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Abstract. In a variety of contexts, time-stamped and typed event logs
enable the construction of a stochastic model capturing the sequencing
and timing of observable discrete events. This model can serve various
objectives including: diagnosis of the current state; prediction of its evo-
lution over time; scheduling of response actions. We propose a technique
that supports online scheduling of actions based on a prediction of the
model state evolution: the model is derived automatically by customizing
the general structure of a semi-Markov process so as to fit the statistics of
observed logs; the prediction is updated whenever any observable event
changes the current state estimation; the (continuous) time point of the
next scheduled action is decided according to policies based on the esti-
mated distribution of the time to given critical states. Experimental re-
sults are reported to characterize the applicability of the approach with
respect to general properties of the statistics of observable events and
with respect to a specific reference dataset from the context of Ambient
Assisted Living.

1 Introduction

The prediction of future system events from past ones is a challenging and general
problem that finds several applications (e.g., autonomic computing [1,9], models
at runtime [2]), especially in online settings where predictions can be updated
several times after observing new data [15].

Model-based approaches have also been proposed in other application ar-
eas such as Ambient Assisted Living (AAL). An important goal in AAL is to
recognize human activities from smart home sensor data. Common activities of
interest are Activities of Daily Living (ADLs) such as “bathing”, “sleeping”,
“dinner”; home appliances and furniture can generate sensor events indicating,
for example, the use of a faucet, the opening of a door, or the use of a light switch.
The problem of assessing the current human activity, also known as diagnosis,
has been investigated in [16,4] through the use of hidden stochastic models.

In this work, we are interested in the problem of event prediction and response
scheduling : given a sequence of past events, each with a type and a timestamp,
our goal is to select a time point for the activation of a response action. A
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response action can, for example, replace a hardware component to prevent
failures; in AAL, the response action can be a reminder about the intake of
some drug before the beginning of a meal, or surveillance escalation when the
user is going to use some dangerous device.

To this end, we model the system under analysis as a Semi-Markov Pro-
cess (SMP) where states represent activities or idle times between activities.
For each state, the sojourn time distribution and transition probabilities are es-
timated from a supervised dataset of event logs. Different parametric models are
compared for sojourn time distributions, in order to evaluate the reduction in the
prediction error due to more accurate models; in particular, we consider fitting
the mean of the sojourn time with an exponentially distributed (EXP) or Erlang
random variable, or fitting its mean and variance using a shifted EXP random
variable, or sums and mixtures of EXP random variables [17]. After fitting the
model parameters from a training dataset, we use a test set of events to assess the
prediction error of scheduling policies for the response action. After each event
of the test set, the current state and elapsed sojourn time (i.e., a diagnosis) are
used as initial conditions to compute first-passage probabilities for critical states
(e.g., dinner). Scheduling policies analyze this transient information to select an
actuation time for the response action.

Related work. In [4], we proposed a model-driven online approach to the problem
of diagnosis: a model of feasible behaviors, enhanced with stochastic parameters
derived from a dataset [13], was used to evaluate a measure of likelihood of the
current ongoing activity, which is updated after each event. A different approach
to diagnosis is considered in [16], where hidden semi-Markov processes are used to
detect the current user activity from recent events; in [15], hidden semi-Markov
processes are used to predict and prevent imminent failures; in [7], Markov-
modulated Poisson processes are proposed to detect anomalous patterns. In [12],
a short-term prediction problem is considered: the next state is predicted by
combining different information sources through Dempster-Shafer theory. Our
work takes a different approach: instead of matching the sequence of recent
events to determine the current or next state, we use a state diagnosis as the
initial condition to analyze the transient evolution of a semi-Markov process and
derive first-passage probabilities of critical states using the ORIS Tool [6,3]. This
provides fine-grained information for policies that schedule response actions.

Organization. In Section 2, we formulate the prediction and scheduling problem;
in Section 3, we define the structure, fitting, and analysis technique for the SMP
model adopted by our solution. In Section 4, we evaluate the prediction error of
the approach, both on synthetic datasets and on a real-world dataset of ADLs.
Finally, we draw our conclusions in Section 5.

2 Problem formulation

We consider an online setting where the system receives a stream of events
(e.g., sensor readings), each with a type and a timestamp; after receiving an
event, the system has the opportunity to request or update the scheduling of a
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response action (e.g., surveillance escalation or a user reminder), to be activated
after a delay if no other event is received. The goal is to intercept a class of
target activities (e.g., a security attack, a hardware fault, the dinner activity
or other ADLs) with the response action. The response action is active for a
fixed response duration td ≥ 0: target activities are successfully handled by the
system if they start while the response action is active. In order to cope with real-
world applications, we also introduce a fixed response actuation time tw ≥ 0: the
response action must be issued by the system tw time units before its activation
time; after being issued, response actions cannot be canceled. For example if a
hardware failure is predicted in the future, a maintenance operation must be
scheduled tw time units before it happens, so as to prevent the failure of the
system.

In order to learn the relationship between input events and target activities,
we are given a supervised dataset D including: i) a recorded sequence of events
e1, e2, . . . , em where each event ei = 〈εi, ti〉 for i = 1, . . . ,m includes an event
type εi from a finite set E = {evt1, . . . , evtM} and a timestamp ti ≥ 0, with
t1 ≤ · · · ≤ tm; ii) the sequence of activities a1, a2, . . . , an performed during the
generation of the events; each activity ai = 〈αi, τi, δi〉 for i = 1, . . . , n includes
an activity type αi from a finite set A = {act1, . . . , actN}, a start time τi ≥ 0
(such that τ1 ≤ · · · ≤ τn) and an activity duration δi ≥ 0. As in [4,16], the
underlying assumption of this problem is that distinct activities take place in
the system and a statistical characterization is derived taking into account: i) the
duration of each activity; ii) the time between subsequent events; iii) the types
of event occurred within each activity; iv) the transition probabilities among
activities. The sequence of activities thus provides a “ground truth” to learn the
relationship between events and activities, and the likelihood of different activity
sequences.

In order to evaluate the online performance of a scheduling system fD trained
from D, we define the metrics of precision and recall for a given test sequence of
events e1, e2, . . . , eh, an actuation time tw ≥ 0, and a response duration td ≥ 0.
Let t̃ denote the time point at which the system is currently scheduled to issue
the activation of the response action, which will be active in the time window [t̃+
tw, t̃+ tw + td]. Initially, no response activation is scheduled, i.e., t̃ =∞; for each
event ei = 〈εi, ti〉 in the sequence e1, e2, . . . , eh: i) if t̃ ≤ ti, the activation of a
response action is issued at time t̃; ii) the time point t̃ is updated by fD according
to the new information provided by event ei, i.e., t̃ ← fD(e1, e2, . . . , ei; tw, td).
Let I1, I2, . . . , Ip denote the time windows of executed response actions and let
τ1, τ2, . . . , τ q denote the start times of target activities in the ground truth. We
say that the system has produced: i) a true positive, if an activation window
contained the start time of (at least) a target activity, i.e., TP = |{i ≤ p |
∃j ≤ q such that τ j ∈ Ii}|; ii) a false positive, if an activation window did not
contain any target activity, i.e., FP = |{i ≤ p | τ j 6∈ Ii ∀j ≤ q}| iii) a false
negative, if a target activity was not contained in any activation window, i.e.,
FN = |{j ≤ q | τ j 6∈ Ii ∀i ≤ p}| Then, we define (as usual in information
retrieval) precision = TP/(TP + FP) and recall = TP/(TP + FN).
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Fig. 1. A sample execution of the online scheduling system: α2 is the target activity;
the start of response actions is issued at t̃(2) and t̃(3), producing the activity windows
I1 and I2 (a false positive and a true positive, respectively).

Fig. 1 illustrates the mechanism of online event prediction and response
scheduling on the sequences of events e1, e2, e3, e4, e5 and activities a1, a2. The
type α2 ∈ A of a2 = 〈α2, τ2, δ2〉 is the target activity: after event e1, the system
uses a metric F1(t) to select the best activation window of duration td for the re-
sponse action; the activation command is first scheduled at time t̃(1). Since event
e2 is received at time t2 < t̃(1), a new metric F2(t) and schedule t̃(2) is computed;
given that no event is received before t̃(2), the response action is issued, resulting
in the activation window I1 = [t̃(2) + tw, t̃

(2) + tw + td]. This response is a “false
positive”, because it does not intercept the start of any target activity α2. At
event e3, the metric F3(t) and schedule t̃(3) are computed. As t4 > t̃(3) (i.e.,
event e4 is received after t̃(3)), the response action is activated during the time
interval I2 = [t̃(3) + tw, t̃

(3) + tw + td]. The interval I2 contains the start time τ2
of a target activity, resulting in a “true positive” response.

Our formulation is similar to that of [14] for the problem of online failure
prediction, as it considers both an actuation time tw and a response duration td,
which are constant parameters of the specific application. Nonetheless, in con-
trast to [14], it requires that the system selects the time point t̃ that corresponds
to the best schedule for the activation window [t̃+ tw, t̃+ tw + td].

3 A model-based solution

3.1 System architecture

We propose a solution based on a stochastic model capturing the statistics of
events and activities observed in the training dataset. The model allows us to
estimate the current state and predict the occurrence of target activities.

We identify four distinct modules required in this approach.
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Fig. 2. Data flow diagram of the proposed solution: events are processed in real-time
to assess the current state and evaluate first-passage probabilities of a set of critical
activities; response actions are then scheduled based on a given policy.

1. Fitting. The input dataset D of events and activities is analyzed in order
to fit its relevant statistics with a semi-Markov process. The state space
S = A ∪ I of the process includes the activities A = {act1, . . . , actN}
observed in D and idle states I = {idlexy | (x, y) ∈ A × A} between each
pair (x, y) of activities. We use parametric continuous-time models to fit
mean value and coefficient of variation (CV) of the duration of each activity,
of the inter-time between events, and of the idle times between activities;
transition probabilities among activities and event selection are modeled
with discrete distributions.

2. Diagnosis. As presented in [4], the hidden semi-Markov process of event
generation can be used to determine a measure of likelihood of current state
estimates given a sequence of events observed in real-time by the system.
Each estimate is a triplet 〈π, x,R(t)〉 where π ∈ [0, 1] is a likelihood measure,
x ∈ S is a state of the semi-Markov process, and R(t) is the PDF of the
remaining sojourn time in x (estimated numerically on a grid of time points).

3. Prediction. From each estimate of the current state, we analyze the tran-
sient evolution of the semi-Markov process, computing first-passage tran-
sient probabilities for a set of target activities. First-passage probabilities
computed for each current state estimate are then combined according to
their likelihoods, in order to obtain the expected probability F (t) of reach-
ing some critical state within time t.

4. Scheduling. The first-passage probabilities F (t) are analyzed according to a
policy that selects a time point where the activation of the response action
is scheduled. As input parameters of the problem, the policy considers the
response actuation time tw ≥ 0, required to activate the response action,
and the response duration td ≥ 0.

Fig. 2 presents a data flow diagram illustrating the components of the system
and the information exchanged as input and output. By decomposing the system
architecture, we are able to isolate the responsibilities of the components and
evaluate their individual performance. While [4] focused on the diagnosis of the
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current state, in this work we study the prediction and scheduling components. In
Section 4, we will use an exact state diagnosis (from the ground truth of recorded
activities) as input for the prediction phase; in so doing, we will decouple the
performance of prediction and scheduling from that of state diagnosis.

3.2 Model definition

We model the system under analysis as a semi-Markov process where states
represent activities or idle times between activities.

Definition 1 (Markov Renewal Sequence). A sequence of random variables
{(Xn, Tn), n ∈ N} such that, for all n ∈ N, Xn takes values in a finite set S,
Tn takes values in R>0, and 0 = T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn, is called Markov
renewal sequence with state space S and kernel Gij(t) if and only if

P{Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i,Xn−1, . . . , X1, X0, Tn, . . . , T1, T0}
= P{X1 = j, T1 ≤ t | X0 = i} := Gij(t)

for all n ∈ N, i, j ∈ S and t ∈ R>0.

The Markov renewal sequence is thus time-homogeneous and memoryless: given
the current state i ∈ S, the kernel Gij(t) defines the joint distribution of the
next renewal time T1 and regeneration state X1 ∈ S. From a Markov renewal
sequence, a semi-Markov process can be constructed as follows.

Definition 2 (Semi-Markov Process). Let {(Xn, Tn), n ∈ N} be a Markov
renewal sequence with state space S; we define semi-Markov process the process
{X(t), t ≥ 0} such that X(t) = Xn for t ∈ [Tn, Tn+1) and all n ∈ N.

Given a training dataset of N activities A = {act1, . . . , actN}, we construct
a semi-Markov process with state space S = A ∪ I, where I = {idlexy | (x, y) ∈
A×A} is the set of “idle states” between each pair (x, y) of activities. The state
of the system evolves as follows: i) the system randomly selects a sojourn time
in the current activity actx ∈ A and the successive idle state idlexy ∈ I for
some y ∈ A; ii) a sojourn time is selected for the state idlexy; iii) from idlexy,
the model moves to the state corresponding to acty ∈ A. This structure of the
semi-Markov process is reflected in the definition of its kernel

Gij(t) :=


Hx(t) pxy if i = actx ∈ A and j = idlexy ∈ I for some y ∈ A,

Dxy(t) if i = idlexy ∈ I and j = acty ∈ A,

0 otherwise,

where: Hx(t) is the distribution of the sojourn time in actx; pxy is the transition
probability from activity actx to activity acty, with

∑
y∈A pxy = 1 for all x ∈ A;

Dxy(t) is the sojourn time distribution in the idle state idlexy between actx and
acty. Figure 3 illustrates the structure of this semi-Markov model. Note that,
in our definition, the transition probabilities pxy do not depend on the sojourn
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Fig. 3. Structure of the semi-Markov process for the activities A = {actx, acty, actz}.

time in the current activity. Nonetheless, the definition of the semi-Markov kernel
Gij(t) and the prediction and scheduling approach described in the following can
model this dependency; we adopt time-homogeneous transition probabilities pxy
due to the limited amount of data available for fitting in real-world applications.

3.3 Parameter fitting from a training dataset

The stochastic parameters of the model are automatically derived from the
statistics of activities observed in the dataset. Specifically, we are interested
in characterizing three aspects: (1) the sojourn time distribution Hx(t) in each
activity actx ∈ A; (2) the sojourn time distribution Dxy(t) in each idle state
idlexy ∈ I; and, (3) the transition probability pxy from each activity actx to
any other reachable activity acty.

Let ai = 〈αi, τi, δi〉 for i = 1, . . . , n be the sequence of activities in the
training dataset, each including an activity type αi ∈ A, a start time τi ≥ 0,
and an activity duration δi ≥ 0.

For each activity actx ∈ A, we consider its observed durations δ(actx) =
{δi | 1 ≤ i ≤ n and αi = actx} and estimate the sojourn time distribution Hx(t)
using one of three different strategies:

1. Exp strategy. Fitting the mean value µ of δ(actx) with an exponentially
distributed random variable with rate λ = 1/µ.

2. Erlang strategy. Fitting the mean value µ of δ(actx) with an Erlang random
variable with shape parameter k = 2 and rate λ = k/µ.

3. Whitt strategy. Fitting the mean value µ and coefficient of variation CV of
δ(actx) with the approach presented in [17], which requires: i) if CV ≤ 1/

√
2,

a shifted exponential random variable with PDF f(t) = λe−λ(t−d) over
[d,∞), where λ = 1/(µCV) and d = µ(1 − CV); ii) if 1/

√
2 < CV < 1,

a hypo-exponential random variable (sum of two exponential random vari-
ables) with PDF f(t) = λ1λ2(e−λ2t−e−λ1t)/(λ1−λ2) with λi = 1/[(µ/2)(1±√

2 CV2 − 1)] for i = 1, 2; iii) if CV > 1, a hyper-exponential random vari-

able with PDF f(t) = p1λ1e
−λ1t + p2λ2e

−λ2t, where pi = [1 ±
√

CV 2−1
CV 2+1 ]/2

and λi = 2pi/µ for i = 1, 2.
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We adopt the same strategies for the estimation of the sojourn time distri-
bution Dxy(t) of each idle state idlexy ∈ I; in this case, the mean value and
coefficient of variation of the sojourn in idlexy are computed from the observed
durations {τi+1 − (τi + δi) | 1 ≤ i < n, αi = actx and αi+1 = acty}.

Finally, the transition probability pxy that activity acty will follow actx is
estimated as

pxy =
|{1 ≤ i < n | αi = actx and αi+1 = acty}|

|{1 ≤ i < n | αi = actx}|
for each pair of activities (actx, acty) in the training dataset.

3.4 Prediction

After receiving an event, a new set of state estimates 〈πu, xu, Ru(t)〉, u = 1, . . . , h
is produced by the diagnosis component, each with a likelihood measure πu ∈
[0, 1], a candidate state xu ∈ S, and a PDF Ru(t) of the remaining sojourn
time in xu. The prediction component uses this information on the current state
of the system in order to compute first-passage probabilities for a set of target
activities using the semi-Markov model.

Let S = A ∪ I be the set of states of the SMP (i.e., activities and idle states)
and let Gij(t) be its kernel: for all i, j ∈ S and t ≥ 0, Gij(t) gives the probability
that the next state j is reached from i in a time lower or equal to t. We compute
first-passage probabilities of a set of target activities A ⊂ A by solving a system
of Markov renewal equations [11]

Pij(t) =
(

1−
∑
j∈S

GAij(t)
)
δij +

∑
k∈S

∫ t

0

dGAik(x)Pkj(t− x)

for all i, j ∈ S and 0 ≤ t ≤ tmax , where tmax is the time bound of the analysis,
δij = 1 for i = j and δij = 0 otherwise, and

GAij(t) =

{
0 if i ∈ A,

Gij(t) if i 6∈ A,

effectively making any state in A an absorbing state. A numerical solution based
on the trapezoidal rule [6] requiresO(( tmax

∆ )2) multiplications of |S|×|S|matrices,
where ∆ is the step size used in the discretization. The first-passage probabilities
of states in A are then given, for each initial state i ∈ S, by Fi(t) =

∑
j∈A Pij(t).

We numerically compute Fi(t) only once for a fixed time bound tmax and each
i ∈ S. After a new event, the updated diagnosis 〈πu, xu, Ru(t)〉 for u = 1, . . . , h
is used to compute

F (t) =

h∑
u=1

πu

∫ tmax

0

Ru(x)

∑
j∈S

Gxu,j(∞)Fj(t− x)

 dx

which accounts for each state xu according to its likelihood πu, remaining sojourn
time PDF Ru(x), transition probabilities Gxu,j(∞) to the next state j, and first-
passage probability Fj(t) from j to a state in A.
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3.5 Response scheduling

Given F (t) and a policy, the scheduling component (Fig. 2) selects a response
actuation time t̃. In this work, we consider a maximum probability interval policy.
The policy considers a discrete grid of points X equispaced in [tw, tmax − td]: for
each x ∈ X , the probability

v(x) = F (x+ td)− F (x)

of reaching a target activity in the interval [x, x + td] is evaluated. Let x∗ =
arg maxx∈X v(x). If v(x∗) > ε td, then the activation of the response action is
scheduled at time t̃ = x∗ − tw; otherwise, no response action is scheduled.

4 Experimental evaluation

An experimentation was carried out to evaluate the system performance in terms
of precision and recall metrics. We experimented both with synthetic datasets
constructed so as to make evident how the type of the distribution can affect
the prediction and scheduling performance, and with a real dataset [16] so as
to evaluate the applicability of the proposed approach in a problem of Activity
Recognition (AR) from the context of Ambient Assisted Living (AAL).

In both cases, an exact state diagnosis was assumed as input for the prediction
phase, so as to focus on the evaluation of performance achieved by predictor and
scheduler components.

Each dataset has been split into a test and a training set using a Leave One
Day Out (LOO) approach, where one full day event log is used for testing and
remaining days are exploited for training the stochastic model. All experiments
were performed with a time bound tmax = 3 600 s and a step size ∆ = 1 s.

4.1 Evaluation on synthetic datasets

In order to evaluate the predictor accuracy in a controlled manner, three syn-
thetic datasets are generated through the simulation of a stochastic model of
activities. As depicted in Fig. 4, the model is shaped as a semi-Markov process
with 4 activities, i.e., A = {act0, act1, act2, act3}, where act3 represents the
target critical activity.

On completion of any activity, a random switch px,y makes a selection to
establish if the activity sequence must move back to the initial state act0 or
continue with the next activity. The random switch px,y is set equal to 0.5 for
all choices, which represents a kind of worst case for predictability. In so doing,
the set of idle states is derived as follow: I = {idle0,0, idle0,1, idle1,0, idle1,2,
idle2,0, idle2,3, idle3,0}. In each state S = A ∪ I, events occur with exponen-
tially distributed inter-times with PDF fλ(t) = λe−λt, λ = 1.

For this model, three different configurations are considered, preserving a
mean value µ = 2, but with different values of the coefficient of variation of the
sojourn time distribution, so as to evaluate the impact of the dispersion measure
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Fig. 4. The stochastic model of activities used for generating synthetic datasets.

on the predictor accuracy. In the first configuration, named 8-phase Erlang,
sojourn times are generated as Erlang distributed random variables with shape
k = 8 and rate λ = 4, resulting in a coefficient of variation of 1/

√
8. The second

configuration, named 2-phase Erlang, preserves the same Erlang distribution
type but varying the shape to k = 2, the rate to λ = 1, and the coefficient of
variation to CV = 1/

√
2. In the last configuration, named 2-phase Hyper-exp, a 2-

phase hyper-exponential distribution with CV ≈ 1.92 and parameters λ1 = 1/6,
λ2 = 3/2, p1 = 1/4, and p2 = 3/4 is applied. For each configuration, a synthetic
dataset characterized by a sequence of events and a sequence of activities is
generated simulating 4 000 completions of sojourn times. In the simulation, the
time unit of temporal parameters is 180 s.

Finally, different settings of the predictor component, obtained with the dif-
ferent fitting strategies Exp, Erlang, and Whitt described in Sect. 3 are experi-
mented, so as to evaluate how different fitting distributions impact on prediction
and scheduling performance.

Note that, in so doing, the trained model used for prediction is different than
that used in the generation of datasets: the Whitt strategy will fit expected value
and coefficient of variation, while Exp and Erlang strategies will fit only the
expected value; incidentally, for the 2-phase Erlang dataset, the Erlang strategy
fits both the coefficient of variation and the overall shape, and so this benevolent
case was not reported in the experimentation.

Fig. 5 compares precision and recall metrics on the 8-phase Erlang dataset,
for different classes of approximants, for td equal to 0, 150, 300, 1 200, and 1 800
seconds, and tw equal to 0, 60, 120, 300 seconds.

As depicted in Figs. 5b, 5d, 5f, increasing the response duration td improves
the recall for all fitting strategies. Whereas, the qualitative trend of the precision
metric varies with the fitting strategy: in the Whitt strategy, the highest precision
score is reached around 600 seconds and then steadily maintained until 1 800
seconds, for all tw except for tw = 300 s (see Fig. 5a); conversely, the Erlang
strategy showed in Fig. 5c outperforms the precision of the Whitt strategy for
td ≤ 300 s, and decays for td ≥ 600 s, resulting in a highest precision score lower
than the Whitt strategy ; finally, the EXP strategy (Fig. 5e) follows the same
qualitative pattern of the Erlang strategy, but with an overall performance score
reduced with respect to other cases.
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Fig. 5. Precision and recall metrics on the 8-phase Erlang dataset (ε = 0.0001).
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Fig. 6. Precision and recall metrics on the 2-phase Erlang dataset (ε = 0.0001).
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(b) Recall of Whitt strategy.

Fig. 7. Precision and recall metrics on the 2-phase Hyper-exp dataset (ε = 0.0001).

Note that, by increasing the response actuation time tw (i.e., requiring more
time units before the activation of the response action), the overall performance
is inevitably reduced, mainly in terms of precision. All metrics are obtained using
an ε threshold equals to 0.0001. Doubling the ε value does not affect precision and
recall, while increasing it by a factor of five produces a performance breakdown
for td > 600 s, as the minimum probability required by the scheduling policy is
never reached and, consequently, no activation window that contains the start
time of the target activity is scheduled.

Since the Whitt strategy has been proven to outperform the other fitting
strategies on the 8-phase Erlang dataset, we analyzed how this approximate
distribution operates on the 2-phase Erlang dataset in terms of precision and
recall. As a result of a coefficient of variation for sojourn time distributions
greater than the 8-phase Erlang dataset, both metrics perform worse (Fig. 6).
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Finally, the same behaviour is emphasized on the 2-phase Hyper-exp dataset,
where a higher coefficient of variation implies the overall lowest performance
score, as depicted in Fig. 7.

4.2 Evaluation on a dataset from Ambient Assisted Living

We experiment the proposed approach also using a publicly available dataset [16]
for Activity Recognition (AR) [10,5] of Activities of Daily Living (ADLs) [8].

The dataset contains 1 319 time-stamped and typed events collected by 14
state-change sensors and classified in 14 distinct event types (e.g., hall-bedroom
door, plates cupboard, toilet flush), placed on various objects (e.g., doors, cup-
boards, household appliances), and deployed at different locations (e.g. kitchen,
toilet, bedroom) inside a 3-room apartment.

These events refer to a period of 28 days, during which a subject was per-
forming 7 distinct activity types A = {Leaving house, Preparing a beverage,
Preparing breakfast, Preparing dinner, Sleeping, Taking shower, Toileting}, for a
total of 245 activity instances, plus 219 occurrences of Idle instances.

Activities were performed in a sequential way (i.e., one activity at a time)
with only some limited exceptions (i.e., sometimes Toileting occurs at the same
time as Sleeping or Preparing dinner), opportunely removed in order to be
cast into the shape of the semi-Markov process. Activities were annotated by
the subject himself using a Bluetooth headset, resulting in a stream of ac-
tivities a1, a2, . . . , an, each characterized, as described in Sect. 2, by a tuple
ai = 〈αi, τi, δi〉.

As described in [4], events were converted from a raw sensor representation
(which holds a high signal when the sensor is firing, and a low signal otherwise)
into a dual change-point sensor representation, which emits a time-point signal
when the sensor starts to fire and when it switches off, distinguishing activa-
tion/deactivation actions and, consequently, doubling the number of event types
and instances, from 14 to 28 and from 1 319 to 2 638, respectively. To avoid
some inconsistencies in the characterization of Leave house, during which all
event types were improperly recorded, we have removed from each training set
all events not consistent with the activity.

We consider the case in which the system is required to schedule a response
action (e.g., an alarm or a reminder) about the intake of some drug before the
beginning of a meal. In this scenario, we perform two distinct experiments where
the critical activity is either Preparing breakfast or Preparing dinner. In both
cases, we adopt the Whitt strategy for the fitting of sojourn times, which out-
performed the other two strategies on synthetic datasets. Results are reported
in the first two rows of Table 1, showing precision and recall metrics for different
values of td and tw. The prediction of the start of the Preparing dinner activ-
ity achieves precision = 1, 0.68, 0.68, 0.48 and recall = 0.806, 0.708, 0.708, 0.6
for tw = 0, 60, 120, 300 s and td ≥ 1200 s, respectively. For the Preparing
breakfast activity, prediction performance is considerably worse, resulting in
precision = 0.929, 0.462, 0.214, 0.2 and recall = 0.448, 0.25, 0.136, 0.136 for tw =
0, 60, 120, 300 s and td ≥ 1200 s, respectively.
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td(s)
0 150 300 600 1200 1800

Preparing
dinner

tw(s)

0 0/0 0.163/0.533 0.265/0.684 0.52/0.684 1/0.806 1/0.806
60 0/0 0.115/0.25 0.2/0.385 0.2/0.385 0.68/0.708 0.68/0.708
120 0/0 0.2/0.385 0.2/0.385 0.2/0.385 0.68/0.708 0.68/0.708
300 0/0 0/0 0/0 0/0 0.48/0.6 0.48/0.6

Preparing
breakfast

tw(s)

0 0/0 0.093/0.385 0.714/0.385 0.714/0.385 0.929/0.448 0.929/0.448
60 0/0 0.214/0.136 0.214/0.136 0.214/0.136 0.462/0.25 0.462/0.25
120 0/0 0/0 0/0 0/0 0.214/0.136 0.214/0.136
300 0/0 0/0 0/0 0/0 0.2/0.136 0.2/0.136

Preparing
breakfast
(filtered)

tw(s)

0 0/0 0.465/0.741 0.489/0.759 0.557/0.818 0.661/0.871 0.672/0.913
60 0/0 0.222/0.556 0.319/0.667 0.33/0.735 0.408/0.828 0.476/0.896
120 0/0 0.063/0.261 0.128/0.467 0.225/0.69 0.288/0.778 0.338/0.839
300 0/0 0.053/0.28 0.088/0.429 0.178/0.643 0.277/0.811 0.329/0.836

Table 1. Precision/recall metrics obtained on the real dataset by the Whitt strategy for
Preparing dinner (ε = 0.0001), filtered and not-filtered Preparing breakfast (ε = 0.0003)
as critical activities.

An investigation on the structural reasons of reduced performance for Prepar-
ing breakfast activity provided insight about the existing mismatch between the
real process of AAL and the semi-Markov process used in our online prediction.
In the real phenomenon captured by the dataset, some activities such as Toi-
leting and Preparing a beverage occur as a kind of “shuffle” and noisy events
between any other two activities, and the subject carries some memory of the
previous activity. Whereas, due to the 1-order memory of the SMP abstraction,
the process loses any memory of the past history at each start of a new activity.

In principle, this limit could be overcome by adopting a 2-order memory SMP,
as already implemented for modelling and distinguishing the Idle states on the
basis of the previous activity and of the subsequent one. To confirm this conjec-
ture, an additional experiment was carried out by removing all activities of type
Toileting or Preparing a beverage from the dataset. The third row of Table 1 re-
ports precision = 0.672, 0.476, 0.338, 0.329 and recall = 0.913, 0.896, 0.839, 0.836
for tw = 0, 60, 120, 300 s and td = 1800 s, respectively. Precision is thus marginally
improved (except for tw = 0 s), while recall greatly improves for all values of tw.

5 Conclusions

We presented a model-based approach for the online scheduling of response ac-
tions, and evaluated its performance both on synthetic and real-world datasets.
The results highlighted that sojourn-time statistics provide important informa-
tion to predict the future evolution, and accurate models based on generally-
distributed sojourn times can improve the precision of scheduling policies. When
sojourn times are highly variable, or the sequence of activities does not follow reg-
ular patterns, scheduling performance suffers from inaccurate predictions. The
experimentation on a real-world dataset of AAL confirmed these results and
showed that, for AR, future evolution often depends on the history of previous
activities, breaking the hypothesis of semi-Markov models. Finally, keeping an
idle state between each pair of activities might lead to overfitting the waiting
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times as the sample size may be small in some case. Performance achieved by
different model structures will be investigated in the future.
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