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Abstract. Transient analysis of Markov Regenerative Processes (MRPs)
can be performed through the solution of Markov renewal equations de-
fined by global and local kernels, which respectively characterize the oc-
currence of regenerations and transient probabilities between them. To
derive kernels from stochastic models (e.g., stochastic Petri nets), exist-
ing methods exclusively address the case where at most one generally-
distributed timer is enabled in each state, or where regenerations occur
in a bounded number of events. In this work, we analyze the state space
of the underlying timed model to identify epochs between regenerations
and apply distinct methods to each epoch depending on the satisfied
conditions. For epochs not amenable to existing methods, we propose an
adaptive approximation of kernel entries based on partial exploration of
the state space, leveraging heuristics that permit to reduce the error on
transient probabilities. The case study of a polling system with generally-
distributed service times illustrates the effect of these heuristics and how
the approach extends the class of models that can be analyzed.

Keywords: Non-Markovian Petri Nets, Markov Regenerative Process,
enabling restriction, stochastic state class, non-deterministic analysis.

1 Introduction

In quantitative evaluation of concurrent models, generally distributed (GEN)
durations support modeling validity but break the Markov property and rule
out efficient solution techniques for Continuous Time Markov Chains (CTMCs).
If the model guarantees that, always, with probability 1 (w.p.1), the Markov
property will be eventually satisfied at some regeneration point, then the un-
derlying stochastic process belongs to the class of Markov Regenerative Pro-
cesses (MRPs) [12].

MRPs attain a fortunate trade-off between expressivity of models and feasi-
bility of numerical solution, which is reduced to the evaluation of a global kernel
and a local kernel that characterize behavior in the sequencing of regeneration
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points and in the epochs between them. However, numerical derivation of the
kernels has been solved only for some isolated sub-classes of MRP models [7].

Most works address the subclass where at most a single GEN timer is enabled
in each state (enabling restriction), so that each kernel component can be com-
puted by analyzing the CTMC subordinated to the activity interval of the active
GEN [6, 9, 1]. The method of supplementary variables [8, 17] might in principle
encompass the case of multiple concurrently enabled GEN timers, but practi-
cal feasibility restrains applicability under the enabling restriction. Sampling at
equidistant time points [15, 19] permits evaluation for models where all timers
have either deterministic (DET) or exponentially distributed (EXP) durations.

The method of stochastic state classes [18] enables quantitative evaluation
of stochastic processes with multiple concurrent GEN timers, possibly with
bounded support; in particular, for models that always reach a regeneration
within a bounded number of discrete events, which we call the bounded regener-
ation restriction, exact evaluation of kernels is performed enumerating stochastic
transient trees that cover the states between two subsequent regenerations [10].

For models that break both the enabling and the bounded regeneration re-
striction, kernel components may be still defectively approximated by truncation
of stochastic transient trees [10], which may also serve to reduce complexity for
models under bounded regeneration. However, this faces an inherent contrast.
On the one hand, state space truncation has a different impact on the final
evaluation, depending on the probability of reaching truncation points. On the
other hand, when the analysis exploits regenerations to decompose state space
coverage, each epoch starts from a memoryless condition, which is not able to
distinguish whether the probability mass under analysis is relevant or negligible.

In this paper, we exploit non-deterministic analysis to drive integration of
different solution techniques, exact and approximate, that are applicable to dif-
ferent regenerative epochs. To this end, we characterize the structure of the
state space through terminating and efficient non-deterministic analysis based on
the representation of timing domains with Difference Bounds Matrices (DBMs),
identifying regenerative epochs and solution techniques that can be applied for
kernel components corresponding to each regeneration (Sect. 3.1). This permits
integration of the consolidated technique of enabling restriction with exact and
approximate solution based on stochastic state classes (Sect. 3.2). Moreover, we
also introduce a novel technique that iteratively adapts the approximation of
each kernel component so as to optimize the impact of truncation on the defect
in the evaluation of transient probabilities (Sects. 3.3 and 3.4). The approach
permits to accurately evaluate transient probabilities of markings, and it is open
to further adaptation strategies and to integration of other solution techniques,
both numerical and simulative. Application is illustrated with reference to an
instance of the polling system problem [11, 13] with generally distributed service
times and exhaustive service subordinated to a deterministic timeout (Sect. 4).

To make the paper self-contained, we recall the formalism of Stochastic Time
Petri Nets (STPNs) and transient analysis of MRPs (Sect. 2). Finally, we draw
our conclusions and discuss future steps enabled (Sect. 5).
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2 Preliminaries

2.1 Stochastic Time Petri Nets

Definition 1. An STPN is a tuple 〈P, T,A−, A+, A•,m0, U,EFT,LFT, F,W 〉:
P is the set of places; T is the set of transitions; A− ⊆ P × T , A+ ⊆ T × P ,
A• ⊆ P × T are the sets of precondition, postcondition, inhibitor arcs, respec-
tively; m0 ∈ NP is the initial marking; U associates each transition t with an
update function U(t) : NP → NP which, in turn, associates each marking with
a new marking; EFT : T → Q≥0 and LFT : T → Q≥0 ∪ {∞} associate each
transition with an earliest and a latest firing time, respectively; F associates
each transition t with a Cumulative Distribution Function (CDF) F (t) over
[EFT (t), LFT (t)]; and, W : T → R>0 associates each transition with a weight.

A place p is an input, output, inhibitor place for a transition t if 〈p, t〉 ∈ A−,
〈t, p〉 ∈ A+, 〈p, t〉 ∈ A•, respectively; precondition and postcondition arcs are
represented by arrows, while inhibitor arcs by dotted arrows. A transition t is
immediate (IMM) if EFTt = LFTt = 0 and timed otherwise; a timed transi-
tion t is exponential (EXP) if Ft(x) = 1 − e−λx over [0,∞] with λ ∈ R>0, and
general (GEN) if it has a non-exponential CDF; a GEN transition t is determin-
istic (DET) if EFTt = LFTt > 0 and distributed otherwise; for each distributed
transition t, we assume that Ft is absolutely continuous and thus expressed as
the integral function of a Probability Density Function (PDF) ft, ruling out
mixed (continuous and discrete) distributions. IMM, EXP, GEN, DET transi-
tions are represented by thin black, thick white, thick black, thick gray bars,
respectively. Update functions and weights are annotated next to transitions as
“place← expression” and “weight = value”, respectively.

The state of an STPN is a pair 〈m,φ〉, where m is a marking and φ : T → R≥0
associates each transition with a time-to-fire. A transition is enabled by a mark-
ing if each of its input places contains at least one token and none of its inhibitor
places contains any token; an enabled transition t is firable in a state if its time-
to-fire is equal to zero. The next transition t to fire in a state s = 〈m,φ〉 is
selected among the set Tf,s of firable transitions in s with probability equal
to W (t)/

∑
ti∈Tf,s

W (ti). When t fires, s is replaced by s′ = 〈m′, φ′〉, where:

m′ is derived from m by i) removing a token from each input place of t (yielding
marking m̃), ii) adding a token to each output place of t (yielding marking m̂),
and iii) applying the update function U(t) to m̂; φ′ is derived from φ by i) re-
ducing the time-to-fire of persistent transitions (i.e., enabled by m, m̃, m̂, m′) by
the time elapsed in s; ii) sampling the time-to-fire of each newly-enabled transi-
tion tn (i.e., enabled by m′ but not by m̃) according to Ftn ; and, iii) removing
the time-to-fire of disabled transitions (i.e., enabled by m but not by m′).

Given an initial marking m0 and an initial PDF fτ0
for the vector τ of the

times-to-fire of the enabled transitions, the STPN semantics induces a proba-
bility space 〈Ωm0 ,Fτ0 ,Pm0,fτ0

〉, where Ωm0 is the set of outcomes (i.e., feasible
timed firing sequences of the model) and Pm0,fτ0

is a probability measure over
them [16]. Note that Pm0,fτ0

is zero for outcomes that are not feasible under fτ0
.
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Fig. 1 shows a running example. The firing of restart enables gen1 and
makes reg, enab, and approx firable: the firing of reg enables gen2, which fires
w.p.1; the firing of enab enables the cycle exp1–exp2, which can fire an un-
bounded number of times; the firing of approx enables the cycle gen3–gen4,
which can fire an unbounded number of times. In all three cases, gen1 is per-
sistent and will eventually fire w.p.1, bringing the STPN to the initial marking
Restart (note that the update function of gen1 flushes places E1, E2, G3, G4).

G1 Restart Select

G2 E1

E2

G3

G4

gen1

uni(2,4)
E1← 0
E2← 0
G3← 0
G4← 0

restart

det(1)

reg

weight = 1/3
enab

weight = 1/3

approx

weight = 1/3

gen2

uni(1,2)

exp1

exp(1)

exp2

exp(1)

gen3

erlang(2,1)

gen4

erlang(2,1)

Fig. 1. A simple STPN with multiple concurrent GEN, DET, and EXP transitions:
gen1 and gen2 have a uniform distribution over [2, 4] and [1, 2], respectively; gen3 and
gen4 have an Erlang distribution with shape 2 and rate 1; restart has firing time
equal to 1; exp1 and exp2 have an EXP distribution with rate 1.

2.2 Transient analysis of Markov Regenerative Processes

The marking process {M(t), t ≥ 0}, where M(t) is the marking at time t, speci-
fies the logic state of an STPN at each time instant. If the marking process is an
MRP [7], its transient evolution is completely characterized by: i) the initial prob-
abilities of markings; ii) a local kernel Lij(t) := P{M(t) = j, T1 > t |M(0) = i},
where T1 is the time of the first regeneration after regeneration i, character-
izing the evolution between two subsequent regenerations (i.e., Lij(t) is the
probability that, starting from regeneration i at time 0, no regeneration is
reached within time t and the marking at time t is j); and, iii) a global ker-
nel Gik(t) := P{M(T1) = k, T1 ≤ t |M(0) = i} characterizing the occurrence of
regenerations (i.e., Gik(t) is the probability that, starting from regeneration i at
time 0, the first regeneration is reached on marking k within time t).

Transient probabilities of markings πij(t) := P{M(t) = j |M(0) = i} are the
solution of a set of Markov renewal equations defined by the kernels [5, 12]:

πij(t) := P{M(t) = j |M(0) = i} = Lij(t) +
∑
k∈Θ

∫ t

0

gik(x)πkj(t− x) dx (1)
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where gik(x) := dGik(x)/dx. While Eq. 1 can be solved numerically by dis-
cretization, kernels can be computed only for some sub-classes of MRP models.

The marking process of the STPN of Fig. 1 is an MRP since the firing of gen1,
which always occurs w.p.1. (possibly after an unbounded number of firings),
brings the process to the initial regeneration where restart is newly-enabled.

Analysis under the enabling restriction. The enabling restriction [6, 8] as-
sumes that at most a single GEN time-to-fire is enabled in each state, which
in turn implies that it is never the case that a GEN transition continues (per-
sists) at the firing of another GEN transition. If an MRP complies with the
enabling restriction, then in each regenerative epoch the process behaves either
as a CTMC, if only EXP transitions are enabled in the initial regeneration, or as
a CTMC subordinated to the activity interval of a GEN transition (i.e., the time
interval during which the transition is enabled), if a GEN transition is enabled in
the initial regeneration. In this case, the kernels can be computed from CTMC
transient probabilities through the method of [9, 6].

The marking process of the STPN of Fig. 1 does not satisfy the enabling
restriction, since gen2, gen3, and gen4 may be enabled concurrently with gen1.

Analysis under the bounded regeneration restriction. The method of
stochastic state classes [10] permits computation of kernels for models with
multiple GEN times-to-fire concurrently enabled, also with overlapping activ-
ity intervals, but for exact evaluation requires that: always, a regeneration is
eventually reached within a bounded number of discrete events. We term this
case as the bounded regeneration restriction. The marking process of the STPN
of Fig. 1 does not satisfy the bounded regeneration restriction, since both cycles
exp1–exp2 and gen3–gen4 may fire an unbounded number of times while gen1

is persistent, without reaching a regeneration.
A stochastic state class samples the state of the MRP immediately after a

firing, encoding a marking and a joint domain and PDF for the absolute time
and for the times-to-fire of the enabled transitions.

Definition 2. A stochastic state class is a tuple Σ = 〈m,D, f〉 where: m is
a marking; D is the support of the random vector 〈τage, τ 〉, where τage is the
absolute time and τ is the vector of the remaining times-to-fire of the enabled
transitions; and, f is the PDF of 〈τage, τ 〉, which we term state density function.

Starting from an initial stochastic state class with τage = 0 and independently
distributed times-to-fire for the enabled transitions, enumeration of a reachability
relation among stochastic state classes yields a stochastic transient tree, where
the support of the vector τ in each class is a Difference Bounds Matrix (DBM),
i.e., a linear convex polyhedron that represents the solution of a set of linear
inequalities constraining the difference between pairs of times-to-fire.

Definition 3. A stochastic state class Σ′ = 〈m′, D′, f ′〉 is the successor of a
stochastic state class Σ = 〈m,D, f〉 through a transition t with probability µ,



6 M. Biagi, L. Carnevali, M. Paolieri, T. Papini, E. Vicario

which we write Σ
t,µ⇒ Σ′, iff, given that the marking is m and the random vector

〈τage, τ 〉 is distributed over D according to f , t fires with probability µ, yielding
a marking m′ and a random vector 〈τ ′age, τ ′〉 distributed over D′ according to f ′.

A stochastic state class is said to be regenerative if the Markov property is
satisfied immediately after the class is entered, which occurs iff all active GEN
times-to-fires have been enabled for a deterministic time [16]:

Definition 4. A stochastic state class Σ is termed regenerative if the time
elapsed from the enabling of each enabled GEN transition ti until the firing that
led to Σ is a deterministic value di ∈ R≥0, termed the enabling time of ti in Σ.

In exact regenerative transient analysis [10], stochastic state classes are enu-
merated from each regeneration until any regeneration is reached, yielding a set
of stochastic transient trees that are rooted in a regenerative stochastic state class
and contain non-regenerative successors reached before any regeneration. Under
the bounded regeneration restriction, each tree is finite, collecting all stochastic
state classes that capture the MRP behavior during a regenerative epoch, with
(regenerative) leaf nodes characterizing the global kernel and (non-regenerative)
inner nodes characterizing the local kernel. For any regenerative stochastic state
classes i, integration of the PDF of 〈τage, τ 〉 in the stochastic state classes be-
longing to the tree rooted in i permits to compute the kernel entries Lij(t) and
gik(t) by summing up the measure of probability of states in the classes of the
transient stochastic tree rooted in i, for any non-regenerative stochastic state
class j, for any regenerative stochastic state class k, and for any time t.

2.3 Non-deterministic analysis

An STPN identifies a Time Petri Net (TPN) [14, 3] with same outcomes Ωm0
.

Definition 5. A state class S = 〈m,D〉 is made of a marking m and a sup-
port D for the vector τ of the remaining times-to-fire of the enabled transitions.

Starting from an initial marking m0 and an initial domain D0 for τ , enu-
meration of the reachability relation among state classes yields a State Class
Graph (SCG), which represents the continuous set of executions Ωm0

and sup-
ports correctness verification of the TPN model (non-deterministic analysis).

Definition 6. S′ = 〈m′, D′〉 is the successor of S = 〈m,D〉 through transition t,

i.e., S
t→ S′, iff, given that the marking is m and τ is supported over D, t fires

in S, yielding marking m′ and a new vector τ ′ supported over D′.

If EFT (t) ∈ Q≥0 and LFT (t) ∈ Q≥0∪{∞} for every transition t, then the SCG
is finite provided that the model generates a finite number of markings [10],
which does not comprise a modeling limitation for most applicative scenarios.
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3 Integration of transient solution techniques for MRPs

Non-deterministic state space analysis of the underlying TPN of an STPN model
permits identification of regeneration epochs and verification of whether each
of them satisfies the enabling or bounded regeneration restrictions (Sect. 3.1),
driving integration of different solution techniques for the evaluation of kernels
(Sect. 3.2). For epochs that satisfy neither of the two restrictions, partial enumer-
ation of stochastic state classes supports approximated evaluation of the kernels,
resulting in a safe defective approximation of transient probabilities (Sect. 3.3).

3.1 Analysis of regenerative epochs

The set of states collected in a stochastic state class identifies a unique underlying
non-deterministic state class [18] that represents the marking and the support
of the vector of the remaining times-to-fire of the enabled transitions when the
class is entered. The association between non-deterministic and stochastic state
classes is one-to-many (possibly one-to-infinite) and preserves qualitative prop-
erties referred to the set of feasible outcomes Ωm0

, while abstracting from quan-
titative properties depending on the probability measure Pm0,fτ0

. Given that a
stochastic state class is regenerative if it satisfies Definition 4, which depends
on Ωm0 but not on Pm0,fτ0

, state classes can be used to identify regenerations.
To this end, the state space of the underlying TPN is covered by a set of

SCGs, which we call First-Epoch State Class Graphs (FESCGs), each rooted in
a regenerative state class and containing all non-regenerative successors reached
before any regeneration (which is also included in the graph). Enumeration of
FESCGs can suppress successor relations that correspond to null probability
events, i.e., firings that in any associated stochastic state class would be possible
in a null measure subset of the support.

Lemma 1. Let u be an STPN, v be its underlying TPN, R be the set of succes-

sor relations Σ = 〈m,D, f〉 t,µ→ Σ′ = 〈m′, D′, f ′〉 in the stochastic transient tree
of u enumerated from a regenerative stochastic state class Σ0 = 〈m0, D0〉, and

S = 〈m, D̄〉 t→ S′ = 〈m′, D̄′〉 be a succession relation in the SCG of v enumer-
ated from a regenerative state class S0 = 〈m0, D̄0〉, such that D̄, D̄′, and D̄0 are
the projections of D, D′, and D0 that eliminate τage, respectively. A succession

relation Σ
t,µ→ Σ′ ∈ R has probability µ = 0 iff the projection of D that elimi-

nates DET and IMM timers, conditioned to the firing of transition t, has a null
measure in RN , where N is the number of distributed times-to-fire in Σ and S.

Proof. Let Dt be D conditioned to the firing of t, i.e., Dt = D ∩ {τt ≤ τti ∀ ti ∈
E(m)}, where τt is the time-to-fire of t and E(m) is the set of transitions enabled
by m. Let D̂t be the projection of Dt that eliminates DET and IMM timers.

(If) If D̂t has null measure in RN , either i) the STPN includes some transition
associated with a mixed distribution, or ii) µ = 0. By Definition 1, the CDF of
each GEN transition is absolutely continuous over its support, thus µ = 0.
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(Only if) If, ab absurdo, D̂t had non-null measure in RN , then the integral
over D̂t of the marginal distribution of distributed times-to-fire in Σ conditioned
to the firing of t would not be zero, yielding µ 6= 0. ut

It is straightforward to show that a regenerative epoch complies with the
enabling restriction iff at most one GEN transition is enabled in each state class
of its FESCG. Conversely, compliance with the bounded regeneration restriction
depends on the presence of cycles in the FESCG.

Lemma 2. A regenerative epoch complies with the bounded regeneration restric-
tion iff its FESCG does not include any cycle.

Proof. (If) If, ab absurdo, a regenerative epoch did not satisfy the bounded
regeneration restriction, the STPN would allow a timed firing sequence made of
an unbounded number of firings that never visits a regeneration; given that an
STPN and its underlying TPN have the same set of timed firing sequences Ωm0

,
also the TPN would allow that behavior. Given that each state class is associated
with one or more stochastic state classes having the same marking and time
domain, there would exist a state class associated with an unbounded number
of stochastic state classes. As a consequence, the FESCG would include a cycle.

(Only if) If, ab absurdo, the FESCG of a regeneration included a cycle, then,
by construction, that cycle would not visit any regenerative state class. Hence,
there would exist a timed firing sequence that would allow an unbounded number
of firings without visiting a regeneration, and the corresponding regenerative
epoch would not comply with the bounded regeneration restriction. ut

Fig. 2 shows the SCG of the TPN underlying the STPN of Fig. 1, consisting
of 5 regenerative and 5 non-regenerative state classes. In particular: the FESCG
rooted in S3 includes S6 and S1, satisfying the bounded regeneration restriction
(it is cycle free) but not the enabling restriction (two GEN transitions are enabled
in S6); the FESCG rooted in S5 includes S8, S10, and S1, complying with the
enabling restriction but not with the bounded regeneration restriction (due to the
cycle S8–S10); and, the FESCG rooted in S4 includes S7, S9, and S1, satisfying
neither the bounded regeneration restriction (due to the cycle S7–S9) nor the
enabling restriction (two GEN transitions are enabled in S4, S7, and S9). Note
that the firing of transition gen1 in state class S3 would have probability zero
in any associated stochastic state class and thus it is suppressed.

3.2 An algorithm for transient analysis of MRPs

Given an STPN with underlying MRP, the kernel entries of each regenera-
tive epoch can be derived through a different solution technique depending on
whether the epoch satisfies the bounded regeneration restriction, or the enabling
restriction, or neither of the two conditions. The applicable solution strategy can
be efficiently selected through non-deterministic analysis of the underlying TPN
of the model, by enumerating the SCG so as to identify the set Θ of regener-
ative state classes, the set Ψ of reachable markings, and the FESCG of each
regenerative state class i ∈ Θ:
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S1

Restart

S2

Select G1

S3

G1 G2

S4

G1 G3

S5

E1 G1

S6

G1

S7

G1 G4

S8

E2 G1

S9

G1 G3

S10

E1 G1

restart approx

reg

enab

gen2

gen3

exp1

gen4

gen3

exp1

exp2

gen1

gen1

gen1

gen1

gen1
regenerative

non regenerative

(b)

Fig. 2. The SCG of the TPN underlying the STPN of Fig. 1: state classes are repre-
sented by rectangles labeled with the marking; successor relations between state classes
are represented by arrows labeled with the fired transition.

– if the FESCG of i complies with the bounded regeneration restriction (e.g., the
FESCG rooted in S3 in Fig. 2), Lij(t) and gik(t) are computed through the
exact regenerative transient analysis of [10], for any marking j ∈ Ψ , for any
regenerative state class k ∈ Θ, and for any time point t;

– if the FESCG of i satisfies the enabling restriction (e.g., the FESCG rooted
in S5 in Fig. 2), Lij(t) and gik(t) are derived through the method of [9, 6];

– if the FESCG of i breaks both the enabling and the bounded regeneration
restrictions (e.g., the FESCG rooted in S4 in Fig. 2), Lij(t) and gik(t) can
still be estimated by stochastic simulation of the STPN model or they can
be approximated by numerical solution as developed in Sect.3.3.

Note that in so doing the derivation of kernel entries always terminates (even
for models with an underlying marking process beyond the class of MRPs), pro-
vided that the FESCG of each regenerative state class is finite, which in turn
is guaranteed under the fairly general conditions mentioned in Sect. 2.3. Also
note that, in the present implementation, regenerative epochs that satisfy both
the restrictions are analyzed through exact regenerative transient analysis, but
analysis under the enabling restriction could be applied as well; moreover, ap-
proximated analysis or simulation might be applied also to regenerative epochs
that satisfy one or both the restrictions, as a way to reduce complexity of solu-
tion. In-depth comparison and experimentation of the impact of different choices
on accuracy and complexity deserves further study.

When kernel entries have been evaluated, transient probabilities of reachable
markings are finally derived by numerical integration of the Markov renewal
equations of Eq. 1.
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3.3 Approximate evaluation of the kernels of an MRP

In general, and in particular for regenerative epochs that do not satisfy either the
bounded regeneration or the enabling restrictions, an approximation of kernel
entries can be derived by truncating the enumeration of the stochastic transient
tree computed in the exact regenerative transient analysis [10]. In this case,
following the steps of Sect. 2.2, the approximated kernel entries L̃hj(t) and g̃ik(x)
are computed on a subset of the classes in the stochastic transient tree of the
regenerative state class i, and they thus comprise an under-approximation of the
exact values Lhj(t) and gik(x). Specifically, denoting ∆ij := Lhj(t)− L̃hj(t) and
δik := gik(x)− g̃ik(x), we have ∆ij ≥ 0 and δik ≥ 0.

To characterize the impact of the approximation, the following Lemma pro-
vides a bound on εij(t) := πij(t) − π̃ij(t), with π̃ij(t) denoting the solution of
Eq. 1 obtained with approximated kernel entries:

π̃ij(t) = L̃ij(t) +
∑
k∈Θ

∫ t

0

g̃ik(x) π̃kj(t− x) dx (2)

Lemma 3. For each regenerative state class i ∈ Θ, marking j ∈ Ψ , and time t,
the error εij(t) is non-negative and upper-bounded:

0 ≤ εij(t) ≤ φi(t)+
∑
k∈Θ

∫ t

0

(g̃ik(x)εkj(t− x) + φi(x)(εkj(t− x) + π̃kj(t− x))) dx

(3)
where φi(t) :=

∑
j∈Ψ (Lij(t)− L̃ij(t)) +

∑
k∈Θ(gik(t)− g̃ik(t)).

Proof. By combining Eqs. 1 and 2, we obtain: εij(t) = ∆ij(t)+
∑
k∈Θ

∫ t
0
(g̃ik(t)+

δik(x)) · εkj(t − x) + δik(x)) · π̃kj(t − x)dx Since ∆ij(t) ≥ 0 and δik(t) ≥ 0,
φi(t) ≥ ∆ij(t) ∀ j ∈ Ψ and φi(t) ≥ δik(t) ∀ k ∈ Θ. The upper bound of Eq. 3 can
thus be obtained by replacing ∆ij(t) and δik(t) with φi(t).

To prove that εij(t) ≥ 0, εij(t) is rewritten as εij(t) = Aij(t)+
∑
k∈Θ

∫ t
0
(g̃ik(x)·

εkj(t − x)dx where Aij(t) := ∆ij(t) +
∑
k∈Θ

∫ t
0
δik(x)πkj(t − x)dx Note that

Aij ≥ 0, being ∆ij(t) ≥ 0, δik(x) ≥ 0, and being πkj(t−x) a probability. For any
discretization step τ ∈ R>0, the expression of εij(t) can be rewritten by replacing
t = M · τ and x = m · τ , with m ∈ [0,M ]. By induction on M , it is easily proven
that ε(t) is monotonic non-decreasing with t. Moreover εij(0) = Aij(0) ≥ 0,
which proves that ε(t) ≥ 0. ut

Note that, since 0 ≤ π̃ij(t) for every markings i, j and time t, summation of
probabilities over all reachable markings provides a defective (i.e., lower than 1)
evaluation of the total probability mass properly allocated; the complement to 1
of this quantity thus comprises a safe upper bound on the maximum value of
each computed probability or summation over them.
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3.4 Heuristic driven approximation

The quantity φi(t) in Eq. 3 can be safely estimated as the sum of probabilities
to reach a truncation point in the partial enumeration of the stochastic tran-
sient tree of regenerative class i. According to this, the bounds of Eq. 3 can
be used to define a truncation policy in the partial enumeration of regenerative
epochs that break both the enabling and the bounded regeneration restrictions
(unrestricted epochs) with a twofold aim: adapt the error accumulated on kernel
entries of each regeneration i to the impact that this epoch takes on the final
error εij(t); and drive the selection of truncation points within each stochastic
transient tree so as to control the trade-off between complexity of enumeration
and accuracy of approximation. However, exact implementation of this policy
would require repeated evaluation of approximated probabilities π̃ij(t), which in
turn implies a major numerical complexity for the solution of Volterra integral
equations. Lemma 3 can thus be more conveniently exploited as a ground for
the definition of efficient heuristics driving truncation within each regenerative
epoch. Note that, while this work emphasizes the use of approximation as a way
to make feasible the evaluation of kernel entries, approximation driven by effi-
cient heuristics may be applied also to reduce complexity in epochs that fit the
bounded regeneration or the enabling restrictions.

Partial exploration of unrestricted epochs is performed by initially enumer-
ating at most νstart nodes in each tree, and then by iteratively identifying a non-
regenerative leaf node and by enumerating at most νiter of its successors, until
the number of classes enumerated in unrestricted epochs is larger than a thresh-
old νmax (heuristic-based approximate analysis). Given that the upper-bound
of Eq. 3 suggests that the approximation error affects more those regenerative
epochs that are visited more often, at each iteration we enumerate the succes-
sors of the non-regenerative leaf node with the largest estimated probability to
be reached. Such estimate is evaluated by analyzing a Discrete Time Markov
Chain (DTMC) D specified as follows:

– D has a state for each regenerative state class i ∈ Θ and for each leaf node j
(either regenerative or non-regenerative) belonging to any tree Ti ∈ T (re-
generative and non-regenerative leaf nodes are absorbing in every tree);

– D has an arc from each state representing a regenerative state class i ∈ Θ to
each state representing a leaf node j in Ti, associated with probability µij ;

– if the epoch rooted in i is analyzed exactly, µij is equal to Gij(∞) under the
bounded regeneration restriction and to Gij(tn) under the enabling restric-
tion; otherwise, if the epoch rooted in i is analyzed in approximate manner,
µij is equal to G̃ij(∞) or to L̃ij(∞) depending on whether j corresponds to
a regenerative or non-regenerative stochastic state class, respectively.

Steady-state analysis of D yields the vector of state probabilities P : solu-
tion relies on a basic implementation of the evaluation of absorption probabil-
ities, which is not optimized with reference to either general techniques [2] or
special techniques that might exploit warm restart in the repeated solution of
DTMCs that are each a minor perturbation of the one solved at the previous
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iteration. Then, the steady-state probability of the states that correspond to
non-regenerative leaf nodes are normalized, obtaining the vector of state prob-
abilities P̄ , i.e., for each state l of the DTMC D that corresponds to a non-
regenerative leaf node in a tree Ti ∈ T , P̄l = Pl/

∑
h∈SL Ph, where SL is the

set of states that correspond to non-regenerative leaf nodes in any tree Ti ∈ T .
Finally, the non-regenerative leaf node that corresponds to the state w with the
largest probability P̄w is selected as the node to be expanded.

4 A case study

The approach was implemented on top of the Sirio API of the ORIS Tool [4]. Due
to the minimal state space, with a single epoch requiring approximation of kernel
entries, the STPN of Fig. 1 does not permit to best illustrate the potential of the
approach. Hence, experiments were performed on the STPN of Fig. 3, a variant
of a 3-station exhaustive-service polling system [11], where service sojourn is
bounded by a DET timeout, polling times have a GEN distribution, and service
times have an EXP or GEN distribution. For each station s ∈ {1, 2, 3}: place
Waitings encodes the number of pending service requests; places AtServices
and Vacants encode whether the station is being served or not, respectively;
and, place Pollings encodes the state where the server is polling station s. In
Fig. 3, all stations have no pending requests and the server is polling station 1.

The service at station s begins with the firing of transition startServices,
with uniform distribution over [1, 2], and it may terminate either when the queue
of pending requests (Waitings) is empty or when timeouts fires after a DET
maximum duration of value 3. During the service interval, place Vacants is
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AtService1

serve1

exp(1)arrive1

exp(0.05)

empty1

timeout1
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startService1

uni(1,2)
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Polling3
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AtService2

serve2
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timeout2
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timeout3

det(3)

startService3

uni(1,2)

Fig. 3. STPN of a 3-station exhaustive-service polling system with server timeout.
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empty and transition serves is enabled, so that any number of requests can
be served. Transition arrives models the arrival of a new request as an EXP
distribution with mean 20. Since the EXP distribution has a null minimum value,
the maximum number of requests served during a service interval is limited
only by the relation between the timeout value and the minimum duration of
each service. Specifically, the number of requests served during a service interval
sojourn is unbounded for stations 1 and 3, and it is bounded to 3 for station 2
where each service requires at least 1 time unit.

The underlying marking process regenerates whenever the server arrives to
any station (i.e., at firing of emptys or startServices) or leaves it (i.e., at firing
of emptys or timeouts), which directly implies that starting from any reachable
state, w.p.1, a regeneration will be eventually reached, i.e. the process is an MRP.
The process behavior falls in different subclasses of MRP during service sojourns
at different stations. When the server is at station 1: the process satisfies the en-
abling restriction, given that timeout1 is the only non-EXP transition enabled
in each state; but it does not satisfy the bounded regeneration restriction, as
for any natural number n, there exists a non-null probability that serve1 and
arrive1 are fired more than n times before the expiration of timeout1. When
the server is at station 2: the process satisfies the bounded regeneration restric-
tion, given that serve2 cannot be fired more than 3 times before the firing of
timeout2; but the enabling restriction is not satisfied as timeout2 and serve2

can be concurrently enabled. When the server is at station 3: the process falls
in the unrestricted case as timeout3 and serve3 are concurrently enabled, and
serve3 may fire an unbounded number of times before the firing of timeout3.

Transient analysis is performed through the approach of Sect. 3 with the fol-
lowing parameters: time limit tn = 30 (each station is served at least twice), time
step 0.1, νstart = 20 (number of stochastic state classes initially enumerated in
each unrestricted epoch), νiter = 20 (number of stochastic state classes enumer-
ated in each unrestricted epoch at each iteration), and νmax = 500 (threshold on
the total number of stochastic state classes enumerated in unrestricted epochs).
Overall, the analysis evaluates the kernel entries of 135 regenerative epochs:
99 through the analysis under the bounded regeneration restriction, 18 through
the analysis under the enabling restriction, and 18 through the heuristic-based
approximate analysis. On a machine equipped with an Intel i5-5200U 2.20 GHz
and 8 GB RAM, the evaluation takes nearly 40 min, spending less than 0.1 s
to perform non-deterministic analysis and classification of regenerative epochs;
nearly 40 s, 0.3 s, and 0.4 s to analyze the state space of regenerative epochs under
the bounded regeneration restriction, under the enabling restriction, and beyond
both restrictions, respectively; approximately 100 s, 180 s, and 2.5 s to evaluate
the kernel entries of regenerative epochs under the bounded regeneration restric-
tion, under the enabling restriction, and beyond both restrictions, respectively;
nearly 23 s to evaluate the heuristic criterion; and, approximately 34 min to solve
the Markov renewal equations. Numbers show that non-deterministic analysis
has relatively negligible computational complexity, and thus it can be efficiently
used to select the solution technique applied to each regenerative epoch. No-
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tably, the heuristic criterion has a significantly lower cost with respect to the
evaluation of the kernel entries of restricted epochs, which much depends on the
number of encountered regenerations. Overall, results suggest that approximate
analysis could be applied also to epochs under enabling or bounded regeneration
restrictions to limit state space exploration and reduce evaluation complexity.

To illustrate possible rewards of interest, Fig. 4a plots the average num-
ber of messages waiting to be served at time t in each station and in the
overall system, i.e., wn(t) =

∑
j∈Ψ πij(t) · j(Waitingn) ∀n ∈ {1, 2, 3} and

w(t) =
∑
j∈Ψ πij(t)·

∑3
n=1 j(Waitingn), respectively, where i is the initial regen-

eration (i.e., a stochastic state class with the marking of Fig. 3, where all enabled
transitions are newly-enabled) and Ψ is the set of markings reached within tn.

To evaluate the impact of different heuristics in approximate analysis, we
evaluate the total defect in the evaluation of transient probabilities of mark-
ings, i.e., ε(t) :=

∑
j∈Ψ εij(t) where i is the initial regeneration and Ψ the set of

markings, which can be easily computed a posteriori as ε(t) = 1−
∑
j∈Ψ πij(t).

Fig. 4b plots the total error at the time limit tn = 30 as a function of the
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Fig. 4. (a) Average number of messages waiting to be served at time t at station s,
i.e., ws(t) ∀ s ∈ {1, 2, 3}, and in the overall system, i.e., w(t); (b) total error ε(tn)
(committed in the evaluation of transient probabilities of markings at the time limit tn)
as a function of the number of classes enumerated in unrestricted epochs; (c) total
error ε(t) obtained with 70 stochastic state classes enumerated in unrestricted epochs.
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threshold νmax, comparing results with those obtained with a naive approximate
analysis that explores all stochastic transient trees of unrestricted epochs, enu-
merating νmax/U stochastic state classes in each tree, where U is the number
of unrestricted epochs. As expected, ε(tn) decreases as νmax increases, and the
two approaches achieve approximately the same values of ε(tn) for very small
values of νmax. Conversely, when νmax becomes larger than 60, the heuristic-
based analysis achieves significantly lower values of ε(tn), in the order of 8 ·10−2

for νmax = 100 and 7 · 10−3 from νmax = 200 on, with respect to values in the
order of 0.65 and 6 · 10−2 attained by naive analysis, respectively. Overall, these
results could be used to select a convenient value of νmax in a trade-off between
the result accuracy and the computational complexity.

Fig. 4c plots the total error attained by the two approaches as a function
of time, with νmax = 100, νstart = 2, and increasing values of νiter. All curves
are around zero until time 5, due to the very low probability that the server
has reached station 3 by that time. From time 5 on, the error attained by naive
analysis rapidly increases, being nearly 0.21, 0.48, and 0.64 at t = 10, t = 20,
and t = 30, respectively. Conversely, ε(t) increases with a much smaller slope
for heuristic-based analysis. As expected, the cases with lower values of νiter
achieves better results; for instance, for νiter = 1, ε(t) is approximately equal
to 0.016, 0.049, and 0.083 at t = 10, t = 20, and t = 30, respectively. Values
of ε(t) slightly increase with νiter, though remaining nearly in the same order
of magnitude, showing that heuristic-based analysis yields sufficiently accurate
results while permitting to limit the computational cost.

5 Conclusions

We leverage the low computational cost of non-deterministic analysis to drive
the integration of different solution techniques in the evaluation of the kernels
of an MRP, distinguishing regenerative epochs that can be analyzed through
exact approaches from those that need approximate evaluation, due to infinite
sequences of discrete events that never visit a regeneration. For the latter epochs,
we present a novel approach based on the partial enumeration of stochastic state
classes, which are iteratively explored according to a heuristic criterion based on
the probability that a regeneration is reached. In so doing, the approximation
is limited to the kernel entries of a subset of regenerative epochs, and transient
probabilities of markings can be safely and accurately approximated.

Notably, the approximate analysis algorithm is designed to permit the in-
tegration of other solution techniques, which can be equivalently analytical or
simulative. Other heuristic criteria could be used as well to select the next node
to visit in partial enumeration of stochastic state classes, possibly taking into
account an estimate of the mean time until when a regeneration is reached. Ex-
perimental results show that the heuristic-based approximate analysis provides
accurate results while maintaining a moderate computational cost, suggesting
that approximation could be used also for regenerative epochs characterized by
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finite stochastic transient trees, in order to reduce the number of stochastic state
classes needed to compute the kernels.
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