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Abstract—Fischer’s protocol is a well-known timed mechanism
through which a set of processes can synchronize access to a
critical section without relying on atomic test-and-set operations,
as might occur in a distributed environment or on a low-level
computing platform. The protocol is based on a deterministic
waiting time that can be defined so as to guarantee that possible
interference due to concurrent accesses with random bounded
delays be resolved with certainty.

While protocol correctness descends from firm lower and
upper bounds on waiting times and random delays, perfor-
mance attained in synchronization also depends on continuous
distributions of delays. Performance evaluation of a correct
implementation thus requires the solution of a non-Markovian
model whose underlying stochastic process falls in the class of
Markov regenerative processes (MRPs) with multiple concurrent
delays with non-exponential duration. Numerical solution of this
class of models is to a large extent still an open problem.

We provide a twofold contribution. We first introduce a novel
method for the steady-state analysis of MRPs where regenerations
are reached in a bounded number of discrete events, which
enlarges the class amenable to numerical solution by allowing
multiple concurrent timers with non-exponential distributions.
The proposed technique is then applied to Fischer’s protocol
by characterizing the latency overhead due to synchronization,
which comprises the first case where performance of the protocol
is quantitatively assessed by jointly accounting for firm bounds
and continuous distributions of delays.

Index Terms—Fischer’s protocol, mutual exclusion, Markov
Regenerative Process, steady-state, non-Markovian analysis.

I. INTRODUCTION

Fischer’s protocol [1] guarantees mutual exclusion of a
number of processes competing for the access to a critical
section. The protocol assumes the use of a shared memory
where only atomic read and write operations are available:
mutual exclusion is achieved by imposing firm bounds on
the duration of write operations and test delays. The protocol
finds application in systems where test-and-set operations
are not available, such as low-cost processors of embedded
devices [2]. Several qualitative properties of Fischer’s protocol
(such as mutual exclusion and deadlock freedom) have been
verified either through mathematical proofs [3], [4] or real-
time model checking algorithms [5].

While the protocol has become a well-known benchmark
for the verification of qualitative timing properties using real-
time model checkers [6], [5], [7], results on its quantitative
analysis are still limited. The work of [8] analyzes a random-
ized version of the protocol where read and write operations

are modeled with exponential or Erlang distributions, and it
derives the expected number of processes that proceed along
the phases of the protocol, together with analytical bounds
on their outcome probability. As noted in [8], the unbounded
supports of exponential or Erlang probability density functions
(PDFs) do not guarantee mutual exclusion for this randomized
version of Fischer’s protocol; on the other hand, analytical
results are difficult to extend to PDFs with finite supports,
and simulation appears as the only alternative.

In fact, most numerical approaches only address the anal-
ysis of models where concurrent events are associated with
exponentially distributed (EXP) timers: in this case, the un-
derlying stochastic process is a continuous-time Markov chain
(CTMC), and efficient numerical algorithms that leverage the
memoryless property of EXP timers are available [9]. When
the model includes generally distributed (GEN) timers, i.e.,
timers with non-exponential PDFs (such as those with bounded
supports required to guarantee mutual exclusion in Fischer’s
protocol), the future evolution depends not only on the current
state (as in CTMCs), but also on previous sojourn times.

In this case, the class of the underlying stochastic process
is determined by the persistence of GEN timers after discrete
events [10]. If GEN timers cannot persist across discrete
events, the underlying stochastic process is semi-Markov and
the system has only “memory” of sojourn time elapsed in the
current state; the Markov property [9] is satisfied immediately
after each sojourn, when the next state is reached. In Markov
renewal theory [9], the corresponding time instants are called
regeneration points, since the model “loses memory” and
probabilistically restarts. When GEN timers can persist to
discrete events, the underlying stochastic process is called
Markov regenerative (MRP) if regeneration points are reached
infinitely often with probability 1.

While transient and steady-state analysis of MRPs have been
fully investigated [9], the computation of the global and local
kernels on which their solution relies is more recent and targets
only subclasses of MRPs. The work of [11], [12], [13], [14]
focused on MRPs where at most one GEN timer is enabled in
each state (usually known as “enabling restriction”); in [15],
this requirement was relaxed, allowing the numerical compu-
tation of MRP kernels for models with multiple GEN timers.
This technique is based on the enumeration of stochastic state
classes [16], which provide the (analytical) joint PDF of GEN



2

timers after each discrete event; [15] applied the technique
to transient analysis, while [17] proposed a solution for
probabilistic model checking, analyzing quantitative properties
for the transient regime of Fischer’s protocol. No results have
been reported for the application of Markov renewal theory to
steady-state analysis of MRP models with multiple concurrent
GEN timers (except for the case of deterministic timers [18]).

In this work, we provide a twofold contribution. We first
introduce a novel method for steady-state analysis of models
with multiple concurrent GEN timers that reach regenerations
within a bounded number of discrete events (Sect. III); in
contrast with existing results [11], [12], [13], [14], the method
can be applied to models where GEN timers overlap their
activity periods. We then apply the method to evaluate the
performance of a set of processes that synchronize the access
to a critical section using Fischer’s protocol (Sect. IV); the
protocol is formulated with stochastic time Petri nets (STPNs)
and combines deterministic waiting times with upper-bounded
stochastic delays for write operations, as required for a correct
implementation (Sect. II). Conclusions are drawn in Sect. V.

II. A STOCHASTIC TIME PETRI NET MODEL
OF FISCHER’S PROTOCOL

A. Stochastic time Petri nets

An STPN [16] is defined by a set of transitions, representing
activities with stochastic duration, and a set of places; a
marking assigns a natural number of tokens to each place.
Places can serve as input or output places of a transition: when
the marking assigns at least one token to each input place, the
transition is enabled; after its firing, one token is removed from
each input place and one token is added to each output place.
A transition samples a time to fire when it becomes enabled; as
in discrete event systems, the transition with minimum time
to fire is the next event and its firing enables, disables, or
restarts other events by removing tokens from input places
and adding tokens to output places. In addition, arbitrary
constraints on token counts (e.g., ? place1 > place2) can
limit the enabling of a transition, and update functions of the
form “place← expression” can specify additional updates of
token counts after its firing.

Definition 1 (Syntax). A stochastic time Petri net is a tuple
〈P, T,A−, A+, B, U,EFT,LFT, F,W 〉 where: P and T are
disjoint sets of places and transitions; A− ⊆ P × T and
A+ ⊆ T×P are the precondition and post-condition relations;
B and U associate each transition t with an enabling function
B(t) : NP → {true, false} and with an update function
U(t) : NP → NP . For each transition t ∈ T , the STPN also
specifies an earliest firing time EFT (t) ∈ Q>0, a latest firing
time LFT (t) ∈ Q>0 ∪ {∞} such that EFT (t) ≤ LFT (t),
a distribution Ft such that x < EFT (t) ⇒ Ft(x) = 0 and
x > LFT (t)⇒ Ft(x) = 1, and a weight W (t) ∈ R>0.

A place p is said to be an input or output place for a tran-
sition t if (p, t) ∈ A− or (t, p) ∈ A+, respectively. Following
the usual terminology of stochastic Petri nets, a transition t
is called immediate (IMM) if EFT (t) = LFT (t) = 0 and

timed otherwise; a timed transition is called exponential (EXP)
if Ft(x) = 1 − e−λx for some rate λ ∈ R>0, or general
(GEN) if its time to fire is distributed according to a non-
exponential distribution; as a special case, a GEN transition t
is deterministic (DET) if EFT (t) = LFT (t) > 0. For each
transition t, we assume that Ft can be expressed as the integral
function of a PDF ft, i.e., Ft(x) =

∫ x
0
ft(y) dy.

Given an STPN, a marking m ∈ NP assigns a natural
number of tokens to each place of the net. A transition t is
enabled by m if m assigns at least one token to each of its
input places and the enabling function B(t)(m) evaluates to
true; the set of transitions enabled by m is denoted as E(m).

Definition 2 (State). The state of an STPN is a pair 〈m,~τ〉
where m ∈ NP is a marking and ~τ ∈ RE(m)

>0 is a real-valued
vector assigning a time to fire ~τ(t) ∈ R>0 to each enabled
transition t ∈ E(m).

Definition 3 (Semantics). Given an initial marking m0, an
execution of the STPN is represented by a (finite or infinite)
path ω = s0

γ1−→ s1
γ2−→ s2

γ3−→ · · · such that: s0 = 〈m0, ~τ0〉
is the initial state, where the time to fire ~τ0(t) of each
enabled transition t ∈ E(m0) is sampled according to the
distribution Ft; γi ∈ T is the ith transition fired along ω and
si = 〈mi, ~τi〉 is the state after its firing. In each state si:
• The next transition γi+1 is selected from the set of

enabled transitions with minimum time to fire according
to a discrete distribution given by weights: if Emin =
arg mint∈E(mi) ~τi(t), then t ∈ Emin is selected with
probability pt = W (t)/(

∑
u∈Emin

W (u)).
• After the firing of γi+1, the new marking mi+1 is derived

by (1) removing a token from each input place of γi+1,
(2) adding a token to each output place of γi+1, and
(3) applying the update function U(γi+1). A transition t
enabled by mi+1 is said to be persistent if it is distinct
from γi+1 and it is enabled also by mi and by the
intermediate markings after steps (1) and (2); otherwise,
t is said to be newly enabled.

• For each newly enabled transition t, the time to fire
~τi+1(t) is sampled according to the distribution Ft; for
each persistent transition t, the time to fire in si is
reduced by the sojourn time in the previous marking, i.e.,
~τi+1(t) = ~τi(t)− ~τi(γi+1).

B. A stochastic model of Fischer’s protocol

Fig. 1 illustrates an STPN model of three processes P1, P2,
P3 (the same scheme can be extended to any number of pro-
cesses) that synchronize their access to a mutually-exclusive
critical section using Fischer’s protocol. Each horizontal sec-
tion represents a process, and place id encodes a shared
variable id that can take the values {0, 1, 2, 3}. In the protocol
specification [1], when id = 0, each process Pi can attempt to
access the critical section by (1) writing its identifier i to id,
(2) waiting for a time greater than the maximum write time
of any other process, and (3) reading id again to ensure that
id = i. If id 6= i, the process must wait until id = 0 before a
new attempt. In the model, each process Pi eventually leaves
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id

idle1 ready1arrival1
exp(0.1)

writing1readEmpty1
?id = 0

waiting1write1
unif(0,1)
id← 1

reading1wait1
det(1)

readOther1
?id 6= 1

cs1readSelf1
?id = 1

completed1service1
unif(0,2)

reset1
id← 0

idle2 ready2arrival2
exp(0.1)

writing2readEmpty2
?id = 0

waiting2write2
unif(0,1)
id← 2

reading2wait2
det(1)

readOther2

?id 6= 2

cs2readSelf2
?id = 2

completed2service2
unif(0,2)

reset2
id← 0

idle3 ready3arrival3
exp(0.1)

writing3readEmpty3
?id = 0

waiting3write3
unif(0,1)
id← 3

reading3wait3
det(1)

readOther3
?id 6= 3

cs3readSelf3
?id = 3

completed3service3
unif(0,2)

reset3
id← 0

Fig. 1: STPN model of three processes accessing a critical section with Fischer’s mutual exclusion protocol.

its idle state through transition arrivali (EXP with rate 0.1)
and enters the contention by reaching place writingi as soon
as id = 0 (IMM transition readEmptyi with enabling function
?id = 0); it then sets the shared variable to its own identifier
(update function id ← i) at the end of a write operation
(transition writei, with duration uniformly distributed over
[0, 1]), and sojourns in a waiting state (place waitingi) for
a time greater than the maximum time that any process can
spend writing to id (transition waiti, DET equal to 1). When
the wait completes, process Pi reads id again to ensure that
its write has finished last (place readingi): if id 6= i, the
control goes back to the initial state of contention readyi
(IMM transition readOtheri); whereas, if the shared variable
is still equal to the process identifier (i.e., id = i), Pi enters
the critical section csi (IMM transition readSelfi), performs
its service (transition servicei, uniform over [0, 2]), and then
resets id (IMM transition reseti), returning idle.

Mutual exclusion is enforced through the use of concurrent
GEN timers with bounded supports: the time spent in the
waiting phase by each process is greater than the maximum
writing time of any other process [3].

III. STEADY-STATE ANALYSIS OF MRPS
WITH STOCHASTIC STATE CLASSES

A. Steady-state analysis of MRPs

An MRP [9] is a continuous-time stochastic process em-
bedding a Markov renewal sequence that defines a sequence
of regeneration points where future behavior depends on past
history only through the current regeneration state.

Definition 4 (Markov renewal sequence). Given a probability
space (Ω,A, P ) and a finite set R, the sequence of random

variables {(Xn, Tn), n ∈ N} with Xn ∈ R, Tn ∈ R>0, and
0 = T0 ≤ T1 ≤ · · · ≤ Tn, is a time-homogeneous Markov
renewal sequence with state space R and kernel Gik(t) if

P{Xn+1 = k, Tn+1 − Tn ≤ t | X0, . . . , Xn, T1, . . . , Tn}
= P{X1 = k, T1 ≤ t | X0 = i} := Gik(t)

for all n ∈ N, i, k ∈ R, and t ∈ R>0.

Definition 5 (Markov regenerative process). A stochastic pro-
cess {M(t), t ≥ 0} defined on the probability space (Ω,A, P )
and taking values in M is said to be Markov regenerative if
there exists a Markov renewal sequence {(Xn, Tn), n ∈ N}
with finite state space R such that
• for each n ∈ N, Tn is a stopping time for {M(t), t ≥ 0}

and Xn ∈ R is determined by {M(u), 0 ≤ u ≤ Tn};
• for each n ∈ N, m ≥ 1, 0 ≤ t1 ≤ · · · ≤ tm and positive

function f defined on Mm,

E{f(M(Tn + t1), . . . ,M(Tn + tm)) | Xn,M(u)∀u ≤ Tn}
= E{f(M(t1), . . . ,M(tm)) | Xn} .

Steady-state behavior of an MRP can be analyzed through
its global kernel Gik(t) := P{X1 = k, T1 ≤ t | X0 = i}
and local kernel Lij(t) := P{M(t) = j, T1 > t | X0 = i}
for all regeneration states i, k ∈ R, and for all states j ∈
M. The global kernel Gik(t) characterizes the occurrence of
regenerations, while the local kernel Lij(t) characterizes the
behavior between subsequent regenerations: if i ∈ R is the
initial regeneration state, Gik(t) gives the probability that the
next regeneration is reached within time t on k ∈ R, while
Lij(t) gives the probability that the next regeneration has not
been reached at time t and the current state is j ∈M.
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From the local and global kernels, steady-state probabilities
of an MRP can be derived as follows [9], [19].

Theorem 1. Let {M(t), t ≥ 0} be an MRP with kernels
Gik(t) and Lij(t) for all i, k ∈ R, j ∈ M, t ∈ R>0 and
aperiodic, irreducible and recurrent non-null Markov renewal
sequence. Then, for all j ∈M,

lim
t→∞

P{M(t) = j} =

∑
i∈R πiαij∑

i∈R,m∈M πiαim

where: αij :=
∫∞

0
Lij(t) dt is the expected time spent in j ∈

M before a new regeneration after i ∈ R; ~π is the steady-
state solution of the DTMC embedded at regeneration points,
i.e.,

∑
i∈R πi = 1 and ~π = ~πG, with G := limt→∞G(t).

B. Derivation of αij and Gik using stochastic state classes

Using Theorem 1, steady-state probabilities of a model can
be derived from the values of αij and Gik for the underlying
MRP. To compute these quantities, we leverage stochastic
state classes [16], which have been previously applied to the
evaluation of local and global kernels for transient analysis
of MRPs with multiple concurrent GEN timers [15]. Each
class characterizes the state of an STPN after a discrete event,
encoding the marking and the support and joint distribution of
remaining times to fire of GEN transitions.

Definition 6 (Stochastic state class). A stochastic state class
is a tuple Σ = 〈m,D~τ , f~τ 〉 where: m ∈ NP is a marking;
f~τ is the PDF (immediately after the previous firing) of the
random vector ~τ = (τ1, . . . , τn) of remaining times to fire of
transitions enabled by m; D~τ ⊆ Rn is the support of f~τ .

Given a stochastic state class Σ, the state PDF conditioned
on the firing of a transition γ is given by the successor of Σ.

Definition 7 (Succession relation). We say that, with probabil-
ity µ, Σ′ = 〈m′, D~τ ′ , f~τ ′〉 is the successor of Σ = 〈m,D~τ , f~τ 〉
through γ ∈ E(m), and we write Σ

γ,µ
=⇒ Σ′, if, given that

the marking of the STPN is m and ~τ is a random vector
distributed over D~τ according to f~τ , then: transition γ has
nonzero probability µ of firing; if γ fires, its firing yields
marking m′ and, conditioned on this event, the new vector
of times to fire ~τ ′ is distributed over D~τ ′ according to f~τ ′ .

If all transitions in the model are associated with a de-
terministic or expolynomial distribution [11] with possibly
bounded support, the relation

γ,µ
=⇒ can be enumerated through

a symbolic calculus that integrates the derivation of DBM
supports and of the analytical form of joint PDFs [16].

We enumerate stochastic state classes from initial classes
corresponding to all reachable regeneration states, which spec-
ify the marking and a vector of (deterministic) elapsed times
for GEN timers [17]. The enumeration proceeds along any
sequence of transition firings with nonzero probability until
a new regeneration is detected (i.e., GEN timers are newly
enabled or enabled since a deterministic time), resulting in a
tree structure where nodes are associated with classes, edges
with firing probabilities, and leaves with regenerations.

To compute Gik for all k ∈ R, we enumerate the tree
of stochastic state classes from regeneration i ∈ R until
a new regeneration is reached on every leaf. Each path
Σ0

γ1,µ1
=⇒ Σ1

γ2,µ2
=⇒ · · · γn,µn

=⇒ Σn from the root Σ0 to a leaf
node Σn provides the probability preach(Σn) =

∏n
i=1 µi that

Σn is reached from Σ0. We compute Gik := limt→∞Gik(t) =
P{X1 = k | X0 = i} for all k ∈ R by summing up reaching
probabilities of leaves that correspond to regeneration k:

Gik =
∑

Σ∈LEAVES(i) s.t.
Σ has regeneration k

preach(Σ) .

The expected time αij spent in state j ∈ M after each
occurrence of regeneration i ∈ R, and before a new regener-
ation, is equal to the expected time spent in any inner node
with marking j in the tree enumerated from i:

αij =
∑

Σ∈INNER(i) s.t.
Σ has marking j

preach(Σ)SJ(Σ)

where INNER(i) is the set of inner nodes in the tree and SJ(Σ)
is the expected sojourn time of Σ. In turn, according to Def. 6,
if Σ := 〈m,D, f〉, the expected sojourn time SJ(Σ) can be
computed by partitioning the support D of f into a finite set
of sub-zones Dt := {~τ ∈ D | ~τ(t) ≤ ~τ(u) ∀u ∈ E(m)},
one for each transition t ∈ E(m) enabled by m, such that the
time to fire ~τ(t) of t is minimum in Dt and thus, according to
the race semantics of STPNs, equal to the sojourn time in Σ.
Hence, SJ(Σ) =

∑
t∈E(m)

∫
Dt
x f(x) dx.

IV. EVALUATION

The solution technique presented in Sect. III allows us to
compute steady-state probabilities for the STPN model of
Fischer’s protocol introduced in Sect. II. The solution was
implemented using functions provided by the ORIS API and
made available both as an API primitive and as a new analysis
engine in the ORIS Tool (www.oris-tool.org) [20].

The new feature was applied to characterize the latency
experienced by a process in the access to the critical section.
Latency for the ith process is computed as the steady-state
probability that the process is in any of the states visited
after leaving the idle state and before reaching the critical
section, i.e., Latencyi := P{readyi+writingi+waitingi+
readingi = 1}. Model parameters were varied (uniformly for
all processes, or only for processes other than i) so as to assess
sensitivity with respect to: the arrival rate λ, which determines
the sojourn time in the idle state; the number n of concurrent
processes; the maximum duration st of the sojourn time in
the critical section; the maximum writing time wt, which is
assumed to be equal to the waiting time after a write operation.
For example, λ = 0.1, n = 3, st = 2, wt = 1 in Fig. 1.

All the experiments were carried out on a machine with
two Intel Xeon E5640 processors (2.66 GHz, 12 MB cache,
4 cores) and 32 GB of RAM; computation times were almost
insensitive to any parameter variation, except for the number
of processes n: on average, each experiment takes 0.26 s to
complete with n = 3, 13 s with n = 4, and 930 s with n = 5.
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Fig. 2: Latency1 as a function of the arrival rate λ for different
values of the number n of processes.

0.0 0.5 1.0 1.5 2.0
lambda

0.1

0.2

0.3

0.4

0.5

la
te

n
cy

n=3
n=4
n=5

Fig. 3: Latency1 as a function of the arrival rate λ of other
processes, for constant arrival rate λ1 = 0.1 and varying
number n of processes.

A. Latency with respect to λ and n

Fig. 2 plots latency of process P1 as a function of the arrival
rate λ (equal for all processes) and number of processes n.
Latency increases with λ due to a twofold mechanism: on the
one hand, an increase of λ reduces the time spent by P1 in
the idle state, thus increasing the number of times that the
process engages the access protocol; on the other hand, it also
increases the contention with other processes, resulting in a
larger time spent by P1 in latency states for each access. The
latter mechanism also explains the increase of latency observed
when the number of concurrent processes increases.

Fig. 3 plots the latency of process P1 when the arrival
rate λ1 of P1 is kept equal to 0.1 and the rate λ of other
processes is increased, for different values of n. This setting
isolates the effect on latency induced by increased concur-
rency, abstracting from the idle time of P1. For this reason,
the increase in latency with respect to λ is lower than in Fig. 2.

B. Latency with respect to service times

Fig. 4 plots latency of process P1 as a function of the
arrival rate λ (equal for all processes), for different values
of the maximum sojourn time st in the critical section. For
low values of λ, the degree of concurrency is low and latency
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Fig. 4: Access latency as a function of λ for n = 3 processes,
for varying values of maximum sojourn time in critical section.
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Fig. 5: Probability that the critical section is occupied, as a
function of the arrival rate λ, for n = 3 processes and different
values of the maximum sojourn time.

grows almost linearly; in contrast, the use of the resource
saturates for high values of λ.

For low arrival rates λ, higher service times st result
in higher latency: when arrivals are rare, interference and
blocking will arise only in the presence of long sojourn times,
which will increase both the probability that the critical section
is already in use when process P1 becomes ready, and the
expected number of contending processes. Whereas, for higher
values of λ, an increase of the sojourn time st in the critical
section will result in lower latency: when λ grows, the usage
of the resource is saturated, and contentions occur at each
access; a higher duration of the sojourn time st then reduces
the proportion of time spent in the access to the critical section.

To support this interpretation, Fig. 5 plots the resource
usage, calculated as the probability that at least one process is
in the critical section (due to symmetry, cumulative resource
usage is n times that of each process). Increased sojourn
times in the critical section tend to anticipate saturation of the
resource and result in higher usage. In fact, under a high degree
of concurrency, the time required to complete a contention
will be close to the worst-case writing time plus the waiting
time; asymptotic resource usage can thus be approximated as
E[ST ]/(E[ST ] + 2wt) where E[ST ] = st/2 is the expected
value of the sojourn time.
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Fig. 6: Latency of process P1 as a function of the arrival rate λ
for different values of the maximum writing time.
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Fig. 7: Access latency as a function of the arrival rate λ for
n = 3 processes in a non-homogeneous setting where only the
writing time distribution of the first process varies.

C. Latency with respect to writing times

Fig. 6 plots latency of process P1 as a function of the arrival
rate λ (equal for all processes), for different values of the
maximum writing time wt (also equal to the waiting time).
As intuitive, higher writing times result in higher latency.

In contrast, Fig. 7 analyzes the latency of P1 when only its
writing time is varied and wt = 1 for other processes. The
results highlight a subtle mechanism of the Fischer’s protocol,
where the first write operation excludes other processes from
the contention, but access to the critical section is granted to
the last process that completes its write operation. Should a
process write quickly, trying to avoid contentions, or slowly,
trying to finish last? We analyzed the impact of a lower
expected value (uniform distribution over [0, 0.2]) or a higher
one (uniform distribution over [0.8, 1]) for the writing time
of P1, with respect to the expected value of other processes
(uniform distribution over [0, 1]). Results show that, for low
arrival rates, fast write operations yield a small gain in latency,
as contentions are rare and it is more advantageous to exclude
other processes; however, as the arrival rate grows, contentions
occur more frequently and slow write operations become
more advantageous, since they result in higher probability of
winning contentions.

V. CONCLUSIONS

In this paper, we provided a twofold contribution. On
the one hand, the solution technique developed in Sect. III
advances the state of the art of non-Markovian analysis by
allowing steady-state analysis of models with multiple con-
current timers with non-exponential durations. On the other
hand, the results of Sect. IV demonstrate the applicability of
the proposed technique and provide a quantitative evaluation
of performance for Fischer’s mutual exclusion protocol. As
a major element of novelty, this evaluation considers delays
distributed over bounded supports, as needed for a correct
implementation of the protocol.

REFERENCES

[1] M. Fischer, “Re: Where are you?” Email sent to Leslie Lam-
port, ARPANET message number 8506252257.AA07636@YALE-
BULLDOG.YALE.ARPA (47 lines), June 25, 1985 18:56:29 EDT.

[2] P. A. Buhr, D. Dice, and W. H. Hesselink, “High-performance N-thread
software solutions for mutual exclusion,” Concurrency and Computa-
tion: Practice and Experience, vol. 27, no. 3, pp. 651–701, 2015.

[3] L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans. Comput.
Syst., vol. 5, no. 1, pp. 1–11, Jan. 1987.

[4] N. Lynch and N. Shavit, “Timing-based mutual exclusion,” in Real-Time
Systems Symposium, 1992. IEEE, 1992, pp. 2–11.

[5] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson,
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