by the resource state). 
Table 2 shows the supports of model transitions that represent 
the duration of actions, as well the weights of transitions used 
to represent concentrated failure probabilities. 

We also assume that the time needed to detect a resource 
failure (represented by transition a1FailDetect in Figure 1) is 
uniformly distributed between [0,0.1] h in each phase. We also 
assume that the aging detection phase (represented by 
transition rejAgingDet in Figure 3) has a uniformly distributed 
duration between 5 and 10 minutes (i.e., between 0.083 and 
0.15 h) and that, in case some aging is detected, rejuvenation 
(modeled by transition rejAged2SafeFirein Figure 3) takes a 
time uniformly distributed between 30 minutes and 1 h. 



 
Figure 4. A sketch of the model of the MER mission referring to the case where rejuvenation is scheduled between the fifth and sixth phase. 

 

Table 1. Enabling Conditions of the actions (a), rejuvenation (b) and resource (c) models. 

(a) 

Transition Enabling condition 
Safe2Safe RSafe==1 
Safe2Fail RSafe==1 
Aged2Aged RAged==1 
Aged2Fail RAged==1 
FailDetect RFailed==1 
Safe2SafeAging RFailed==1 
Aged2AgedAging RFailed==1 

 
 
 

(b) 
 

Transition Enabling condition 
rejAgingDetAging RFailed==1 
rejSafe2Safe RSafe==1 
rejAged2Safe RAged==1 
Aged2SafeAging RFailed==1  

 
 
 

(c) 
 

Transition Enabling condition 
RSafe2Failed_imm a1Safe2FailComp==1 || a2Safe2FailComp==1 || … 
RAged2Failed_imm a1Aged2FailComp==1 || a2Aged2FailComp==1 || … 
RRej rejDone==1 

Table 2. Supports and weights of transitions of the model used in the experiments. All distributions are uniform 
over their respective supports and the weights have to be intended as in the sTPN syntax. 

 

 
 
 
 
 
 

 

To take into account the different computational 
requirements of the action performed in each phase, the aging 
rate that leads the FLASH resource from the safe to the aged 
state (i.e., ) and the failure rate that leads the FLASH 
resource from the aged to the failed state  (i.e., ) vary 
from phase to phase. We assume the aging rate that 
leads a resource from the safe to the aged state to be two times 
higher than , and, more specifically, we assume 
that: h-1 and h-1 for the 
wakeup and sleep phases,  h-1 and 

 h-1 for the uplink and downlink phases, and  
h-1 and  h-1 for the exploration and 

surface operation phases. During the rejuvenation phase, 
h-1 and   h-1. 

Stochastic transient analysis of the MER model was 
performed through a new release of the ORIS Tool [14] based 
on the Sirio framework [15], which supports the derivation of 
the transient probability of reachable markings within a given 
time bound. Since the markings reached when an action fails 
or the overall mission is successfully completed are absorbing, 
the transient probability of such markings represents the CDF 

of the time until absorption. According to this, the completion 
time distribution of any intermediate phase as well as the 
overall mission can be easily derived.  

To evaluate different rejuvenation schedules, three 
preliminary experiments were performed for comparison of 
possible policies: in the first one, no rejuvenation is 
performed; in the second one, rejuvenation can be performed 
between the fifth and the sixth phase; in the third one, 
rejuvenation can be performed between the third phase and the 
fourth phase. For each experiment, Figures 5 and 6 show the 
probability that the mission is successfully completed leaving 
the FLASH resource in a safe state or in an aged state, 
respectively. In particular, in the first experiment, after 12.6 h, 
the probability that the mission is successfully completed and 
that the resource is safe is 0.9901176, while the probability 
that the mission is successfully completed and the resource is 
aged is 0.0048605 (the remaining 0.0050219 is the probability 
that the mission is failed). In the second experiment, after 13.8 
h, the probability that the mission is successfully completed 
leaving the resource in a safe state is increased to 0.9949329, 
while the probability that the mission is successfully 
completed leaving the resource in an aged state is decreased to 

  a1 a2 a3 a4 a5 a6 

su
pp

or
t Safe2Safe 

Aged2Aged [0.9,1.1] [1.9,2.1] [2.9,3.1] [2.9,3.1] [1.9,2.1] [0.9,1.1] 

Safe2Fail 
Aged2Fail [0,1.1] [0,2.1] [0,3.1] [0,3.1] [0,2.1] [0,1.1] 

w
ei

gh
t Safe2Safe 100 200 100 100 200 300 

Safe2Fail 1 1 1 1 1 1 
Aged2Aged 10 20 10 10 20 30 
Aged2Fail 1 1 1 1 1 1 



0.000198996. In the third experiment, the probability that the 
mission is successfully completed and the resource is safe is 
slightly decreased to 0.9927939, while the probability that the 
mission is successfully completed and the resource is aged is 
increased to 0.00261764. The latter data is also summarized in 
Table 3, highlighting how the total reliability of the mission is 
influenced by the position of the rejuvenation along the 
sequence of phases. It is worth noting that, in the second 
experiment, the reliability is lower than in the third one due to 
a too late rejuvenation policy, leading to a performance 
decrease because of the accumulation of aging. 

 
Figure 5. Probability that the overall mission is successfully completed and 

the resource is safe. 

 
Figure 6. Probability that the overall mission is successfully completed and 

the resource is aged. 

 
Rejuvenation 

Schedule 
Probability of 

mission success 
and safe resource 

Probability of 
mission success 

and aged resource 

Total Mission 
success probability 

No rejuvenation 0.9901176 0.0048605 0.9949781 
Rej. between the 
5th and 6th phase 0.9949329 0.000198996 0.9951319 

Rej. between the 
3rd and 4th phase 0.9927939 0.00261764 0.99541154 

 

Table 3. Mission success probabilities by different rejuvenation schedules. 

Figure 7 shows the completion time distribution in case of 
mission success. Note that, even if rejuvenation has a uniform 
distribution over [0.5,1] h plus a uniformly distributed 
duration between 0.083 and 0.1 h for aging detection, the 
completion time CDF of the overall mission is shifted in 

average by roughly 0.2 hours in the second and third scenarios. 
This actually depends on the fact that the completion time is 
prolonged only when software aging is actually detected and 
rejuvenation is successfully applied.  

 
Figure 7. Completion time distribution of the overall mission. 

The mission success probability is improved by 0.015% 
and 0.043% by applying software rejuvenation between the 
fifth and sixth phase and between the third and fourth phase, 
respectively. This shows the benefits achieved by 
incorporating a rejuvenation phase in the overall procedure 
and the importance of its collocation. The second experiment 
shows that a rejuvenation performed before the last phase of 
the mission can provide the highest probability of successfully 
ending the mission leaving the resource in a safe state. 
However, because of the long time elapsed between the 
beginning of the mission and the rejuvenation, an aging 
behavior can take place leading to a lower total reliability. At 
the same time, a rejuvenation scheduled in the middle of the 
mission yields an improvement in the reliability, but also a 
lower probability of ending up the mission by leaving the 
resource in a safe state. 

V. RELATED WORK 
The effectiveness of software rejuvenation is often 

evaluated in terms of system availability since downtimes 
caused by both failure and rejuvenation affect the system 
availability. Huang et al. [9] and Garg et al. [16] construct 
models for software rejuvenation and analyze the impacts on 
system availability by hours of downtime. As an alternative 
dependability measure, the interval reliability affected by 
software rejuvenation is studied in [17], [18]. Reinecke et al. 
conduct a simulation study to characterize the effectiveness of 
rejuvenation on service unavailability, which is defined as the 
ratio of uncompleted jobs over all the arrived jobs [19]. Wang 
et al. considered the probability of job blocking and the 
throughput of jobs in addition to system availability [20]. 
Instead of looking into the availability measure, we study the 
impacts of software rejuvenation on the mission success 
probability and job completion time, which are important 
reliability measures for PMSs. 

Determining the optimum software rejuvenation schedule is 
one of the challenging issues discussed in the research on 
software aging and rejuvenation. The optimal rejuvenation 
schedule that maximizes the availability of a system has been 



analyzed using Markov Regenerative Stochastic Petri Nets 
(MRSPNs) [16] and semi-Markov models [21]. In terms of 
cost optimality, the software rejuvenation schedule should be 
considered together with the software test phase [22]. Okamura 
et al. pointed out that rejuvenation can be applied during the 
limited operational period in practice, and presented an optimal 
rejuvenation time under an opportunity-based software 
rejuvenation policy [23]. In general, for a PMS, opportunity-
based software rejuvenation is more suitable than periodic 
rejuvenation schedule. We analyzed the different impacts of 
software rejuvenation by changing the rejuvenation timing 
among phases. 

When a long running job in a system encounters software 
aging, the job completion time is affected by aging. The 
distribution of the job completion time on a virtualized server 
subject to software aging and rejuvenation is analyzed by 
Markov models in [24]. Software life-extension [25] can be 
used as an alternative countermeasure to software aging if the 
long running job should not be interrupted by software 
rejuvenation. In this paper, we also evaluate the job completion 
time distribution affected by simple software rejuvenation. 
While the presented model only considers a simple 
rejuvenation process, the modeling power provided by the 
ORIS Tool [14], [15] can be leveraged to easily extend 
evaluation to systems using server virtualization, software life-
extension, and software rejuvenation with different policies. 

VI. CONCLUSIONS 
In this paper, we experiment with an approach for modeling 

and evaluation of phased-mission systems using an example of 
a robotic exploration system. Specifically, we present the 
stochastic time Petri net model of a Mars exploration rover 
with and without software rejuvenation. We evaluate the 
impact of software rejuvenation on the mission success 
probability and completion time distribution by the method of 
stochastic state classes implemented in the ORIS Tool. The 
analysis results show that the mission success probability is 
improved by 0.015% and 0.043% by applying software 
rejuvenation in different points of the mission, at the cost of an 
increase in the completion time. This shows how the modeling 
and solution technique can be leveraged to evaluate the benefits 
of different rejuvenation plans in phased mission systems. 

Future work will be directed towards enriching the 
modeling framework so as to evaluate the impacts of software 
life-extension, to include software rejuvenation failures, and to 
relax the assumption of non-decreasing performances in the 
presence of software aging. 

REFERENCES 
[1] G. R. Burdick, J. B. Fussell, D. M. Rasmuson, and J. R. Wilson. Phased 

mission analysis: a review of new developments and an application. 
IEEE Trans. on Reliability, vol. 26, no. 1, pp.43-49, 1977. 

[2] J. D. Esary and H. Ziehms. Reliability Analysis of Phased Missions. In 
Proc. of the Conf. on Reliability and Fault Tree Analysis, SIAM, pp. 
213-236, 1975. 

[3] A. K. Somani, and K. S. Trivedi. Phased-mission System Analysis 
Using Boolean Algebraic Methods. In Proc. of ACM SIGMETRICS 
Conference on Measurement and Modeling of Computer Systems, pp. 
98-107, 1994. 

[4] J. B. Dugan. Automated Analysis of Phased-Mission Reliability. IEEE 
Trans. on Reliability, vol. 40, no. 1, pp. 45-55, 1991. 

[5] M. Alam, and U. M. Al-Saggaf. Quantitative Reliability Evaluation of 
Repairable Phased-Mission Systems Using Markov Approach. IEEE 
Trans. on Reliability, vol. R-35, no. 5, pp. 498-503, 1986. 

[6] I. Mura, and A. Bondavalli. Markov Regenerative Stochastic Petri Nets 
to Model and Evaluate Phased Mission Systems Dependability. IEEE 
Trans. on Computers, vol. 50, no. 12, pp. 1337-1351, 2001. 

[7] L. Carnevali, M. Paolieri, K. Tadano, and E. Vicario. Towards the 
quantitative evaluation of phased maintenance procedures using non-
Markovian regenerative analysis. In Proc. of 10th European Workshop 
on Performance Engineering (EPEW13), 2013. 

[8] M. Grottke, R. Matias Jr., and K. S. Trivedi. The fundamentals of 
software aging. In Proc. of the 1st Int'l Workshop on Software Aging and 
Rejuvenation (WoSAR2008), pp.1-6, 2008. 

[9] Y. Huang, C. Kintala, N. Kolettis, N.D. Fulton. Software rejuvenation: 
analysis, module and applications. In Proc. of 25th Symp. on Fault 
Tolerant Computing (FTCS-25), pp.381-390, 1995. 

[10] J. K. Erickson. Living the dream: an overview of the Mars exploration 
project. IEEE Robot. Autom. Mag., vol. 13, no. 2, pp. 12–18, 2006. 

[11] E. Vicario, L. Sassoli, and L. Carnevali. Using stochastic state classes in 
quantitative evaluation of dense-time reactive systems. IEEE Trans. on 
Software Engineering, vol. 35, no. 5, pp. 703–719, 2009. 

[12] A. Horváth, M. Paolieri, L. Ridi, and E. Vicario. Transient analysis of 
non-Markovian models using stochastic state classes. Performance 
Evaluation, 2012. 

[13] G. Reeves and T. Neilson. The Mars Rover Spirit FLASH anomaly. In 
Proc. of IEEE Aerospace Conference, pp. 4186–4199, 2005. 

[14] G. Bucci, L. Carnevali, L. Ridi, and E. Vicario. Oris: a tool for modeling, 
and evaluation of real-time systems. Int. Journal of Software Tools for 
Technology Transfer, 12(5):391-403, 2010. 

[15] L. Carnevali, L. Ridi, and E. Vicario. A Framework for Simulation and 
Symbolic State Space Analysis of Non-Markovian Models. In Proc. of 
SAFECOMP, pp. 409–422, 2011. 

[16] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. Analysis of software 
rejuvenation using Markov regenerative stochastic Petri nets. In Proc. of 
Int'l Symp. on Software Reliability Engineering (ISSRE 1995), pp. 180-
187, 1995. 

[17] H. Suzuki, T. Dohi, N. Kato, and K. S. Trivedi. Maximizing interval 
reliability in operational software system with rejuvenation. In Proc. of 
Int'l Symp. on Software Reliability Engineering (ISSRE 2003), pp. 479-
490, 2003. 

[18] T. Dohi, H. Okamura and K. S. Trivedi. Optimizing Software 
Rejuvenation Policies under Interval Reliability Criteria. In Proc. of Int’l 
Conf. on Ubiquitous Intelligence & Computing and Autonomic & 
Trusted Computing (UIC/ATC), pp. 478-485, 2012. 

[19] P. Reinecke, and K. Wolter. A simulation study on the effectiveness of 
restart and rejuvenation to mitigate the effects of software aging. In 
Proc. of the 2nd Int'l Workshop on Software Aging and Rejuvenation 
(WoSAR 2010), 2010. 

[20] D. Wang, W. Xie, and K. S. Trivedi. Performability analysis of clustered 
systems with rejuvenation under varying workload. Performance 
Evaluation, vol. 64, no. 3, pp. 247-265, 2007. 

[21] T. Dohi, K. Goševa-Popstojanova, and K. Trivedi. Estimating Software 
Rejuvenation Schedules in High-Assurance Systems. The Computer 
Journal, vol. 44, no. 6, pp. 473–485, Jan. 2001. 

[22] M. Grottke and B. Schleich. Cost Optimality in Testing and 
Rejuvenation. In Proc. of 4th Int'l Workshop on Software Aging and 
Rejuvenation (WoSAR 2012), pp. 259-264, 2012. 

[23] H. Okamura and T. Dohi. Optimization of Opportunity-Based Software 
Rejuvenation Policy. In Proc. of 4th Int'l Workshop on Software Aging 
and Rejuvenation (WoSAR 2012), pp. 283-286, 2012. 

[24] F. Machida, V. F. Nicola, and K. S. Trivedi. Job Completion Time on a 
Virtualized Server with Software Rejuvenation. ACM Journal of 
Emerging Technologies, to appear. 

[25] F. Machida, J. Xiang, K. Tadano and Y. Maeno. Software life-extension: 
a new countermeasure to software aging. In Proc. of Int'l Symp. on 
Software Reliability Engineering (ISSRE 2012), pp. 131-140, 2012 


