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Abstract. Gas networks comprise a special class of infrastructure, with
relevant implications on safety and availability of universal services. In
this context, the ongoing deregulation of network operation gives rele-
vance to modeling and evaluation techniques supporting predictability
of dependability metrics. We propose a modeling approach that repre-
sents maintenance procedures as a multi-phased system, with parameters
depending on physical and geographical characteristics of the network,
working hours, and evolution of loads over the day. The overall model
is cast into a non-Markovian variant of stochastic Petri nets, which al-
lows concurrent execution of multiple generally distributed transitions
but maintains a complexity independent of network size and topology.
Solution is achieved through an interleaved execution of fluid-dynamic
analysis of the network and analytic solution of the stochastic model
of the procedure. Solution provides availability measures for individual
sections of the network as well as global quality of service parameters.

Keywords: gas distribution networks, non time-homogeneous systems,
performance evaluation, Markov regenerative processes, transient stochas-
tic state classes

1 Introduction

Quantitative evaluation of availability is gaining increasing relevance for the ef-
ficient operation of gas distribution networks, led by several causes including
competitive challenges raised by re-organization of utilities, issues of homeland
security, demand-response control applications, and automation capabilities of-
fered by smart monitoring and actuation devices [22]. This motivates investiga-
tion in modeling and solution methods, both in the tactic perspective supporting
decision during run-time operation and in the strategic perspective related to
planning of topology, localization of sensing/actuation devices and evaluation of
sustainable service levels.

The problem has been widely investigated in telecommunication and power
systems, yet gas networks are different in notable aspects, such as: localization



of failure and network reconfiguration, which may involve much less automation
and may result in a large variability of timings; regulation of controllable inputs,
which involves processes running on a much slower time scale; a lower level of
network redundancy and a different perspective on the criticality of interrup-
tions; flexibility in management of input pressure levels, which allows trading
efficiency of operation against resilience to transient faults.

Most of the literature on the analysis and simulation of gas networks fo-
cuses on the fluid-dynamics perspective, mainly oriented to assess flow rates and
pressures across network elements [14, 11]. Optimization of operations has been
addressed in various aspects, notably to favor efficient integration within multi-
carrier systems combining provisioning of electric and gas power [19,17,16,18|.
In [23] fluid-dynamic analysis of a section of a real gas network is repeated for
different configurations of demand reflecting the statistics of usage in different
day hours and seasons.

In a previous paper [6], we proposed a method for modeling the availability of
middle/low pressure gas networks, which consists in an interleaved execution of
i) a quasi-static fluid-dynamic analysis of the network and ) a stochastic model
of the failure management procedure. The latter uses non-Markovian temporal
parameters, thus overcoming the limits of memoryless and unbounded support
of exponential distributions. As a distinctive trait, fluid-dynamic calculations
are decoupled from the non-Markovian stochastic analysis and the complexity
of stochastic analysis is insensitive to topology and size of the gas network.

In this paper, the model of [6] is extended so as to capture non-homogeneous
temporal parameters. As a matter of fact, failure management procedures and
their impact on network operation may be affected by various time-dependent
parameters, including the responsiveness of repair infrastructure and the gas
consumption rate, both of which can be modeled through cycles with phases
of deterministic duration. In the evaluation stage, the evolution over time of
the failure management actions is analysed through transient analysis based on
stochastic state classes and generalized Markov renewal equations, as proposed
in [15]. Stochastic analysis provides the probability over time of any feasible
operating condition of the network after a failure. Transient probabilities are
then aggregated on the basis of the results of fluid dynamics analysis, identify-
ing service levels in each operating condition, which enables the derivation of
availability measures for each node in the network.

The rest of the paper is organized in four sections. In Section 2, we present
both the failure management model (Section 2.1) and the fluid-dynamics model
(Section 2.2). In Section 3, we recall the salient aspects of the solution technique
of [15] (Section 3.1) and we discuss how the results of stochastic transient analysis
are exploited to derive transient and average availability measures (Section 3.2).
In Section 4, we exemplify the proposed approach on a small-sized case study of
the literature (Section 4.1) and we present the obtained transient and average
availability measures (Section 4.2). Finally, conclusions are drawn in Section 5.



2 Model

The gas distribution network comprises a kind of hybrid system combining con-
tinuous physical variables affecting fluid dynamics (pressure and flow rate) with
the temporal behaviour of actions taken to recover from a failure. This duality
is coped with by the interaction of two separate models: a stochastic model is
used to analyse the timings of the failure management procedure (Section 2.1),
whereas a fluid-dynamics simulator is used to quantify the lack of service metrics
associated with each possible set of boundary conditions (Section 2.2).

For what concerns the fluid dynamics, gas is supplied to a low-pressure distri-
bution network from a medium-pressure transmission network through a set of
regulating stations (input nodes), and it is withdrawn by end-users at a certain
number of load nodes. In the perspective of analysis, input nodes have a known
pressure, whereas load nodes have a known flow balance, with their pressure
depending on topology and flow patterns in the network. As a first approxima-
tion, which is valid for most existing distribution networks, the flow balance at
load nodes is considered to depend on the time-of-day, whereas pressure at the
supply nodes is considered constant. To guarantee correct operation as well as
commercial standards, pressure at each load node should exceed a given mini-
mum threshold and should not be greater than a maximum allowed value.

Whenever a network component fails, pressure levels and flow rates may be
affected, and a set of maintenance actions is undertaken in order to restore the
correct operating mode. These actions usually affect network topology and flow
patterns: for instance, if a leaking pipe is detected, the nearest upstream and
downstream valves are closed to isolate the faulty section, while other section-
ing valves may be opened to minimise the number of end-users affected. The
temporal evolution of repair actions and their effects are conditioned by vari-
ous time-dependent parameters: on the one hand, the duration of some phases
depends on the time-of-day, i.e., on the responsiveness of the system (e.g., avail-
ability of repair personnel may be lessened or null during nighttime); on the
other hand, the degradation of the quality of service perceived by end-users de-
pends on the load level throughout the network, which in turn varies according
to a cyclic daily pattern.

Without loss of generality, the failure management procedure can be conve-
niently abstracted as a phased-mission process [20], consisting of three phases.
The first phase includes operations occurring before physical intervention on the
network, e.g., organisation of work team, planning and transportation on site.
This phase is considered to end when the failed component (e.g., pipe) is ex-
cluded from the network, which comprises the first variation of topology. Hence,
load nodes are partitioned into three classes:

— i) offline nodes, disconnected from any supply node;
— i) online served nodes, connected with sufficient pressure;
— ii1) online not served nodes, connected but with pressure lower than required.

The second phase represents actions occurring while the network status is in
a modified configuration with respect to regular operation. In this phase repair is



performed, while pressure is concurrently controlled at some regulating station,
so as to restore the correct pressure levels at online load nodes during repair.

The third phase begins when the regular topology is restored, and it includes
actions that do not affect user-perceived quality of service but are necessary
for the operator to close the maintenance procedure. It is worth noting that
the division in three phases has a general character and can be tailored to any
specific procedure, as long as there exists a single continuous phase during which
the network topology is modified.

The quality of service maintained throughout the procedure is captured by
various metrics of performability, including the number of nodes served with an
insufficient pressure and the amount of gas requested by users and not delivered.

2.1 Stochastic Model

The process of failure management can be represented as a stochastic Time
Petri Net (sTPN) [24,5] extended with features such as enabling conditions
and update functions, which reproduce modeling mechanisms that are usual in
such environments such as SAN networks [12] and do not change the essence of
analysis. As regards sTPN syntax and semantics, the reader is referred to [24].
The model is shown in Figure 1. Two looped chains of deterministic (DET)
transition are use to model the dependence of repair responsiveness (places
workHour, extraHour and night Time) and load levels (places highLoad, medLoad
and lowLoad) on the time-of day. The duration of each transition corresponds
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Fig. 1. The sTPN specification of the failure management model. IMM, DET and
GEN transitions are represented by thin bars, thick gray bars, and thick black bars,
respectively. The distributions associated with timed transition refer to the case study
analysed in Section 4.



to the duration of the preceding phase, while the sum of the durations of each
loop amounts to 24 h, thus modeling in both cases a cyclical daily pattern.

The failure management procedure is divided in three parts. Transition pre-
Repair represents actions taken during phase 1 (no network status modification).
The time duration of phase 1 activities can have much different characterisation
depending on organisational issues or network topology in each specific context.
To illustrate the ability of the modeling and analysis technique in accommodating
such difference, we use here a general (GEN) transition with an expolynomial
(EXPOL) distribution over bounded support, which was derived so as to be
bounded over [1,11] h and have an expected value equal to 3 h, and a variance
equal to 2 h%. The immediate (IMM) transition sect models the end of phase 1
and the beginning of phase 2.

The dependence of the repair speed on the time-of-day can be modelled by
a number of parallel transitions which are alternatively enabled according to
the marking of the corresponding DET loop. In doing so, an approximation
is introduced following the same approach applied in [20]: when the time-of-
day phase changes, two possible modelling strategies lead to different results.
In the first case, the previously enabled transition is disabled and one of the
mutually exclusive ones is newly enabled (thus disregarding the time elapsed
since the enabling of the former, lengthening the total duration and leading to a
worst-case approximation). Alternatively, at the time-of-day phase change, the
previously enabled transition could be fired, thus shortening the total duration.

To restrain the impact of approximation, the repair activity is partitioned
in four steps of equal duration, in a manner somehow similar to what happens
in continuous phase approximations, where time advancement is consolidated
into discrete markings [2,21]. This is represented in the model by the chained
transitions linking places repairStarted and repairDone.

Concurrently with the repair procedure, pressure in the system is gradually
raised, thus affecting service status of various load nodes. The process, intrinsi-
cally continuous, is discretised in four phases of equal duration represented by
places PO through P100.

The final places of the two concurrent processes enable transition wunSect,
which represents the network status being reverted to normal operation as well
as the end of phase 2. Since pressure regulation is stopped when the repair
phase ends, an update function is associated with transitions 23 and t27, which
empties places PO through P75 and puts a token in place P100.

Finally, transition postRepair models phase 3. Three absorbing places are
chained to the output of transitions sect, unSect and postRepair transitions, so
as to monitor the time elapsed from the start of the procedure to the end of each
of the three main phases.

As previously mentioned, during the repair phase pressure at some input node
is regulated (raised) in order to minimise the service impact on end users. The
final pressure to be reached after the increase is calculated by means of the fluid-
dynamic model as the minimum of two values: the minimum pressure necessary
at the supply node so that all connected load nodes experience a pressure higher



than the corresponding required pressure threshold, and the maximum pressure
at the supply node so that no load node experiences a pressure higher than
its maximum tolerated pressure. By means of the exposed modelling, a factual
separation between the fluid dynamic model (whose complexity does depend
on the complexity of the studied network) and the stochastic model (whose
complexity does not) is achieved. In particular, the fluid dynamic model is used
for two different purposes:

— to calculate the pressure increase to be imposed at the supply node in order
to restore adequate pressure to all online load nodes;

— to evaluate service status at load nodes during each phase of the failure
management process.

In the latter case, it is necessary to perform a certain number of analyses de-
pending both on the load values considered (time-dependence of flow balance
at load nodes) and on the number of steps representing the pressure increase
process (time-dependence of pressure level at supply nodes). For each simula-
tion, various measures representing service levels can be calculated and used as
reward rates in the stochastic model.

2.2 Fluid-Dynamic Model

Given a set of boundary conditions, fluid-dynamic calculations are performed to
assess the network state in terms of pressures at nodes and mass flow rates in
pipes. In detail, two sets of equations are written to evaluate the mass balances
at nodes and the pressure loss along pipelines, taking pressures at supply nodes
and mass flow rates withdrawn at load nodes as inputs.

The first set of equations states that, for each node n, the signed sum of flow
rates that enter or exit from n must be equal withdrawn flow rate QY , i.e.,:

0 if n is a passive node

> Qin— > Qui= (1)

. . w 3 M
ielent jelex QY if n is a load node

where I and I¢* are the sets of indexes of pipelines that enter and exit from
node n, respectively.

The second set of equations is used to calculate the pressure loss for each
pipeline m, according to the Darcy-Weisbach formulation:

oL oV

0Py = f D, 2 (2)

where p is the gas density, V is the average gas velocity, D,, is the pipeline
diameter, and f is the Darcy friction factor calculated by means of the Colebrook
equation [10] for turbulent flows and the Poiseuille formula for laminar flows.
Combining Equations 1 and 2, a non-linear system is written and solved
through an iterative procedure based on the Newton-Raphson method.



3 Evaluation

The model of Section 2.1 is evaluated through regenerative transient analysis
based on stochastic state classes [15,24] using the Oris tool [7,4, 1].

3.1 Quantitative Transient Analysis

The solution technique of [15] supports the transient analysis of models with
multiple concurrent GEN transitions that underlie a Generalized Semi-Markov
Process (GSMP) with equal-speed timers [13,9]. The state of the underlying
GSMP is sampled after each transition firing and an additional timer called 744
is maintained to account for the absolute elapsed time. This identifies a transient
stochastic graph whose states are named transient stochastic state classes (tran-
sient classes for short), each made of a marking plus the joint support and PDF
of T,¢c and the times-to-fire of the enabled transitions. The marginal PDF of 7,4
permits to derive the PDF of the absolute time at which a transient class can
be entered, enabling the evaluation of continuous-time transient probabilities of
reachable markings within a given time horizon, provided that the number of
transient classes that can be reached within that time interval is either bounded
or can be truncated under the assumption of some approximation threshold on
the total unallocated probability.

The complexity of the solution technique can be reduced in the case that the
model underlies a Markov Regenerative Process (MRP) that always reaches a re-
generation point, i.e., a state where the future behavior is independent from the
past behavior through which it has been reached. In this case, transient analysis
is limited to the first regeneration epoch and repeated from every regenerative
point, supporting the derivation of the local and global kernels that characterize
the MRP behavior [8,9,3] and enabling the evaluation of the transient proba-
bilities of reachable markings at any time through the numerical integration of
generalized Markov renewal equations.

3.2 Evaluated Measures

Each marking in the stochastic model can be associated with a reward rate
corresponding to the relevant metrics of performability. Since lack of service ex-
perienced by end-users is determined on the basis of pressure regulation status
(places PO through P100) and load level (places highLoad, medLoad, lowLoad),
reward rates are associated to the twelve reachable combinations. In particu-
lar, performability is measured through the number of non-served nodes (either
offline or online with insufficient pressure) and non-served gas demand corre-
sponding to such nodes.

Moreover, the absorbing places in the failure management model are used to
evaluate the Cumulative Distribution Function (CDF) of the completion time of
any of the three phases, allowing the derivation of average measures.



4 A Case Study

We illustrate here the gas distribution network considered in the experimental
validation (Section 4.1) and we discuss the obtained results (Section 4.2).

4.1 Experimental Setting

Figure 2 shows a topological representation of the sample gas distribution net-
work analysed in the experiments. The network has a double-loop topology and
is made of a supply node marked as A, six load nodes marked as B through G,
and fifteen pipelines.

Operating parameters of the network components have been chosen so as to
experience different degrees of network unavailability following different pipeline
failures. In detail, three load levels are considered, and the correponding with-
drawal rates at load nodes are reported in Table 1. Moreover, each load node is
supposed to have a minimum required pressure of 20 mbar. During the regular
operation of the network, the pressure in each load node is greater than the
corresponding pressure threshold, so that all nodes are properly served.

Node|maxLoad|medLoad |minLoad

@ R1B : R12 R2C @ (Sm3/h) (Sm3/h) (Sm3/h)
12 g B 200 150 100
AN T C 200 150 100
3 | Rap D 150 113 75
g o E 200 150 100
O R6F RS6 “l ase O F 200 150 100
F E G 100 75 50

Fig. 2. Sample gas distribution network. Table 1. Mass flow rates of the nodes of
The shaded nodes are supply nodes, while the gas distribution network shown in Fig-
the others are load nodes. The dashed pipe ure 2 for three different load scenarios.

is the one whose failure is considered.

Once a failure is detected and located, the corresponding pipe is excluded
from the network and the load nodes are divided into online and offline nodes. If
the failed pipe does belong to one of the main loops, no load node will be offline,
whereas if the failed pipe is one of the radial connections from the main loops
to a load node, one ore more of such nodes will.

For failures of pipes belonging to the ring, the pressure regulation time is
characterized by assuming a pressure increase rate of 2 mbar/h and using the
results of the fluid-dynamic analysis which provides the minimum pressure in-
crease AP to be actuated at the supply node so that all online nodes are served.



4.2 Experimental Results

Without loss of generality, we illustrate the process of analysis with reference
to a failure occurring at pipe R12 as an example for discussion. Note that we
deliberately focus on a failure of a pipeline that belongs to the network ring,
as such failures will leave more load nodes not served than failures of radial
pipelines and make pressure regulation a sensible choice.

Fluid-Dynamic Analysis As a first step, a calculation is performed by ex-
cluding the failed pipe from the network and leaving every other parameter
unchanged. The pressure at each node is shown in the third column of Table 2
in the highLoad scenario. Comparing the pressure values with those in the first
column (regular operation), it can be noted that the nodes originally downstream
of the failed pipe (B and C) experience a great pressure loss due to the change
in flow patterns, whereas other load nodes suffer smaller decreases.

Hnode[regular[ PO P25 P50 P75H

A 40.0 [40.0 46.0 52.0 58.0
B 38.8 0.0 0.0 2.8 9.1
C 31.1 3.6 55 94 156
D 214 | 6.8 11.3 16.5 22.7
E 28.1 | 18.1 22.9 28.3 34.5
F 317 |22.8 27.7 33.2 39.3
G 29.7 8.1 11.0 15.5 21.7

Table 2. Pressures at nodes during the different steps of pressure regulation and regular
operation in the highL.oad scenario. Shaded cells correspond to nodes not served.

From the values in Table 2, global metrics can be derived. Table 3 shows
the reward rates as calculated by aggregating the results of the fluid-dynamic
analysis in terms of nodes not served and demand not served.

[scenario] PO P25 P50 P75 ||
number of nodes not served
highLoad| 5 4 4 2
medLoad 4 2 - -
lowLoad - - - _
demand not served (Sm2/h)
highLoad| 850 650 650 400
medLoad| 650 400 - -
lowLoad - - - _

Table 3. Reward rates from fluid-dynamic calculations.
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Stochastic Analysis As a first step, the probability of having completed each
phase of the procedure at time ¢ (given that procedure is started at 10 a.m.)
is calculated and reported in Figure 3(a). Figure 3(b) shows the probability of
being in each of the markings corresponding to a degradation of the perceived
service quality at time ¢.

1,0 1,0
—highload PO —highLoad P25
08 08 —highLoad P50 highLoad P75
---medlLoad PO ---medLoad P25
N PN
z 0,6 EO 6 / \\\ 7 \\\
= ‘S / /
E 04 E 0,4 / y\ \\
< [ / /N \,
a a ] i\ \
R
0,2 Prob(endPhasel) 0,2 ! I,’ N \
—Prob(endPhase2) / .
—Prob(endPhase3) h / N
0,0 0,0 E—— —T
10 14 18 22 2 6 10 14 18 22 2 6 10 10 12 14 16 18 20 22 0
time of day time of day
(a) (b)

IS

800

—number of nodes ---demand

w

[N

mean number of nodes not served
N
mean demand not served (Sm3/h)

o
=
o

12 14 16 18 20 22 0
time of day

(c)

Fig. 3. Results of the stochastic analysis: (a) probability of completion of each phase
by time ¢, (b) transient probability of being in a marking with lack of service at time
t and (c) expected value of nodes not served and demand not served at time ¢

Each peak refers to a different pressure level, solid lines representing high-
Load scenario and dashed lines corresponding to medLoad. The four peaks lie at
approximately equal distances from each other, corresponding to the duration of
the regulation step (note that the “medLoad P50” line is not shown, as it brings
no service disruption, but it can be inferred from the “highLoad P50” line). Fig-
ure 3(c) shows the expected values of the two lack of service measures, calculated
using values in Table 3 as reward rates. Thus, considerations arise on the critical
time-of-day in terms of service disruption and on the global impact of the fail-
ure, e.g., the discontinuity at 18 h corresponds to increased lack of service due
to rising load in the network, which leads to lower pressure especially for nodes
farther away from the supply station, while the area below the dashed curve
represents the expected gas amount not sold due to the maintenance procedure.
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5 Conclusions

Being a universal service, gas distribution networks represent a critical infrastruc-
ture with notable safety and availability issues. Their operation is cyber-physical,
as the intrinsically physical infrastructure (which is geographically extended and
follows deterministic laws) interacts with remote control strategies and opera-
tional and maintenance procedure in determining the temporal evolution of ser-
vice status. Therefore, modelling and evaluation shall couple hybrid behaviour
of continuous physical variables and stochastic timing, usually in non-Markovian
classes, with parameters depending on time-of-day such as repair organisation
responsiveness and level of gas consumption in the network. The proposed mod-
elling and solution approach decouples these complexities, making stochastic
timed analysis independent of the size and topology of the network and, vice
versa, allows fluid-dynamic analysis to be carried out on a finite number of con-
figurations. Results support evaluation of performability measures that answer
relevant needs for ongoing deregulation of markets for distribution utilities.
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