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Abstract—Small-scale clouds (SCs) often suffer from resource
under-provisioning during peak demand, leading to inability to
satisfy service level agreements (SLAs) and consequent loss of
customers. One approach to address this problem is for a set of
autonomous SCs to share resources among themselves in a cost-
induced cooperative fashion, thereby increasing their individual
capacities (when needed) without having to significantly invest
in more resources. A central problem (in this context) is how to
properly share resources (for a price) to achieve profitable service
while maintaining customer SLAs. To address this problem, in
this paper, we propose the SC-Share framework that utilizes
two interacting models: (i) a stochastic performance model that
estimates the achieved performance characteristics under given
SLA requirements, and (ii) a market-based game-theoretic model
that (as shown empirically) converges to efficient resource sharing
decisions at market equilibrium. Our results include extensive
evaluations that illustrate the utility of the proposed framework.

Index Terms—data centers; small cloud; performance; markets

I. INTRODUCTION

Infrastructure-as-a-Service is quickly becoming a ubiquitous
model for providing elastic compute capacity to customers
who can access resources in a pay-as-you-go manner without
long-term commitments, with rapid scaling (up or down)
as needed [1]. Cloud service providers (Amazon AWS [2],
Google Compute Engine [3], and Microsoft Azure [4]) allow
customers to quickly deploy their services without a large
initial infrastructure investment.
Proliferation of smaller-scale clouds. However, there are
some non-trivial concerns in obtaining services from large-
scale public clouds, including cost and complexity. Massive
cloud environments can be costly and inefficient for some
customers, e.g., Blippex [5], thus resulting in more and more
customers building their own smaller-scale clouds (SCs) [6]
for better control of resource usage; e.g., it is hard to guarantee
network performance in large-scale public clouds due to
their multi-tenant environments [7]. Moreover, smaller-scale
providers exhibit a greater flexibility in customizing services
for their users, while large-scale public providers minimize
their management overhead by simplifying their services; e.g.,
Linode [8] distinguishes itself by providing clients with easier
and more flexible service customization. The use of SCs is
one approach to resolving cost and complexity issues.

Despite the potential of SCs, they are likely to suffer from
resource under-provisioning during peak demand, which can
lead to inability to satisfy service level agreements (SLAs)
and consequent loss of customers. SLAs come in many forms,
such as the average or maximum waiting time before being
served, the probability of requests being rejected, and the
amount of resources that each request can obtain. In order

not to resort, similarly to large-scale providers, to resource
over-provisioning, with all its disadvantages, one approach to
realizing the benefits of SCs is to adopt hybrid architectures
[9], [10], that allow private clouds (or small cloud providers)
to outsource their requests to larger-scale public providers.
However, the use of public clouds can potentially be costly
for the small-scale provider.
Motivation. An emerging approach to solving the under-
provisioning problem is for SCs to share their resources in
a federated cloud environment [11]–[17], thus (effectively)
increasing their individual capacities (when needed) without
having to significantly invest in more resources, e.g., this can
be helpful when the SCs do not experience peak workloads
at the same time. Earlier efforts [16], [17] characterize the
benefits of cloud federations, while [16] also studies the
motivation for cloud providers to participate in the federation.
Authors of [14] present SpotCloud [18], a cooperative system
that helps providers selling idle resources to other providers or
end-users at specified prices, and they analyze pricing models
that incentivize providers to contribute their resources. Other
efforts in cloud sharing domain demonstrate that the uncer-
tainty in meeting SLAs can be an incentive enabling sharing of
resources among clouds [13], and focus on designing efficient
sharing mechanisms [12], [15].

However, many of these efforts assume the existence of
the cloud federation and largely focus on designing sharing
policies in order to maximize the profit of individual SCs. For
example, [15] proposes a strategy to terminate less profitable
spot instances, in order to accommodate more profitable on-
demand VM requests. Moreover, most authors do not consider
the trade-off between economical benefits (in terms of profit)
and performance degradation for individual SCs, which is a
significant factor to incentivizing SCs to participate in the
cloud federation. Without the analysis of performance degra-
dation due to resource sharing, the feasibility of a federation
can be questioned. Thus, this work focuses on the fundamental,
unanswered question of “how each SCs should share resources
to be profitable without violating customer SLAs, while also
motivating other SCs to join the federation.”
Problem description. We consider an environment with mul-
tiple SCs; an example with 3 SCs is depicted in Fig. 1. In this
work, we also refer to SCs sharing resources with each other as
a federation. Each SC has its own SLAs with its customers: the
maximum waiting time before service of a request is initiated.
To satisfy SLAs, some SCs use public clouds as a “backup”,
i.e., buy needed resources on-demand from large-scale public
clouds, when in danger of not being able to meet SLAs. If
such SCs form a federation, in the event that an SC runs
out of its resources, it can first use shared resources from
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Fig. 1. System Overview

other SCs for a price lower than the price of using public
clouds. The amount of shared resources directly affects how
much workload the federation is able to handle, which in turn
affects the profit each SC is able to achieve. In this sharing
scenario, an important question is: should SCs participate in
the federation? If yes, how much should each SC share? If
an SC is too generous (i.e., shares too many of its resources),
then it may be in danger of not being able to serve its own
workload, resulting in more requests being forwarded to public
clouds thereby reducing profit margins. As a result, an SC
should determine the amount of resources shared based on
the price of selling and buying resources, i.e., the net profit
compared with the cost of using public clouds. However, if an
SC is too selfish, i.e., shares few of its resources for higher
profit, then either it may get removed from the federation for
not being a useful contributor, or the federation may fall apart
if most/all SCs tend towards selfish behavior. Thus, another
critical question that needs to be addressed is: what price can
make each SC share a reasonable amount of resources so that
other SCs will participate in the federation?
Challenges and contributions. To answer these questions, we
provide the following contributions:

1) Performance-dependent cost function: Operating costs
of an SC depend on the SLA with its customers and
on the performance achieved inside the federation; in
particular, we need to compute how frequently the SC
will need to allocate external resources to satisfy SLAs
(e.g., maximum waiting time), and whether it will be
able to access resources of other SCs, or only those
of public clouds. In Sect. III-B, we develop a de-
tailed performance model to compute such performance
metrics for each SC. In turn, these metrics allow us
to compute the operating cost of SCs (as defined in
Sect. II-B). To address the high computational complex-
ity of the detailed performance model (due to its large
state space, which grows exponentially with the number
of SCs), we develop an approximate performance model
(Sect. III-C). This model provides accurate estimates of
the measures of interest, with linear complexity in the
number of SCs (which is crucial, given that SCs must
take sharing decisions almost in real-time).

2) Sharing market design: The sharing mechanism should
motivate SCs to participate, without significant oversight
nor management, i.e., they should find an economic ben-
efit in contributing resources to the federation. We design
a market-based model to determine the price charged

within the federation for the use of shared resources.
The model is based on a non-cooperative, repeated game
among SCs, each being selfish and trying to maximize
its utility; as in real-world scenarios, SCs do not know
the utility of other SCs, but they can compute (using our
approximate performance model) the operating cost that
they would incur for each possible sharing decision. We
determine market equilibrium conditions under which
the federation is successful and market efficiency is
achieved (Sect. IV).

3) Experimental evaluation: In Sect. V, we perform an
extensive experimental evaluation to validate the accu-
racy of our approximate performance model with respect
to simulation, and to verify the existence of market
equilibria. Results highlight errors lower than 10% for
the performance metrics of interest; the proposed pricing
model achieves market equilibria and good economic
efficiency, successfully incentivizing SCs to stay in the
federation.

To the best of our knowledge, ours is the first work that mod-
els small-cloud federations as a holistic performance-driven
market, integrating engineering aspects (from a performance
model) with economic ones (from a market model).

II. SYSTEM DESCRIPTION

In this section, we first describe the architecture of the SC
federation, illustrated in Fig. 1. We then introduce a definition
of operating costs of SCs. Finally, we describe our sharing
framework, which we call SC-Share.

A. Architecture Description
Each SC has a number of physical servers: through virtual-

ization technology, physical resources (CPU, memory, storage)
of SC i are packed into Ni homogeneous virtual machines
(VMs), which are the resource unit adopted in this work.
Customers request the allocation of individual VMs from SCs;
the arrival process of VM requests at each SC i is modeled
as a Poisson process with rate λi. The service time of each
request at SC i (including the time elapsed from start of VM
preparation until its release by the user) is modeled as an
exponential random variable with rate µi. Each SC processes
VM requests in FCFS order. If physical servers do not have
sufficient resources for a new VM, the SC may need to reject
the request, or queue it until more resources are available.

In a federation with K SCs (Fig. 1 depicts the case K = 3),
we consider the following general scenario: when all VMs at
an SC are fully occupied, its new VM requests are queued and
can be served either by waiting for local resources to become
available, or by purchasing resources from other SCs in the
federation, or from a public cloud. In order to participate in
the federation, SC i must determine the maximum number of
VMs Si to share with other SCs (at a given price) when idle
VMs are available; i.e., at any time instant, the number of VMs
shared by SC i is ISi

i ≤ Si. When all its VMs are occupied,
SC i cannot terminate VMs serving requests of other SCs, but
only stops accepting such requests until it is able to clear its
own queue. Each SC i is required to maintain SLAs with its
customers; we assume that this corresponds to a bound on the



waiting time, i.e., a VM needs to be provided by SC i within
Qi time units from its request. If SC i determines that it is
not able to satisfy this SLA using resources of the federation,
it forwards the request to a public cloud (e.g., Amazon AWS).

In our performance model (Section III), we assume that
SCs share the same type of VMs within the federation. This
assumption is reasonable because many cloud providers sell
similar VM configurations. For instance, Amazon LightSail
[19], DigitalOcean, and Linode all have similar VM configu-
rations with 2 CPU cores and 4 GB of RAM. However, due to
the heterogeneous datacenters of different providers, the same
VM configuration may exhibit different performance; for in-
stance, DigitalOcean VMs can exhibit better I/O performance
because SSDs are directly attached to physical machines, while
Amazon LightSail VMs access SSDs remotely. Our framework
does not account for such performance mismatch among VMs
of different SCs, which is a future research direction.

B. Cost Metric Description

SCs usually make large up-front investments in infrastruc-
ture, and continue to pay for maintenance costs (e.g., power
supply and cooling costs). In addition, SCs need to consider
costs for forwarding requests to public clouds or for using
resources of other SCs in the federation, in order to satisfy
customer SLAs. We define a cost metric to combine these
costs with the revenue generated by VM requests from other
SCs in the federation, and compute the net operating cost.

Let ISi
i be a random variable representing the number of

SC i’s VMs used by other SCs when SC i shares up to Si VMs
with the federation. Let OSi

i and PSi
i be random variables

representing the number VMs used by SC i from the federation
and from a public cloud, respectively, to satisfy its SLAs. The
net cost for SC i is then

CSi
i = PSi

i · CP
i + (OSi

i − ISi
i ) · CG

i ∀i, (1)

where CP
i and CG

i represent the cost of using a single VM
from a public cloud and from other SCs, respectively. PSi

i ,
OSi

i , and ISi
i are the mean number of VMs per second used

by SC i from a public cloud, by SC i from other SCs
in the federation, or by other SCs from SC i, respectively.
Unlike [15], where cloud providers change VM prices based
on system utilization, our model considers a fixed price CG

i

for every VM. Since VMs are homogeneous, we assume that
CG

i = CG
j ∀i, j = 1, ...,K, but each SC can have different CP

i

depending on which public cloud it uses. These assumptions
simplify our performance model, where SCs allocate available
VMs in the federation without preferences due to prices. To
reduce cost, by making appropriate sharing decisions, i.e.,
determining the number of VMs to share with others, we need a
performance model for each SC, in order to properly estimate
PSi
i , OSi

i , and ISi
i (see Section III for details).

Another incentive for participating in the federation is
reducing power cost by forwarding VMs to other SCs when
they offer VMs at cheaper prices than the cost of instantiating
VMs in SC’s own environment. For instance, previous efforts
[17], [20] study the sharing mechanisms for cloud providers
to minimize their costs. However, in this work, we only
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Fig. 2. Feedback between two models

focus on the cost of additional resources required to satisfy
customers’ SLAs. Extending the cost function to incorporate
power consumption of executing VMs is a future direction.

C. Cost Metric Evaluation Framework
In order to help SCs determine whether it is beneficial for

them to participate in the federation and share their resources,
we design a framework SC-Share that allows each SC i to
determine the best value of Si, in order to maintain its SLA Qi

and minimize the expected operating cost CSi
i .

The essence of SC cooperation in such a federation is the
mutual agreement among individual SCs to share their re-
sources (if idle) with other SCs experiencing peak workloads.1

However, the amount of resources Si that each selfish but
honest SC wants to share represents its strategic property that
subsequently affects the cost metric CSi

i . Thus, in SC-Share,
we develop a market-based model to capture SC interactions
in the federation via a market consisting of K selfish SCs
that interact strategically, and repeatedly over time, via a non-
cooperative game to converge upon stable parameter values.

However, a feedback loop exists between the performance
model and the market model: sharing decisions Si ∀i are
used by the performance model to compute PSi

i , OSi
i , and

ISi
i and evaluate the cost metrics CSi

i in Eq. (1), which,
in turn, determine the SC utility functions of the market
model governing sharing decisions. Therefore, in SC-Share,
we propose an iterative solution approach, as illustrated in
Fig. 2, involving these two models and their mutual feedback,
to converge upon stable sharing decisions.

III. PERFORMANCE MODEL

In this section, we propose a performance model for SC-
Share that is used to compute performance parameters required
by the cost function of Eq. (1).

A. SC without Sharing Resources
We start with a degenerate case, where an SC does not

participate in the federation and shares no VMs. Based on
SLA requirements, the SC will forward a request to public
clouds if service cannot be started within Qi time units after
its reception. To compute the cost, we need to estimate the
mean number of requests forwarded per second by SC i, P 0

i

(we denote it with 0 since no VMs are shared).
To compute P 0

i , we use a Markovian model, where the state
represents the number of requests at SC i, as illustrated in
Fig. 3. In this example, we assume that SC i has Ni VMs
and SLA Qi with its customers. When at least one VM is
idle, a new request can be served immediately. However, when
all VMs are allocated, the probability that the new request is

1The issue of enforcing the agreement is beyond our scope here.
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Fig. 3. A Markov model for forwarding

added to the queue of SC i (instead of forwarded to a public
cloud) is equal to the probability that service will start in Qi

time units, based on the current number of queued requests.
Let qi be the number of customers in SC i (i.e., max(0, qi −
Ni) customers are waiting in its queue) at the time of the
request arrival. Then, given exponential service times with rate
µ and the FCFS service policy, the probability of queueing the
request (instead of forwarding to a public cloud) is

PNF (qi, Ni, Qi) =

1−
qi−Ni∑
j=0

e−NiµQi ·(NiµQi)
j

j! if qi ≥ Ni,

1 if qi < Ni.
(2)

In particular, PNF (qi, Vi, Qi) is less than one if the request
cannot be served immediately upon arrival (i.e., qi ≥ Ni).

At the steady state, the expected probability of for-
warding a new request to public clouds is then PF =(∑∞

k=Ni
(1− PNF (k,Ni, Qi)) · πk

)
, where πk is the steady-

state probability of having k requests in the system. So, the
expected rate at which VM requests are forwarded to public
clouds is P 0

i = λ·PF , which can be used in Eq. (1) to compute
the cost for O0

i = I0i = 0.

B. Detailed Model for SC federation

The model of a federation (with sharing) is complex.
Given a federation of K SCs, each of which will share a
maximum of Si, i = 1, . . . ,K VMs, our goal is to estimate
the performance parameters PSi

i , OSi
i , and ISi

i for each SC i.
To accurately estimate these parameters, we need to consider
the interaction among SCs in the federation. One approach is
to build a continuous-time Markov chain (CTMC), M, with
the following state space S:

S = {(q1, s1,1, ..., s1,K , ..., qK , sK,1, ..., sK,K) | qi ≥ 0,

0 ≤ si,j ≤ Sj , si,i =
∑
j ̸=i

sj,i ≤ Si, i = 1, ...,K},

where qi is the number of requests from SC i’s customers that
are either queued or in service at SC i, si,i is the number of
VMs at SC i serving requests from other SCs, and si,j , j ̸= i
is the number of VMs at SC j being used by SC i. Transition
rates between states of M can be assigned so as to implement
the probabilistic forwarding mechanism of the model for new
arrivals, and service of queued requests. Due to lack of space,
the transition structure for detailed model M is reported in
Appendix A.

Although solving M could give us an accurate prediction
of all performance characteristics required in Eq. (1), the
corresponding state space S grows exponentially with K.
Since re-computation of sharing decisions is needed when

significant changes in workload or resource availability occur,
a model with a more efficient solution is desirable.

C. Approximate Model for SC Federation

In this section, we focus on an approximate model that can
be solved in (near) real-time (as system conditions, such as
workload, change), but also yields sufficiently accurate results,
in order to produce appropriate sharing decisions. Through
analyzing the detailed model M, we realize that using M
allows estimation of performance parameters for all SCs in the
federation simultaneously; however, in realistic scenarios, each
SC computes its own performance parameters to estimate its
cost assuming that other SCs’ sharing decisions are fixed; thus,
there is no need for the performance model to simultaneously
output results for all SCs. Moreover, since we assume that
the same cost is charged by all SCs for shared VMs, an SC
does not need to distinguish the source or destination of shared
VMs. Therefore, we propose a hierarchical approximate model
that computes performance parameters iteratively.

Given a federation of K SCs, we consider each SC i =
1, . . . ,K in sequence, where SC K is the SC of interest,
which we refer to as target SC in the rest of the paper. At
each step, we build and analyze a Markovian model Mi

where only SCs {1, . . . , i} can access shared resources of the
federation. The model Mi takes into account the solution of
Mi−1 and refines it to include also SC i. For example, in
model M1, the first SC has exclusive access to all shared
resources of the federation; in M2, only SC 1 and SC 2 utilize
shared resources from all SCs, but VM allocations in M1 are
taken into account. We repeat this process until reaching the
target SC. In the following, we give a detailed description of
Mi, 1 ≤ i ≤ K and of its solution.
State space Si for Mi. The state space Si of Mi is

Si = {(qi, si, oi, ai) | qi ≥ 0, 0 ≤ si ≤ Si, 0 ≤ oi + ai ≤ Bi},

where qi is the total number of requests at SC i (queued or
in service), si is the number of VMs of SC i currently used
to serve requests from SCs {1, . . . , i − 1}, oi is the number
of VMs from other SCs currently used by SC i, and ai is
the number of shared VMs used by SCs in Mi−1. Given that
there are at most Ni VMs in SC i, max(0, qi − (Ni − si))
requests are waiting at SC i; moreover, si is bounded by Si,
the maximum number of VMs shared by SC i. Since Mi

includes SCs {1, . . . , i} and SC i is the target in Mi, we use
oi to record the number of shared VMs (not from itself) used
by SC i, and we use ai to record the number of shared VMs
(not from SC i) used by SCs {1, . . . , i − 1}; thus, oi + ai is
bounded by Bi =

∑
j ̸=i Sj , the maximum number of VMs

shared by SCs {1, . . . ,K − 1}.

State transitions. VM allocations in Mi−1 affect the results
of new states in Mi after state transitions. Each state transition
happens in the period of time between two events (referred as
inter-event period in the rest of paper), each of which can be
a request arrival or a service completion instance. During an
inter-event period, each state in Mi can increase the number
of VMs shared by SC i due to SCs in Mi−1 allocating VMs
in SC i; similarly, the number of requests queued at SC i can



decrease due to service completions in Mi−1, which allow
SC i to utilize the shared VMs. Thus, the probability of going
to any destination state from any state in Mi depends on the
probability of being at a specific state in Mi−1. Here, we
define three interaction probability vectors representing the
probability of moving from each state (qi, si, oi, ai) of Mi to
any other state of Mi, when an event happens, based on the
probabilities computed for Mi−1:

• PA(qi, si, oi, ai) for an inter-event period preceding an
arrival instance;

• PD
loc(qi, si, oi, ai) for an inter-event period preceding a

local departure instance;
• PD

rem(qi, si, oi, ai) for an inter-event period preceding the
remote departure instance of a VM allocated at other SCs
by SC i.

The detailed computation of these three interaction probability
vectors is described in the section “Interaction Probabilities.”

Let aloc represent the number of shared VMs from SC i
allocated by SCs {1, . . . , i − 1} in Mi−1, and let arem
represent the number of shared VMs from all others SCs
(except SC i) allocated by SCs {1, . . . , i − 1} in Mi−1,
respectively. Then, given a state in Mi−1, which can
produce the pair (aloc, arem), PA(qi, si, oi, ai)(aloc,arem),
PD
loc(qi, si, oi, ai)(aloc,arem), and PD

rem(qi, si, oi, ai)(aloc,arem)

represent the probability of allocating VMs (aloc, arem)
in vectors PA(qi, si, oi, ai), PD

loc(qi, si, oi, ai), and
PD
rem(qi, si, oi, ai) respectively, after an event happens

in the state (qi, si, oi, ai) of Mi. The legal combinations of
the pair (aloc, aloc) are bounded by the state (qi, si, oi, ai)
in Mi, which will be described in the section “Initial
State Distribution”. For simplicity, we use PA

(aloc,arem),
PD
loc(aloc,aloc)

, and PD
rem(aloc,aloc)

to represent the probability
of VM allocations in Mi−1 in the rest of paper.
Transitions for M1. In M1, there is only one SC, and no
other model affecting the transitions; thus, s1 = a1 = 0, and

(q1, 0, o1, 0)
λ−→ (q1 + 1, 0, o1, 0) if q1 < N1

(q1, 0, o1, 0)
λ−→ (q1, 0, o1 + 1, 0) if q1 ≥ Ni ∧ o1 < B1

(q1, 0, o1, 0)
λ·PNF (q1,N1,Q1)−−−−−−−−−−−→ (q1 + 1, 0, o1, 0)

if q1 ≥ Ni ∧ o1 = B1

(q1, 0, o1, 0)
min(q1,N1)µ−−−−−−−−→ (q1 − 1, 0, o1, 0) if q1 > 0

(q1, 0, o1, 0)
o1µ−−→ (q1, 0, o1 − 1, 0) if o1 > 0

Transitions for Mi. Any transition in Mi with i > 1 depends
on interaction probability vectors from Mi−1. Given any pair
(aloc, arem) from states in Mi−1, the transitions correspond-
ing to a request arrival instance at state (qi, si, oi, ai) in Mi

fall into one of the following cases:
C1: The new request can use a VM at SC i when there is at
least one free VM at SC i, even after considering aloc and
arem from Mi−1 during the arrival period:

(qi, si, oi, ai)
λ·PA

(aloc,arem)−−−−−−−−−−→ (qi + 1, aloc, oi, arem)

for all qi+aloc < Ni such that (aloc ≤ Si)∧(oi+arem ≤ Bi).

C2: The new request uses a VM from other SCs. This situation
arises when SC i has no idle VMs prior to this arrival
instance, but other SCs can provide at least one VM during
the preceding inter-event period:

(qi, si, oi, ai)
λ·PA

(aloc,arem)−−−−−−−−−−→ (qi, aloc, oi + 1, arem)

for all qi + aloc ≥ Ni and oi + arem + 1 ≤ Bi.
C3: The new request must be queued or forwarded to a public
cloud due to no available shared VMs in the federation, where
all VMs have been occupied during the previous or current
inter-event period by requests from other SCs:

(qi, si, oi, ai)

λ·PA
(aloc,arem)

·PNF (qi,Vi,Qi)−−−−−−−−−−→ (qi + 1, aloc, oi, arem)

for all qi + aloc ≥ Ni and oi + arem = Bi. Vi = Ni − si + oi
is the number of busy VMs currently used by SC i.

Given any pair (aloc, arem) for states in Mi−1, the transi-
tions corresponding to a service completion instance at SC i
for its own customers fall into one of the following cases:
C4: The departure is from VMs of SC i allocating to SC i. If
there is at least one job queued in SC i, the freed VM will be
used by SC i directly:

(qi, si, oi, ai)
Viµ·PD

loc(aloc,arem)−−−−−−−−−−−−→ (qi − 1, aloc, oi, arem),

where Vi = min(qi, Ni−si) is the number of busy VMs used
by SC i, for all qi + aloc > Ni. However, if there are no
queued requests in SC i, the freed VM will be allocated to
other SCs, which have queued jobs:

(qi, si, oi, ai)
Viµ·PD

loc(aloc,arem)−−−−−−−−−−−−→ (qi − 1, aloc + 1, oi, arem),

for all qi + aloc ≤ Ni. If none of other SCs have queued
requests, the transition will be expressed like the one when
SC i has queued requests.
C5: The departure is from VMs of other SCs allocating to
SC i. If there are no queued jobs in any SCs, the freed VM
will be returned directly:

(qi, si, oi, ai)
oiµ·PD

rem(aloc,arem)−−−−−−−−−−−−−→ (qi, aloc, oi − 1, arem)

for all qi + aloc ≤ Ni. If at least one requests queue in
SCs {1, . . . , i− 1}, SC i has to return VMs:

(qi, si, oi, ai)
oiµ·PD

rem(aloc,arem)−−−−−−−−−−−−−→ (qi, aloc, oi − 1, arem + 1).

However, if none of above conditions happen and there is at
least one job queued in SC i, the VM will still be allocated
to SC i, for all qi + aloc > Ni:

(qi, si, oi, ai)
oiµ·PD

rem(aloc,arem)−−−−−−−−−−−−−→ (qi − 1, aloc, oi, arem).

Interaction Probabilities. As mentioned above, the inter-
action probability describes the probability of different VM
allocations from SCs in Mi−1 during an inter-event period
when we construct Mi. Steady-state and transient analysis
(see Appendix B) of the total number of occupied VMs at
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Fig. 4. Possible VM usages are based on the state of Mi

Mi−1 can be leveraged for the computation of interaction
probabilities between Mi and Mi−1.
Initial State Distribution. The initial state distribution p0 for
Mi−1 depends on the VM allocations in the current state
of Mi. For instance, as illustrated in Fig. 4, when state
(qi, si, oi, ai) in Mi allocates 2 shared VMs from SC i, the
state (qi−1, si−1, oi−1, ai−1) of initial state distribution p0 for
Mi−1 can only allocate up to 1 shared VMs from SC i.

Given the current state (qi, si, oi, ai) of Mi, the initial state
distribution of Si−1 for transient analysis is πX

[(qi,si,oi,ai)]
,

where [(qi, si, oi, ai)] is the subset of all states in Si−1, which
satisfy the restriction from the VM usage of state (qi, si, oi, ai)
in Mi. Then, interaction probability vectors are the outcome of
initial state distribution times the transient state change during
the average inter-arrival time or departure time:

PA(qi, si, oi, ai) =
(
πX
[(qi,si,oi,ai)]

P ( 1
λi
)
)
;

PD
loc(qi, si, oi, ai) =

(
πX
[(qi,si,oi,ai]

P ( 1
Viµ

)
)
;

PD
rem(qi, si, oi, ai) =

(
πX
[(qi,si,oi,ai)]

P ( 1
oiµ

)
)
,

where Vi is the number of used VMs in (qi, si, oi, ai). The
initial state distribution πX

[(qi,si,oi,ai)]
is computed through

the concept of Conditional Probability Distribution [21] (see
Appendix C).
Performance Parameters. Given that πi represents steady-
state probabilities of Mi, the performance parameters can be
computed as follows:

ISi
i =

∑
si ∗ πi

(qi,si,oi,ai); OSi
i =

∑
oi ∗ πi

(qi,si,oi,ai);

PSi
i = λi ·

(∑
(1− PNF (q′i, Vi, Qi)) · πi

(qi,si,oi,ai)

)
,

where q′i = qi − (Ni − si) and Vi = Ni − si + oi.

IV. MARKET-BASED MODEL

Next, we develop the empirical market-based model for SC-
Share to determine appropriate sharing decisions for each SC.
We first formulate SC utility functions that take performance
characteristics (as computed above) into consideration. We
then focus on the details of the game and on the notion of
market efficiency.

A. SC Utilities

As discussed before, SCs participate in the federation in
order to (a) obtain resources and satisfy SLAs at prices cheaper
than public clouds, and (b) sell idle resources to other SCs for
profit, similar to spot instances sold by Amazon AWS [22].
To this end, we define SC i utility USi

i (see Eq. (3) below)
as the ratio of (a) the change in net cost of an SC when it

ALGORITHM 1: Proposed repeated game among
SCs

Input: CP
i , CG

i , SC {1, ...,K}
Output: {S1, ..., SK}
SC i has Ni VMs, arrival rate λi and SLA requirement Qi;
In round r = 0, SC VM sharing vector is {S(0)

1 , ..., S
(0)
K };

do
r = r + 1;
foreach i ∈ 1, ...,K do

S
(r)
i ← the shared VM number which maximizes

SC i’s utility based on S
(r−1)
j , ∀j ̸= i, CP

i , CG
i ;

end
while ∃i ∈ {1, ...,K}, S(r)

i ̸= S
(r−1)
i ;

{S(r)
1 , ..., S

(r)
K } is the equilibrium point;

participates in the federation versus when it does not to (b)
the change in utilization of an SC when it participates in the
federation, versus when it does not, to:

USi
i =

(max(C0
i − CSi

i , 0))
2

(ρSi
i − ρ0i )

γ 0 ≤ γ ≤ 1, (3)

where C0
i is the cost for SC i when it does not participate in the

federation, CSi
i is the cost for SC i when it shares a maximum

of Si VMs, ρ0i is the system utilization of not participating in
the federation, and ρSi

i is the utilization of SC i when it shares
a maximum of Si VMs. It is evident that an SC will try to
minimize its cost for satisfying SLAs; thus, we consider the
cost reduction as the numerator of Eq. 3. We consider the
increment in SCs’ utilizations (the denominator of Eq. (3))
because SCs always want to keep utilizing their resources in
a certain level (the system utilization of SCs should always
increase since all of them have to share resources to others
in order to participate in the federation). For instance, an
SC would want to increase the amount of shared VMs (i.e.,
increasing its system utilization) to obtain higher profit from
the cooperation, but would like to decrease the amount of
shared VMs whenever its high system utilization makes it
forward more requests to a public cloud (i.e., the rate of cost
reduction starts to decrease). Here, γ in Eq. (3) reflects the
importance SC i places on utilization, where γ = 0 means SC
i only considers cost reduction, referred as UF 0 in the rest of
the paper, and γ = 1 means SC i considers the marginal cost
reduction for utilization changes as the most important factor,
referred as UF 1 in the rest of the paper (we make γ = 1
represent the most importance because 0 < ρSi

i − ρ0i ≤ 1).
We choose such a structure for USi

i so that an SC will always
pursue to reduce the cost, and the marginal utility is linear
in (C0

i −CSi
i ). In the experiments, we assume all SCs in the

federation will follow the same γ setting since different values
of γ produce different scales of utilities.

B. Non-Cooperative Game Among SCs

Game Setting. We implement a finite repeated non-
cooperative game, where the strategy parameter of each SC i
(Si) is the maximum number of VMs shared with other SCs
at any given time. Here, we adapt the concept of fictitious



play [23], and assume that each SC does not need to know
the utility functions of others. SC i determines Si based on
the performance characteristics achieved through sharing with
others in the previous round of the game, resulting in a corre-
sponding cost of maintaining the required SLAs. Algorithm 1
describes the details of our non-cooperative repeated game. In
the initial round (without knowledge of other SCs’ behavior),
each SC makes an initial sharing decision arbitrarily, and
begins sharing VMs with other SCs. Given the solution of
the performance model (which takes {S(0)

1 , ..., S
(0)
K } as input),

each SC maximizes its utility, to determine S
(1)
i , its sharing

decision for the next round. Using its new sharing decision
and those from other SCs (S(1)

j , ∀j ̸= i) from the previous
round, SC i maximizes its utility again, to determine a new
sharing decision S

(2)
i . This continues until the game converges

to an equilibrium point, as explained next.
Analyzing Market Equilibria. A Nash equilibrium point of
our proposed repeated game represents the game state at which
no SC has any incentive to improve its sharing decision [24].
In our work, we are primarily interested in pure strategy Nash
Equilibria (NE) [24] as it is more practical to implement
and realize (see Appendix ?? for a detailed reasoning). More
importantly, we have designed utility functions for the SCs that
take as arguments, parameters that are practically relevant to
our problem, and are expressions that best reflect SC satis-
faction levels. However, in the process, we could not strictly
preserve salient mathematical properties related to the utility
functions (see Appendix ??) that allow us to derive closed
form results about Market Equilibria (ME) from existing
seminal works in micro-economic theory, resulting us taking
an experimental stance to characterize equilibria. Below, we
briefly rationalize our stance in the light of the inapplicability
of seminal game-theory theorems in characterizing ME in our
work. A detailed explanation of our rationale (along with a
description of the salient mathematical properties) is in the
Appendix ??.

First, deriving closed form results for our work via the
seminal result by Nash is not possible due to us (a) dealing
with only pure strategy NE, and (b) the utility for an SC might
not be quasi-concave [25] in general cases. Second, deriving
closed form results for our work via the seminal result by
Debreu, Fan, and Glicksberg (derived independently) [26]–
[28] in relation to pure strategy NE is not possible due to (a’)
the quasi-concavity assumption might not always be satisfied
(for the peer utility function), which in turn might not guar-
antee pure strategy NE (violating theorem assumptions), and
(b’) strategy sets in many applications (including specialized
versions of our application setting, i.e., the number of shared
VMs is discrete in nature) might not be continuous and infinite
[24], in which case, we would have to go back to using Nash’s
theorem to guarantee mixed strategy NE (which we do not aim
to achieve). Finally, deriving closed form results for our work
via the strong seminal result by Dasgupta and Maskin [29]
(that also accounts for discontinuous utility functions) is not
possible due to the same reasons in (a) and (b) above.

Despite barriers to closed form analysis, we observe through
simulation results (see below) the existence of pure strategy

NE for infinite strategy spaces (simulated in a discrete manner,
thereby becoming a finite game in simulation), and for non
quasi-concave SC utility functions. Thus, at least from the
experimental results, we observe that for our work, (i) it is not
necessary (via the theorem of Nash) for quasi concavity to hold
for a pure strategy (also discounting the guarantee of only a
mixed strategy via Nash’s theorem) Nash equilibrium to exist,
and (ii) it is not necessary (via the theorem of Debreu et.al.,)
for quasi concavity to hold for a pure strategy (also discounting
the infinite strategy space assumption via the theorem by
Debreu. et.al, as the simulation is discrete in nature) Nash
equilibrium to exist.

Reaching Market Equilibria. As addressed above, since
we could not afford a mathematical proof, in this work, we
simulate the game in Algorithm 1 and determine the equilib-
rium point empirically for a specific price setting (CP

i and
CG

i ). A traditional heuristic to search for one such equilibium
point in the game is the numerical Tâtonnement process [30]
that is based on the principle of gradient descent. In our
work, due to the discrete nature of the SC strategy elements
(e.g., # of VMs to share), we need a discrete version of a
Tâtonnement process to arrive an equilibrium point. However,
the design and analysis of such a process has been shown to be
quite challenging [31]; moreover there is no existing discrete
Tâtonnement process to the best of our knowledge. Thus, in
our market-based model, we use the well known non-gradient
based Tabu Search heuristic [32] to search for an equilibrium
value of S(r)

i , and reach the global optimum in most cases.

Fairness Among SCs. A joint social end goal, serving as a
benchmark of how well selfish non-cooperative SCs participate
in the federation w.r.t. their sharing behavior, is to (a) reach
a certain level of fairness (see below for details) among SCs
in terms of their utilities, and (b) maximize their individual
utilities at ME. It is important to note here that if we only
compare the fairness allocations among SCs, the scenario
where all SCs share nothing with others can also be a most
fair allocation, but it results in sub-optimal individual utilities
(at times an individual utility of zero for the SCs) at ME (see
V-B). To achieve our joint social end goal, we need to find a
specific price setting (the ratio of CG

i and CP
i ) that enables all

SCs to maximize their utilities through sharing VMs while at
the same time maintaining an appropriate level of fairness.
In regard to adopting an appropriate fairness measure, we
consider in our work the widely popular notion of weighted
α-fairness [33] to combine individual SC utilities USi

i through
the function

W (α,
−→
Si,

−−→
USi
i ) =

{∑K
k=1 Si

(U
Si
i )1−α

1−α α ≥ 0, α ̸= 1;∑K
k=1 Si logU

Si
i α = 1.

(4)

Here, Si, the maximum number of shared VMs, is the weight
used to combine the α-fairness metric of each SC i, while the
parameter α controls the fairness of utility allocations among
SCs. In this work, we evaluate three popular α-fairness utility
functions, achieving different trade-offs between fairness and
economic efficiency: (i) α = 0, which gives the utilitarian
function [34] (denoting minimum fairness), (ii) α = ∞, which
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Fig. 5. Comparing the result of forwarding estimation in 10 and 100 VMs
with QoS = 0.2 and 0.5.

results in max-min fairness, and (iii) α = 1, which gives
proportional fairness. For each fairness function defined by
α, our goal is to find the best price setting that motivates SCs,
based on their system loads, to participate in the federation
and share more of their VMs, i.e., thereby achieving higher
values of α-fair functions.

V. EVALUATION AND VALIDATION

We first validate the accuracy of our performance model, the
results of which are needed as input parameters to the market-
based model. To this end, we compute the solution of our
approximate model (in Section III) numerically, and compare
it to the solution of the exact model (computed through a
C++-based simulator). We then use our market-based model
to investigate how the price of using shared VMs from other
SCs affects achieving higher summation of weighted utilities.

A. Performance model validation

SC without Sharing Resources. Here, we start with the
accuracy evaluation of our forward probability estimation in
Section III-A, since this is a measure used by all other models.
Moreover, to demonstrate that SCs have more incentives to
participate in the federation, we compare the results of two
clouds, which have 10 and 100 VMs respectively, with the
SLAs of Qi = 0.2 and Qi = 0.5 under various Poisson
arrival rates; each request has an exponential service time
with rate 1. In order to correctly compare the results among
two SCs, in Fig. 5, we show the estimated forward proba-
bility under different system utilizations (by increasing the
arrival rate). As shown in the figure, for both clouds, the
probability of forwarding is higher for smaller QoS values,
and our estimation properly predicts the forward probability
under different settings. It is easy to see that the cloud with
fewer VMs has higher forwarding probability under the same
system utilization. Thus, if an SC does not want to increase
its investments in infrastructure, it needs some mechanism
to decrease its forwarding probability to reduce the cost of
satisfying SLAs. In the following experiments, each SC in the
federation has 10 VMs by default with exponential service
time with rate µ = 1 and QoS Qi = 0.2.

Approximate Model. In this section, we performed extensive
experiments to validate the accuracy of the approximate model
presented in Section III-C. Here, we want to investigate how
well our approximate model performs as a function of the
different number of shared VMs and system utilizations.

We begin with a 2-SC federation scenario. We fix the arrival
rate of one SC to 7 and the number of shared VMs to 5 (total

10 VMs), and vary the number of shared VMs and system
load (by changing the arrival rate) of another SC, referred to as
target SC. Figures 6a and 6b illustrate the performance metrics
of interest when the target SC shares 1 and 9 VM(s) under
different system loads. (Due to lack of space, we omit PSi

i

as its estimation remains accurate.) As shown in the figure,
the exact and approximate ISi

i and OSi
i are nearly the same

when the target SC shares very few VMs. The inaccuracy of
our approximate model grows when the target SC shares more
VMs (as compared to a scenario with 1 shared VM), but is still
within 10%. Thus, the difference between ISi

i and OSi
i (see

Eq. 1) remains accurate (within 10% of the exact solution).
We now illustrate how the approximation error grows

in larger systems. Firstly, we consider a 10-SC (each of
which has a total of 10 VMs) federation scenario, and fix
9 SCs’ settings, which have the following number of shared
VMs (3, 3, 3, 2, 2, 2, 1, 1, 1), and corresponding arrival rate
(7, 7, 7, 8, 8, 8, 9, 9, 9). Figures 6c and 6d illustrate the perfor-
mance metrics of interest when the target SC shares 1 and 5
VM(s) under different system loads. We still observe that the
difference between the exact and approximate ISi

i and OSi
i

remains small (within 10% of the exact solution) when the
system utilization is lower than 0.8 (within 20% when the
system utilization is lower than 0.9). Generally, we can observe
that the results of approximated ISi

i are under-estimated when
the system has very high utilization because our approximate
model breaks the direct relationship between the target SC
and all other SCs (we only consider the connection between
SC i and SC i− 1); thus, the target SC might under-estimate
the number of queued requests at all other SCs. For the same
reason, the results of approximated OSi

i are over-estimated.
However, the difference between ISi

i and OSi
i remains accurate

(within 20% of the exact solution) when the system utilization
is lower than 0.9. Second, we consider again a 2-SC federation
scenario, with 100 VMs per SC. We fix the the number of
shared VMs at 10 for both SCs, and vary system load for
both of them. Figures 6e and 6f illustrate the performance
metrics of interest when one SC has system utilization of 0.8
and 0.9 under different system loads of the target SC. We
still observe that the difference between ISi

i and OSi
i remains

accurate (within 20% of the exact solution) when the system
utilization of the target SC is lower than 0.9.

Computational Complexity. Although our model has larger
errors in some cases, our approximate model saves up to
10 times in computation time compared to the exact model
when each SC shares a small number of VMs. However, the
computation time of the exact model increases significantly
(more than half of a day) when the system load of any SC
reaches is greater than 0.9 or is lower than 0.6, particularly
when SCs have a significant number of VMs, while our
approximate model’s computation time remains nearly the
same since the parameters of our approximate model are tuned
to achieve small error by default for high system utilizations
(see Appendix B).

Summary. Our extensive experiments indicate that our ap-
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Fig. 6. Validating approx. perf. model (2 SCs and 10 SCs)

proximate model estimates ISi
i and OSi

i within 20% of the
exact solution, under a variety of scenarios, while saving
significant computation time. More importantly, the accuracy
of the difference between ISi

i and OSi
i , and PSi

i , which are the
parameters needed by the market-based model, are within 10%
of the exact solution when the system utilization is reasonable.
Overall, we believe that our approximate model is useful in
estimating performance characteristics of the federation, as
needed in the market-based model.

B. Market-based Model Evaluation
In this section, we perform extensive experiments to in-

vestigate how the value CG
i

CP
i

(Section II-B), the fairness level
(Section IV-B) used by the federation, and utility functions
(Section IV-A) chosen by SCs affect the criteria for SCs to
participate in the federation through our proposed market-
based model (Section IV). We focus on 3-SC scenarios (as
a representative example) in the evaluation, as illustrated in
Figure 7. Here, we display the ratio of the achieved value
of the W metric (see subsection “Fairness Among SCs”) to
the (empirical) market efficient value of the W metric, as a
measure of federation efficiency, for a given mixture of SC
utility functions. To circumvent anomalies of scale due to
representing results from different choices of the W metrics in
the same figure, we take the logarithmic values of the max-min
W metric. If no SCs are willing to participate in the federation,
we display it as zero federation efficiency (since the value of
the W metric is always greater than zero).

We first consider scenarios where the 3 SCs have signif-
icantly different system loads (ρi = 0.58, 0.73, 0.84). Fig.
7a illustrates the case where all SCs choose UF0 (γ = 0)
as their utility function; Fig. 7b illustrates the case where
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Fig. 7. Market results in 3-SC scenarios: (a)(b) are results where 3 SCs
have ρi = 0.58, 0.73, 0.84, (c) is the result where 3 SCs have ρi =
0.73, 0.79, 0.84, (d) are the results where 3 SCs have ρi = 0.49, 0.58, 0.66

all SCs choose UF1 (γ = 1) as their utility function. As
shown in the figures, if all SCs chooses UF 0, the utilitarian
W metric increases with increase in CG

i /CP
i (except when

CG
i /CP

i is nearing 1), since the SCs choosing UF0 as their
utility are incentivized to share more VMs to reduce their net
cost. When CG

i /CP
i is nearing 1, the federation cannot be

formed because SCs with high utilizations do not reduce cost
through using shared VMs, compared to that when resorting to
a public cloud, and low utilization SCs do not generate enough
demand to make high utilization SCs remain profitable. If all
SCs use UF 1, they would only share 1 VM with others even
when CG

i /CP
i increases because, in our setting, the increase

in marginal cost reduction with increase in number of shared
VMs is not sufficient to encourage SCs to contribute more
VMs. Moreover, since all SCs only shared 1 VM when they
use UF 1, both proportional W metric and max-min W metric
achieve the same maximum state (due to the same weight for
all SCs in Eq. (4)), as shown in Fig. 7b. In other cases, the
results of the proportional W metric depend on the behavior of
the lower utilization SCs. If these SCs choose UF 0, their cost
reductions with increase in number of shared VMs are greater
than high utilization SCs; thus, the maximum proportional W
metric can only happen when all SCs share few VMs.

In Fig. 7c, we consider scenarios where 3 SCs have similarly
high system loads (ρi = 0.73, 0.79, 0.84), where all of them
consider UF 0. In this scenario, the results are similar to the
cases in Fig. 7a; however, unlike the scenario where SCs
having significant different utilizations are not incentivized to
join the federation when CG

i /CP
i = 1, SCs in a scenario

when they have similar high utilizations, are incentivized to
cooperate when CG

i /CP
i = 1. This is because high utilization

SCs share similar number of VMs with each other, resulting
in canceling out the cost of using shared VMs. In Fig. 7d, we
consider scenarios where 3 SCs have similarly median system
loads (ρi = 0.49, 0.58, 0.66), where all of them consider UF 1.
The results in these scenarios are similar to what we have



discussed above, however, we observe the federation cannot
be formed when CG

i /CP
i is beyond ≈ 0.8. This is because all

low utilization SCs do not generate enough revenue from their
incoming VM demand from other SCs to offset their costs of
using shared VMs from other SCs.

Summary. Our extensive experimental evaluation indicates
three CG

i /CP
i regions of operation to maximize various W

metrics. When maximizing proportional fairness based W met-
ric is the goal of the federation, the value of CG

i /CP
i should be

set in the lower range of CG
i /CP

i (between 0 and 0.3 in our
example setting). When maximizing max-min fairness based
W metric is the goal of the federation, the value of CG

i /CP
i

should be set in the middle range of CG
i /CP

i (between 0.3
and 0.7 in our example setting). Finally, when maximizing
utilitarian W metric is the goal of the federation, the value of
CG

i /CP
i should be set in the high range of CG

i /CP
i (between

0.7 and 1 in our example setting). However, the utilitarian
setting also runs the risk of breaking the federation at a certain
high value of CG

i /CP
i at which no SC would be willing to

cooperate.

VI. RELATED WORK

We give an overview of efforts related to our work and
highlight the relevant differences. Works on hybrid cloud
computing [9], [10] are related to ours in that they allow
private clouds (or small-scale cloud providers) to outsource
their requests to large-scale public providers. However, since
that can potentially be costly for a small-scale provider, our
work differs in that it focuses on the cooperative framework,
while minimizing the use of public clouds.

Efforts that are closer to ours include incentivizing a feder-
ation among clouds [13], [14], [16], [17], [35] as well as some
notion of resulting sharing mechanisms’ efficiency [12], [15].
For instance, [14] proposes a decentralized cloud platform
SpotCloud [18] - a real-world system allowing customers or
SCs to sell idle compute resources to others at their specified
prices - and presents a resource pricing scheme (resulting from
a repeated seller game) plus an optimal resource provisioning
algorithm. An earlier effort [17] characterizes the cloud feder-
ation to help cloud providers maximize their profits based on
the system loads, while [16] adopts cooperative game theoretic
approaches to model the cloud federation and study the mo-
tivation for cloud providers to participate in the federation. A
model of federated cloud providers is presented in [13], which
proposes to incorporate both, historical and expected future
revenue into VM sharing decisions, in order to maximize an
SC’s profit. A decentralized cloud is proposed in [12] to study
cooperation among SCs under varying workloads, employing
various cooperation strategies, to reduce the request rejection
rate (i.e., the efficiency metric in [12]). This work indicates
that an SC is likely to collaborate with other SCs that have
workload patterns that differ from its own. Another effort [15]
studies the sharing policies for cloud providers to trade-off
the approaches of outsourcing resources and rejecting less
profitable in order to increase resource utilization and profit.
Authors in [35] propose the a hierarchical cooperative game
theoretic model for better resources integration and achieving a

higher profit in the federation. Another approach [11] designs
a decentralized cloud resource sharing platform for grouping
resources of various SCs into computational units, in order to
serve customers’ requests.
Differences and Drawbacks. Our work differs from previous
efforts in that we explicitly consider consequences of resource
sharing on the resulting performance delivered to customers.
In contrast, none of the above efforts explicitly model the
system performance under the considered resource sharing
environment. They either assume that resources can be re-
claimed (when needed), thus resulting in lack of reliability of
shared resources or they assume that an analytical performance
characterization is possible (but do not propose a solution to
estimate it). Such an analytical characterization is an important
contribution of our work. To the best of our knowledge, this
is the first work addressing the explicit interactions between
performance model and economic model. Moreover, unlike
previous efforts, that adopt the cooperative game theoretic
approach, our work studying the non-cooperative game is more
practical since likely no SC would be willing to share their
utility specific information with others.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed SC-Share for small-scale clouds
(SCs) to enable them to share their resources in a profitable
manner while maintaining customer SLAs. Our framework is
based on two (interacting) models: (i) an approximate perfor-
mance model with an efficient solution that is able to produce
sufficiently accurate estimates of performance characteristics
of interest; and (ii) a market-based model that results in
sharing policies which properly incentivize SCs to participate
in the federation while achieving market success. SC-Share
can suggest different price settings in different federations in
order to achieve sufficient market efficiency. Moreover, SC-
Share shows that even when the price of shared VMs is equal
to the price of using a public cloud, a federation can still be
formed under certain criteria.

SC-Share evaluates the resource sharing benefits among SCs
by accounting only for the cost of using VMs. However,
there are other parameters that SC-Share could account for in
evaluating resource sharing benefits: (i) privacy concerns/risks
of sharing/forwarding resources within cloud entities, (ii) data
transmission costs for forwarding VM requests among cloud
entities, and (iii) power consumption costs of running physical
servers hosting VMs. We plan to incorporate these parameters
into the SC-Share framework as part of future work.
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APPENDIX

A. Detailed Model for SC Cooperative M
Table I reports the transition structure for the detailed model

M introduced in Section III-B. Transitions are given for SC
i from a generic state

(q1, s1,1, ..., s1,K , ..., qi, si,1, ..., si,K , ..., qK , sK,1, ..., sK,K).

The transition rates include PF (Vi, ni, Qi), which is the
probability that a request is forwarded to a public cloud when
ni requests are queued at SC i, all of its Vi ≤ Ni available
VMs are currently busy, and the maximum allowed waiting
time by the SLA is Qi (see Section III-A for a detailed
definition). We also assume a load balancing mechanism in
the model: SC i determines with which SC j to share an idle
VM by choosing (uniformly at random) among those SCs with
the highest number of queued requests.

B. Transient Analysis
To compute transient probabilities, which describe transient

changes in the number of VM allocations in CTMC Mi−1

over inter-event periods at SC i, we use the method of
uniformization [36], which decomposes the CTMC into a
discrete-time Markov chain (DTMC) and a Poisson process
as follows: given the infinitesimal generator Qi−1,

• the rate of the Poisson process is γ ≥ maxj
∣∣qi−1

jj

∣∣,
• the transition matrix of the DTMC is P i−1 = I+ 1

γQ
i−1.

Then, the transient probability vector pi−1(t) for Mi−1 can
be computed for all t ≥ 0 as pi−1(t) = p0P

i−1(t), where
P i−1(t) =

∑∞
k=0

e−γt(γt)k

k! (P i−1)k is the matrix of transition
probabilities for the CTMC (for a given precision ϵ, the
summation can be truncated using the Fox and Glynn method
[37]). By letting p0 be equal to the initial state distribution at
any time instance, we can compute transient state changes of
Mi−1.

C. Conditional Probability Distribution
Given X , a discrete random variable over N = {0, 1, . . . },

and πX , its probability mass function, the conditional proba-
bility distribution for subset Y ⊆ X is:

πX(k) =

{
PX(k|k ∈ Y ) = P (X=k∧k∈Y )

P (k∈Y ) if k ∈ Y ,
0 otherwise.

(5)



Next State Rate Condition for Transition
(q1, s1,1, ..., s1,K , ..., qi + 1, si,1, ..., si,K ,

P (qi, si,i)λi (qi + si,i < Ni) ∨ (qj + sj,j ≥ Nj ,∀j ̸= i)
..., qK , sK,1, ..., sK,K)

(q1, s1,1, ..., s1,K , ...,
λi

|K|

(qi + si,i ≥ Ni)∧
qi, si,1, ..., si,j + 1, ..., si,K , ..., (L = {(ql, sl,l) | ql + sl,l < Nl, sl,l < Sl},∀l ̸= i)∧
qj , sj,1, ..., sj,j + 1, ..., sj,K , ..., (K = {(qk, sk,k) | qk + sk,k = minL(ql + sl,l)})

qK , sK,1, ..., sK,K) ∧(qj , sj,j) ∈ K
(q1, s1,1, ..., s1,K , ..., qi − 1, si,1, ..., si,K , ...,

min((Ni − si,i), qi)µ (qi + si,i > Ni) ∨ (qj + sj,j ≤ Nj ,∀j ̸= i)
qj , sj,1, ..., sj,j , ..., sj,K , ...qK , sK,1, ..., sK,K)

(q1, s1,1, ..., s1,K , ...,
min((Ni − si,i), qi)µ

|K|

(qi + si,i ≤ Ni) ∧ (si,i < Si)∧
qi − 1, si,1, ..., si,j + 1, ..., si,K , ..., (L = {(ql, sl,l) | ql + sl,l > Nl},∀l ̸= i)∧
qj − 1, sj,1, ..., sj,j , ..., sj,K , ..., (K = {(qk, sk,k) | qk + sk,k = maxL(ql + sl,l)})

qK , sK,1, ..., sK,K) ∧(qj , sj,j) ∈ K
(q1, s1,1, ..., s1,K , ..., qi, si,1, ..., si,j − 1, ..., si,K ,

si,jµ (qj + sj,j > Ni) ∨ (qk + sk,k ≤ Nk,∀k ̸= j)
..., qj , sj,1, ..., sj,j − 1, ..., sj,K , ...qK , sK,1, ..., sK,K)
(q1, s1,1, ..., s1,K , ..., qi, si,1, ..., si,j − 1, ..., si,K , ...,

si,jµ

|K|

(qj + sj,j ≤ Nj)∧
qj , sj,1, ..., sj,j , ..., sj,K , ..., (L = {(ql, sl,l) | ql + sl,l > Nl},∀l ̸= i)∧

qm, sm,1, ..., sm,j + 1, ..., sm,K , ..., (K = {(qk, sk,k) | qk + sk,k = maxL(ql + sl,l)})
qK , sK,1, ..., sK,K) ∧(qm, sm,m) ∈ K

TABLE I
STATE TRANSITIONS IN M FROM STATE (q1, s1,1, ..., s1,K , ..., qi, si,1, ..., si,K , ..., qK , sK,1, ..., sK,K)


