
An introduction to the ORIS tool
Marco Biagi, Laura Carnevali, Enrico Vicario

University of Florence, Italy

firstname.lastname@unifi.it

Marco Paolieri

University of Southern California

paolieri@usc.edu

ABSTRACT
ORIS provides a graphical interface to draw Petri nets, analysis

engines for different classes of underlying stochastic process, and

visualization of reward-based metrics. It also includes a Java API for

model definition and analysis, which can be used to carry out para-

metric performance studies. ORIS implements methods for steady-

state and transient analysis of Semi-Markov Processes (SMPs),

Markov Regenerative Processes (MRPs), Generalized Semi-Markov

Processes (GSMPs), and Continuous-Time Markov Chains (CTMCs).

KEYWORDS
Tools, Stochastic Petri Nets, Markov Regenerative Processes, Non-

Markovian Processes, Transient Analysis, Steady-State Probabilities

ACM Reference Format:
Marco Biagi, Laura Carnevali, Enrico Vicario and Marco Paolieri. 2017. An

introduction to the ORIS tool. In VALUETOOLS 2017: 11th EAI International
Conference on Performance Evaluation Methodologies and Tools, December
5–7, 2017, Venice, Italy. ACM, New York, NY, USA, 3 pages. https://doi.org/

10.1145/3150928.3158361

1 INTRODUCTION
ORIS is a software tool for the modeling and evaluation of sto-

chastic systems governed by timers (e.g., interarrival or service

times, failure times, repair times, timeouts) with general probability

density functions (PDFs). It provides a graphical user interface to

model systems using stochastic Petri nets, a popular formalism

where the state is represented by tokens contained inside places,
and transitions (depicted as bars) move tokens between places when

their timers expire. Notably, ORIS supports models where multiple
timers with general PDF can be concurrently enabled in each state.

Over the past 10 years, this challenging goal has been the subject

of several works, starting with foundational results on the integra-

tion of general PDFs over DBM zones [4, 15], and then addressing

different metrics for specific classes of underlying stochastic pro-

cess: transient analysis of GSMPs [9] and MRPs [8], steady-state

analysis of MRPs [10], probabilistic model checking of until opera-

tors in GSMPs [9] and MRPs [11] (SMPs are a subclass of MRPs).

Recent work leveraged state-space analysis [14] to detect the class

of the underlying process and apply the most efficient technique,

or even different techniques to separate components of the state

space [2] (also implementing well-established methods for transient

analysis of CTMCs and MRPs with at most one general timer [7]).

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

VALUETOOLS 2017, December 5–7, 2017, Venice, Italy
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6346-4/17/12.

https://doi.org/10.1145/3150928.3158361

The flexibility of models withmultiple general timers allowed the

application of ORIS to the analysis of performance and reliability

in many domains, including railway signaling [3], power grids [1],

gas distributions networks [6] and phased-mission systems [5].

2 OVERVIEW
2.1 Models
ORIS adopts Stochastic Time Petri Nets (STPNs) as a graphical

formalism to specify stochastic systems. STPNs include all the

standard building blocks of stochastic Petri nets: places contain

tokens that control the enabling of transitions through input and

inhibitor arcs [15]. When a transition becomes enabled, it samples a

time to fire according to a given PDF; the transition with minimum

time to fire is the next discrete event: it “fires” by removing a token

from each input place and adding a token to each output place. To

improve modeling convenience, STPNs introduce enabling functions
that control the enabling of transitions (e.g., “place

1
+place

2
> 3”,

as in stochastic activity networks and stochastic reward nets [12]),

update functions to express complex token moves at the firing of

a transition (e.g., p1 ← p1 ∗ p2 + p3), and reset sets to force some

transitions (if enabled) to resample their times to fire.

PDFs of transitions can be exponential, deterministic, expolyno-

mial or immediate (drawn as thick white, thick gray, thick black, or

thin black bars, respectively). Expolynomials [13] are a general class
of PDFs obtained from products of exponentials and polynomials,

on bounded or unbounded supports; they include uniform and Er-

lang PDFs as special cases. To resolve ties between immediate (i.e.,

with zero duration) or deterministic transitions with minimum but

equal time to fire, STPNs include priorities (only the transitions

with highest priority are considered) and weights (transitions are
selected with probability proportional to their weights).

2.2 Metrics
Amarkingm : P → N⩾0

assigning a token countm(p) to each place
p ∈ P defines the discrete state of the STPN at a specific time. The

firing of transitions governs the evolution of themarking: tokens are

added or removed from places, causing the enabling (or disabling)

of other transitions and the sampling of their times to fire. The

marking of an STPN over time is a stochastic process {m(t), t ⩾ 0},
which we require to have finite state spaceM . Quantitative metrics

are defined from transient and steady-state probabilities, i.e., from

pi (t) = P({m(t) = i}) and from pi = limt→∞ pi (t) for each i ∈ M .

The user can define a reward r : M → R, i.e., a real-valued func-

tion of markings such as “(p1+p2)/2” that is evaluated by ORIS (sub-
stituting place names with the number of contained tokens) to com-

pute the instantaneous expected reward Ir (t) =
∑
i ∈M r (i)pi (t) at

each time t , its steady-state value I r = limt→∞ Ir (t) =
∑
i ∈M r (i)pi

or its cumulative value over time Cr (t) =
∫ t
0
Ir (t)dt .

https://doi.org/10.1145/3150928.3158361
https://doi.org/10.1145/3150928.3158361
https://doi.org/10.1145/3150928.3158361
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3150928.3158361&domain=pdf&date_stamp=2017-12-05

VALUETOOLS 2017, December 5–7, 2017, Venice, Italy M. Biagi et al.

2.3 Analysis Engines
The software architecture of ORIS decouples the graphical editor

from the underlying analysis engines. Given the many variants of

Petri net features (enabling/update functions, priorities, weights,

reset sets), ORIS was developed with extensibility in mind: new

features can be defined by implementing specific interfaces, so that

they can be introduced in the graphical editor and made available to

the analysis engines. In turn, analysis engines implement a specific

interface that allows them to cooperate with the graphical interface,

i.e., to collect analysis options from the user, to start/stop analysis

runs, to record and display analysis logs, and to show time series

and tabular results. The available analysis engines include:

Non-deterministic Analysis, to produce a compact representa-

tion of the dense set of timed states that can be reached by themodel.

The state space is displayed as a directed graph, where edges repre-

sent transition firings while nodes are state classes [14] comprising

a marking and a DBM zone of timer values. This analysis is useful

to debug STPN models and ensure that their state spaceM is finite.

Transient andRegenerativeAnalysis, to compute transient prob-

abilities in GSMPs and MRPs, respectively. These methods evaluate

trees where edges are labeled with transitions and their firing prob-

abilities, while nodes are stochastic state classes [8] comprising a

marking, the PDF of timers, and their support (a DBM zone). For a

given time limit T , the enumeration proceeds until the tree covers

the transition firings of the STPN by timeT with probability greater

than 1 − ϵ , where ϵ > 0 is an error term. While standard transient

analysis enumerates a single, very large tree of events, regenerative

analysis avoids the enumeration of repeated subtrees rooted in the

same regeneration point (where all general timers are reset or have

been enabled for a deterministic time). A time step is used to select

equispaced time points where transient probabilities are evaluated

(directly or by solving Markov renewal equations).

Regenerative Steady-State Analysis, to compute steady-state

probabilities in MRPs (and thus SMPs and CTMCs) with irreducible

state space. This method uses trees of stochastic state classes be-

tween regeneration points to compute steady-state probabilities of

markings: expected sojourn times in each tree are combined with

the steady-state probability of regenerations at their roots [10]. As

for transient analysis, this method can be applied to STPNs allowing

multiple general timers enabled in each state.

Transient Analysis under Enabling Restriction, to compute

transient probabilities in MRPs that allow at most one general

transition enabled in each state [7].

Uniformization, to compute transient probabilities of CTMCs.

This method implements uniformization using Fox and Glynn’s

algorithm to compute Poisson probabilities [7].

Engines support instantaneous (transient or steady-state) and

cumulative (transient) rewards. In addition, the user can specify

a stop condition, i.e., a Boolean predicate on markings such as

(error == 1) | | (goal == 1), that is used to halt the STPN. This

feature can be used to compute first-passage probabilities [8] or

reach-avoid objectives equivalent to bounded until operators [11].

2.4 Graphical User Interface and Java API
ORIS provides a Graphical User Interface (GUI) to edit STPN mod-

els with the aid of features common in CAD tools, such as zoom,

undo/redo, and aligning elements to a fixed grid, with each other

(horizontally or vertically), or so as to evenly space them. STPNs

models can be saved as XML files and later reopened in the editor,

or exported as SVG images. To facilitate the use of the Java API, the

GUI editor can export an STPN as “Java code”: this function gener-

ates a Java file (e.g., Fischer.java) that contains the statements

required to build the STPN through the ORIS API, such as:

public class Fischer {
public static void build(PetriNet pn, Marking m) {

Place id = pn.addPlace("id");
Place writing1 = pn.addPlace("writing1");
Place waiting1 = pn.addPlace("waiting1");
Transition write1 = pn.addTransition("write1");
pn.addPrecondition(writing1, write1);
pn.addPostcondition(write1, waiting1);
write1.addFeature(

StochasticTransitionFeature.newUniformInstance(
new OmegaBigDecimal("0"),
new OmegaBigDecimal("1")));

write1.addFeature(new PostUpdater("id=1", pn));
m.addTokens(writing1, 1); // (rest omitted)

}
}

Once a model is built using the Java API, it can be analyzed by

invoking the available engines and the results (e.g., steady-state

distributions, transient time-series, or state class graphs) can be

saved to file or displayed using the same functions available in the

GUI editor, such as plots and tables. While building and analyzing

models in the GUI editor can be very useful to quickly iterate

over different model designs and analyze their behavior, the Java

API is crucial to carry out extensive parametric studies where the

stochastic parameters are varied, or different policies are compared.

3 A CASE STUDY: FISCHER’S PROTOCOL
ORIS is available at http://www.oris-tool.org with a tutorial.

We illustrate the use of the tool on Fischer’s protocol [10, 11], which

ensures mutual exclusion using atomic read and write operations

on a shared communication variable, and waiting periods before

entering the critical section. Fig. 1 illustrates an STPN of the proto-

col where n processes P1, P2, . . . , Pn access a critical section using

the shared variable id taking values 0, 1, . . . ,n. When id = 0, a

process Pi that becomes ready (i.e., after transition arrivali fires
and places a token in readyi) can attempt to access the critical

section, performing the write operation id← i , waiting for a time

not lower than the maximum write time of other processes, and

then reading id again: if id = i , it can access the critical section

and write id ← 0 on exit; otherwise (id , i) it must wait until

id = 0 to attempt again. Mutual exclusion is guaranteed by the fact

that the waiting time waiti is greater than the maximum writing

time writei of other processes, so that concurrent writes to id are

detected (by transition readOtheri) and only the last process that

finishes its write can enter the critical section (with readSelfi).

An introduction to the ORIS tool VALUETOOLS 2017, December 5–7, 2017, Venice, Italy

id

Process Pi for i = 1, . . . , n

idlei readyiarrivali
EXP(0.1)

writingireadEmptyi
?id = 0

waitingiwritei
UNIF(0,1)

id← i

readingiwaiti
DET(1)

readOtheri
?id , i

csireadSelfi
?id = i

completediservicei
UNIF(0,2)

reseti
id← 0

Figure 1: STPN model of three processes accessing a critical section with Fischer’s mutual exclusion protocol.

The underlying stochastic process of this STPN is an MRP: mul-

tiple writei and waiti transitions with general PDF (uniform and

deterministic, respectively) can be enabled at the same time but,

when a process enters the critical section, the others are either idle

(thus enabling the exponential transition arrivali) or waiting in
readyi = 1 for id to become 0; the process encounters a regen-

eration point, where all general timers are newly enabled. This

STPN can thus be analyzed using the regenerative analysis engines

(transient or steady-state) with error term ϵ = 0: the results are

exact (up to numerical errors).

First, we consider the probability that, from an initial state where

three processes are idle (id = 0 and idlei = 1 for i = 1, 2, 3),

P1 reaches the critical section. This metric can be computed by eval-

uating the instantaneous reward “cs1” (place cs1 contains at most

one token) under the stop condition “cs1 == 1.” We computed

this metric also from the alternative initial state where id = 0,

ready
1
= 1, and idlei = 1 for i = 2, 3 to compare with case

when P1 is the first process that becomes ready. Transient probabil-

ities were evaluated after steps of size 0.1 (this parameter is also

used to solve Markov renewal equations: large step sizes can affect

accuracy). Results obtained with the GUI are illustrated in Fig. 2.

Figure 2: First-passage probability of states where cs1 == 1.

Then, we export the model as a Java class and carry out a para-

metric study of performance at the steady-state (note that the state-

space is irreducible). We run steady-state regenerative analysis with

reward “cs1+ · · ·+csn” for servicei ∼ unif(0,x), x ranging from

0.5 to 100.5, and n = 2, 3, 4, 5, which gives the results of Fig. 3. This

reward represents the utilization of the critical section, which satu-

rates when the number of processes or the service time increase.

REFERENCES
[1] A. Avritzer, L. Carnevali, L. Happe, A. Koziolek, D. S. Menasche, M. Paolieri, and

S. Suresh. 2014. A Scalable Approach to the Assessment of Storm Impact in

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

re
so

u
rc

e
 u

sa
g
e

service time

n=2
n=3
n=4
n=5

Figure 3: Steady-state utilization of the critical section.

Distributed Automation Power Grids. In QEST’14 (LNCS), Vol. 8657. Springer,
345–367. https://doi.org/10.1007/978-3-319-10696-0_27

[2] M. Biagi, L. Carnevali, M. Paolieri, T. Papini, and E. Vicario. 2017. Exploiting

non-deterministic analysis in the integration of transient solution techniques for

MRPs. In QEST’17. 20–35. https://doi.org/10.1007/978-3-319-66335-7_2

[3] M. Biagi, L. Carnevali, M. Paolieri, and E. Vicario. 2017. Performability evalua-

tion of the ERTMS/ETCS – Level 3. Transportation Research Part C: Emerging
Technologies 82 (2017), 314–336. https://doi.org/10.1016/j.trc.2017.07.002

[4] L. Carnevali, L. Grassi, and E. Vicario. 2009. State-Density Functions over DBM

Domains in the Analysis of Non-Markovian Models. IEEE Trans. Softw. Eng. 35, 2
(March 2009), 178–194. https://doi.org/10.1109/TSE.2008.101

[5] L. Carnevali, M. Paolieri, K. Tadano, and E. Vicario. 2013. Towards the quantitative

evaluation of phased maintenance procedures using non-Markovian regenerative

analysis. In EPEW’13 (LNCS), Vol. 8168. Springer, 176–190. https://doi.org/10.

1007/978-3-642-40725-3_14

[6] L. Carnevali, M. Paolieri, F. Tarani, and E. Vicario. 2013. Quantitative Evaluation

of Availability Measures of Gas Distribution Networks. In VALUETOOLS’13. ACM,

145–154. https://doi.org/10.4108/icst.valuetools.2013.254411

[7] R. German. 2000. Performance Analysis of Communication Systems with Non-
Markovian Stochastic Petri Nets. Wiley.

[8] A. Horváth, M. Paolieri, L. Ridi, and E. Vicario. 2012. Transient analysis of non-

Markovian models using stochastic state classes. Perform. Eval. 69, 7-8 (July 2012),
315–335. https://doi.org/10.1016/j.peva.2011.11.002

[9] A. Horváth, L. Ridi, and E. Vicario. 2010. Transient Analysis of Generalised

Semi-Markov Processes Using Transient Stochastic State Classes. In QEST’10.
IEEE, 231–240. https://doi.org/10.1109/QEST.2010.37

[10] S. Martina, M. Paolieri, T. Papini, and E. Vicario. 2016. Performance evaluation of

Fischer’s protocol through steady-state analysis ofMarkov regenerative processes.

In MASCOTS’16. Springer, 355–360. https://doi.org/10.1109/MASCOTS.2016.72

[11] M. Paolieri, A. Horváth, and E. Vicario. 2016. Probabilistic Model Checking

of Regenerative Concurrent Systems. IEEE Trans. Softw. Eng. 42, 2 (Feb 2016),

153–169. https://doi.org/10.1109/TSE.2015.2468717

[12] K. S. Trivedi. 2001. Probability and statistics with reliability, queuing, and computer
science applications. John Wiley and Sons, New York.

[13] K. S. Trivedi and R. Sahner. 2009. SHARPE at the age of 22. SIGMETRICS Perform.
Eval. Rev. 36, 4 (March 2009), 52–57. https://doi.org/10.1145/1530873.1530884

[14] E. Vicario. 2001. Static Analysis and Dynamic Steering of Time-Dependent

Systems. IEEE Trans. Softw. Eng. 27, 8 (Aug. 2001), 728–748. https://doi.org/10.

1109/32.940727

[15] E. Vicario, L. Sassoli, and L. Carnevali. 2009. Using Stochastic State Classes in

Quantitative Evaluation of Dense-Time Reactive Systems. IEEE Trans. Softw. Eng.
35, 5 (Sept./Oct. 2009), 703–719. https://doi.org/10.1109/TSE.2009.36

https://doi.org/10.1007/978-3-319-10696-0_27
https://doi.org/10.1007/978-3-319-66335-7_2
https://doi.org/10.1016/j.trc.2017.07.002
https://doi.org/10.1109/TSE.2008.101
https://doi.org/10.1007/978-3-642-40725-3_14
https://doi.org/10.1007/978-3-642-40725-3_14
https://doi.org/10.4108/icst.valuetools.2013.254411
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1109/QEST.2010.37
https://doi.org/10.1109/MASCOTS.2016.72
https://doi.org/10.1109/TSE.2015.2468717
https://doi.org/10.1145/1530873.1530884
https://doi.org/10.1109/32.940727
https://doi.org/10.1109/32.940727
https://doi.org/10.1109/TSE.2009.36

	Abstract
	1 Introduction
	2 Overview
	2.1 Models
	2.2 Metrics
	2.3 Analysis Engines
	2.4 Graphical User Interface and Java API

	3 A Case Study: Fischer's Protocol
	References

