
A model-based approach to streamlining
distributed training for asynchronous SGD

Sung-Han Lin∗‡, Marco Paolieri∗, Cheng-Fu Chou†, Leana Golubchik∗
∗Department of Computer Science, University of Southern California – {sunghan, paolieri, leana}@usc.edu

†Department of Computer Science, National Taiwan University – ccf@csie.ntu.edu.tw
‡NetApp, Inc. – sunghan.lin@netapp.com

Abstract—The success of Deep Neural Networks (DNNs) has
created significant interest in the development of software tools,
hardware architectures, and cloud systems to meet the huge com-
putational demand of their training jobs. A common approach
to speeding up an individual job is to distribute training data
and computation among multiple nodes, periodically exchanging
intermediate results. In this paper, we address two important
problems for the application of this strategy to large-scale clusters
and multiple, heterogeneous jobs. First, we propose and validate
a queueing model to estimate the throughput of a training job
as a function of the number of nodes assigned to the job; this
model targets asynchronous Stochastic Gradient Descent (SGD),
a popular strategy for distributed training, and requires only data
from quick, two-node profiling in addition to job characteristics
(number of requested training epochs, mini-batch size, size of
DNN parameters, assigned bandwidth). Throughput estimations
are then used to explore several classes of scheduling heuristics to
reduce response time in a scenario where heterogeneous jobs are
continuously submitted to a large-scale cluster. These scheduling
algorithms dynamically select which jobs to run and how many
nodes to assign to each job, based on different trade-offs between
service time reduction and efficiency (e.g., speedup per additional
node). Heuristics are evaluated through extensive simulations of
realistic DNN workloads, also investigating the effects of early
termination, a common scenario for DNN training jobs.

Index Terms—Distributed Machine Learning, Parallel Schedul-
ing, Queueing Networks, TensorFlow.

I. INTRODUCTION AND RELATED WORK

Machine learning is one of today’s most rapidly growing
fields in computer science. Its combination of artificial in-
telligence and data science has led to the development of
practical technologies currently in use for many applications.
Deep learning [1] is a novel area of machine learning that
recently achieved breakthrough results in several domains, in-
cluding computer vision, speech recognition, natural language
processing, and robot control. Its distinctive trait is the use
of Deep Neural Networks (DNNs) to discover, directly from
input data, internal representations suitable for classification
tasks, without the need for manual feature engineering.

To be effective, this approach requires very large amounts
of data and computation. For example, DNNs for image
classification include tens of layers and millions of weights
(parameters that combine the outputs of one layer to produce
inputs of the next one) that are tuned using datasets of millions
of images [2]. Training can take weeks and must often be
repeated for multiple values of hyperparameters of the training
algorithm, such as the learning rate or momentum parameters
of Stochastic Gradient Descent (SGD).

To speed up training and provide quick turnaround to users
submitting DNN training jobs, it is important to leverage
hardware acceleration (e.g., by using GPUs that implement
DNN primitives) and distributed training, which uses multiple
machines in parallel. Machine learning frameworks such as
TensorFlow [3], Caffe2 [4], MXNet [5] provide high-level
abstractions that allow the user to easily run training algo-
rithms on GPUs with hardware acceleration and in parallel on
multiple machines. Using a parameter server architecture [6],
the dataset is split among many worker nodes that perform
training in parallel, sending parameter updates to a parameter
server and receiving the most recent version of parameters
(which include updates from other workers).

Scheduling. As shown by experimental measurements [7],
when more worker or server nodes are assigned to a job,
its throughput (number of training examples processed per
second) increases only sublinearly; in some cases, when a
shared resource (e.g., the network) is congested, adding more
nodes can reduce the throughput, thus increasing the overall
job service time. In practice, users need to benchmark each
training job with an increasing number of worker nodes to
evaluate the corresponding throughput. Even when throughput
is known for each number of assigned nodes, dynamic schedul-
ing of heterogeneous jobs is an open research problem.

Several efforts based on linear programming or approxima-
tion algorithms tackled offline formulations with the goal of
minimizing the makespan of a set of tasks while satisfying
deadline requirements and precedence relations [8], [9], [10],
[11]. High-Performance Computing (HPC) scheduling consid-
ers rigid jobs where the number of required nodes is fixed and
specified by the user [12], [13]; this formulation reduces to 2D
bin-packing (an NP-hard problem), for which HPC heuristics
sort jobs according to many factors (age, size, priority) and
schedule them in order, with backfilling of unused timeslots.

When jobs with generally-distributed size are moldable
(i.e., the scheduler can select an arbitrary but fixed level of
parallelism) or malleable (i.e., the scheduler can adapt the
level of parallelism over time) and arrivals of new jobs are
described by a Poisson process, optimal algorithms are known
only for the case of linear speedups [14]; in particular, mean
response time is minimized by assigning all nodes to the
job that has the least expected work on a single node. This
policy, which extends the approach of Shortest-Remaining-
Processing-Time (SRPT) to parallelizable jobs, can be quite

1

2

3

4

5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (

d
a

y
s
)

System Load

JSQ-Chunk

HELL Heuristic

Fig. 1: Mean response time of AlexNet [17] training jobs
on a cluster of 100 nodes using JSQ-Chunk scheduling [15]
(with best chunk size) or HELL heuristic (Section IV)

inefficient when speedups are only sublinear, as is the case for
DNN training jobs. A recent independent effort [15] considers
the case of parallel scheduling of jobs with non-decreasing,
concave speedups and exponential job size distributions: the
proposed near-optimal policy, JSQ-Chunk, minimizes mean
response time of homogeneous jobs (i.e., with the same mean
service time and speedup function).

Fig. 1 (generated by our experiments detailed in Section V)
illustrates that, when job sizes are not exponentially distributed
(as in the case of DNN training jobs), better heuristics can be
constructed, similarly to [16], by analyzing both job speedup
properties and remaining amount of work (see details in Sec-
tion IV-A). In this figure, the mean response time (including
waiting and service time of jobs) is obtained from a simulation
of AlexNet [17] training jobs, where the mean service time
on a single node is E[S(1)] = 12 days, and the speedup from
additional workers is almost linear for 2-4 workers, saturates
gradually for 5-9 workers, and then converges to 4.8 due to
network bottlenecks. The cluster includes n = 100 nodes
and arrivals are generated as a Poisson process with varying
rate λ to produce system loads λE[S(1)]/n from 0.1 to
0.66. This experiment illustrates that, in the case of DNN
training jobs, the exponential assumption is problematic; this
makes intuitive sense, as remaining service times with an
exponential distribution (assumed in JSQ-Chunk) have the
same distribution as the entire service duration, which is not
the case for DNN training jobs. In this work, we consider
a scenario where each job requires training of a DNN from
an initial value of weights and for a given number of epochs
(i.e., passes through the entire dataset of training examples):
the user inspects loss and accuracy curves at the end of a
job and decides whether to resubmit the model to train for
an additional number of epochs. This interactive scenario is
typical during the development and tuning of DNN models,
where many hyperparameter values or model variants can
quickly lead to unsatisfactory results.
Throughput Prediction. Resource management becomes
even more difficult when training jobs are heterogeneous
and the speedup from using multiple nodes is not known in
advance. Existing approaches to throughput prediction of dis-

tributed machine learning jobs adopt either black-box models
or very simple analytical ones.

A black-box model is used in [18] to fit linear parameters αi
of a service-time function of the form S(n) = α0 + α1/n +
α2 log(n)+α3n, where n is the number of nodes and S(n) the
corresponding service time. The motivation for this approach
is that, after splitting the work among n nodes, communication
patterns usually introduce linear or logarithmic overhead. But
each DNN training job is characterized by the different amount
of data exchanged with the parameter server and by the
computation times at worker and server nodes. A black-box
approach would require profiling each job using multiple
choices for the number of workers n to fit the parameters αi.
Instead, our goal is to profile each job using 1 worker node and
to leverage a model of distributed training to estimate S(n).

A simple analytical model for service-time speedup of
synchronous SGD is presented in [19], where the computa-
tion load is split equally among workers and communication
overhead is proportional to the logarithm of the number of
nodes. In contrast, our experimental evaluation highlights
that, in asynchronous SGD, communication overhead depends
on the specific pattern of network access by the nodes: as
illustrated by our measurements in Fig. 7 (details in Sect. III),
the overhead of additional workers is sometimes negligible
at low network utilization, as different workers exchange
small amounts of data without transmission overlaps, using
the entire available bandwidth (Fig. 8). In addition, while
synchronous SGD repeats its communication pattern after each
step, asynchronous SGD requires a dynamic model of system
resources and of their use by nodes assigned to a training
job. Analytical models for general machine learning jobs are
proposed also in [20], but communication overhead is assumed
to be negligible, which is not the case for real-world DNNs.

Contributions. This work provides two main contributions.
1) Performance Model of Asynchronous SGD. We tackle the
problem of throughput prediction of a given DNN training job
as a function of the number of asynchronous SGD workers.
In Sect. III, we develop a queueing network model [21] where
different stations model worker nodes, the parameter server,
and its incoming and outgoing network links. For a given DNN
training job, we use this model to estimate the number of
examples processed per second with any number of workers;
our model requires only quick profiling with a single worker
to evaluate computation times and data exchanged with the
parameter server. To account for the effects of TCP congestion
control, we switch, depending on network load, between two
models of communication. We validate this model in Sect. V-A
using (i) synthetic DNNs on a cluster of CPU-only nodes and
(ii) popular DNN models in a public cloud environment with
GPU instances; results indicate that our model achieves mean
error within 10% of experimental TensorFlow measurements.
2) Parallel Job Scheduling. We leverage our performance
model to address the problem of scheduling heterogeneous
DNN training jobs on a computing cluster. Each job requires
the training of a DNN from an initial value of its weights

and for a given number of epochs. This is a common scenario
during the development of DNN models, when many model
variants and hyperparameter values are evaluated to find a
combination giving the best accuracy; users start many jobs
for a limited number of epochs, check on them, and decide
whether to cancel them or to request additional training. The
size of each job has a general distribution, which is determined
by the number of training examples to process, the amount
of computation required to process each example, and the
size of the model (transmitted over the network between the
server and the workers). The level of parallelism of a job is
either selected when service begins (moldable case) or adapted
over time (malleable case). Our proposed heuristics achieve
different tradeoffs between system efficiency and speedup of
job response time (i.e., time spent in the system by a job,
waiting or in service). We also explore mechanisms to reduce
the time for completing intermediate results (e.g., 50% of the
job size). Speeding up completion of intermediate results is
desirable because intermediate results can be used to cancel
jobs that are not promising (e.g., training jobs with inappro-
priate values of hyperparameters). Several classes of heuristics
are evaluated in Section V-B through extensive simulations.
The results indicate that our heuristics for malleable jobs are
stable at 70% load and achieve lower mean response times
than simple SRPT-type approaches, which become unstable at
much lower loads (10%-30%); for moldable jobs, heuristics
are stable at 60% load and provide lower mean response time
than JSQChunk.

II. BACKGROUND ON DNN TRAINING

In this section, we give a brief overview of background on
DNN training needed in the remainder of the paper.

A. Distributed Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) [22] is the most widely
used algorithm for DNN training. For a given set of layers,
connections and activation functions, a DNN is a parametric
function f computing y = f(x; θ) (e.g., an image classifica-
tion) from the inputs x (e.g., the pixel values of each RGB
channel), where the parameters θ = (θ1, . . . , θn) are real-
valued weights connecting neurons of different layers. From
a random initialization, θ is iteratively improved to minimize
the error on a training set of labeled examples D = {(xi, yi)}
as measured by a loss function L, i.e., to solve the problem
minθ J(θ) where J(θ) = 1

|D|
∑

(x,y)∈D L(f(x; θ), y). At each
iteration t, the algorithm updates the weight vector with the
rule θ(t+1) = θ(t) − ηg(t), where g(t) is the gradient of
the training error J on a mini-batch of examples B ⊆ D
and η is the learning rate. This step is repeated for several
epochs (full iterations over D), which can include millions
of examples. To provide faster feedback and improve DNN
models, clusters of distributed nodes are required. The pa-
rameter server [6], [23], [24] is a popular architecture to
distribute the computation of SGD over multiple nodes. As
depicted in Fig. 2, the training dataset is partitioned among
multiple worker nodes that compute gradients in parallel,

Fig. 2: Parameter Server Architecture

on separate mini-batches of examples (data parallelism). To
synchronize their execution, worker nodes send gradients g(t)

to a parameter server that holds the most up-to-date version
of the weights θ. The parameter server applies the gradients
and sends back the weights θ to the workers. In asynchronous
SGD, weights are sent back to a worker immediately after
applying its gradient; in synchronous SGD, the parameter
server sends the weights only after receiving and applying
gradients from all of the workers. In this paper, we focus
on asynchronous SGD with many worker nodes and a single
parameter server. Asynchronous SGD achieves better through-
put than synchronous SGD, as it removes synchronization
overhead. While synchronous SGD training on K workers
with mini-batch size B is equivalent to single-node training
with mini-batch size K×B, asynchronous SGD is equivalent
to single-node training steps with the same batch size but
possibly stale model parameters. Recent results [25] highlight
that, in contrast to previous evaluations [26], asynchrony
and parameter staleness do not impair accuracy when the
momentum parameter (used to compute an exponential moving
average of mini-batch gradients) is appropriately tuned. Thus,
we use the same mini-batch size (specified by the user) for
any assignment of workers, and assume that momentum is
adjusted appropriately for the configuration.

B. Machine Learning Frameworks and TensorFlow

Machine learning frameworks, including TensorFlow [3]
and MXNet [5], allow users to define a DNN model and
train it in parallel using asynchronous SGD on multiple
machines. TensorFlow represents computations as a dataflow
graph where nodes encode operations of a DNN, while inter-
mediate results flow along edges as tensors (multidimensional
arrays). The dataflow graph makes communication between
subcomputations explicit and allows the framework to execute
independent computations in parallel across multiple CPUs
and GPUs, possibly on different nodes of a cluster. Specialized
implementations of abstract operations allow the use of hard-
ware acceleration, and the framework transparently handles
transmission of data among devices, e.g., among nodes in a
network or among GPUs using a parameter server architecture.

In addition, TensorFlow supports fault tolerance through
user-level checkpointing: the chief node of the cluster peri-

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

M
in

i-
b

a
tc

h
e

s
/s

Workers

TensorFlow 8MB
Python 8MB

TensorFlow 16MB
Python 16MB

Fig. 3: Measured training throughput of TensorFlow and
Python implementations (mini-batch size is 50 examples)

odically saves the current version of θ to disk; when a client
restarts, it automatically attempts to restore θ from the last
checkpoint. Through checkpoints, it is possible for workers or
parameter servers to recover from faults, or to suspend and
resume training, effectively enabling preemptive scheduling
with limited loss of completed work and minimal overhead.

In this paper, we validate predictions from our throughput
model with measurements obtained by running TensorFlow in
a distributed cluster. First, we build synthetic DNN models of
varying sizes by changing the number of neurons in each layer.
Given that we are not evaluating classification accuracy of
DNNs, but only throughput, during training we sample random
examples to match the input layer of these synthetic models.
Then, we validate our model on real-world DNNs and datasets:
Google’s Inception [27], ResNet-152 [28], and VGG16 [29].
Note that asynchronous SGD can achieve learning accuracy
comparable to synchronous training when the momentum
parameter is adjusted [25]: this allows us to concentrate on
the performance aspect of distributed training, assuming only
minor effects on the final accuracy of trained DNNs. While
our experimental evaluation uses TensorFlow, we highlight the
general applicability of our throughput model in Section III-A.

III. THROUGHPUT ESTIMATION

In this section, we propose a performance model of DNN
training jobs to estimate, from the communication and com-
putation times measured in a 1-server 1-worker cluster, the
training throughput (examples processed per second) as a
function of the number of assigned worker nodes.

A. Distributed SGD Measurements

To measure the throughput and understand the behavior of
distributed TensorFlow, we built a testbed cluster including
11 servers, each equipped with two AMD Opteron 2376 CPUs
(quad-core, 2.30 GHz) and 16 GB of RAM, connected by a
1 Gbps switch in full-duplex mode. Each server runs Ten-
sorFlow 1.0.1 on Debian 8 using Python 3. Although limited
in size, this cluster is sufficient to hit networking bottlenecks
during training and allows us to validate our model. (Later,
in Section V-A, we validate our model on Google Compute
Engine, using GPU nodes and popular DNNs.)

PS

Worker

PS
Update Time

Worker
Process Time

Parameter
Download Time

Parameter
Upload Time

Fig. 4: Phases of asynchronous SGD with parameter server

Fig. 3 reports measurements of training throughput in our
cluster with up to 10 workers (as mini-batches per second,
for mini-batches of 50 training examples), for DNN models
with exchanged parameters size of 8 MB and 16 MB (respec-
tively, a fully-connected 360×1000×1000×1000×200 model
and a convolutional model with 784 inputs, 3 convolutional
layers of 32, 32, and 64 feature maps 3×3, a fully-connected
layer of 256 units, and 10 outputs). Interestingly, training
throughput highlights different trends: it saturates smoothly
for the 16 MB model, but presents a non-monotonic trend
for the 8 MB model. To confirm that our measurements
are not due to specific implementation details of TensorFlow
or to DNN parameters, we developed a client-server Python
program mimicking the operations of TensorFlow. Instead of
processing real data, our program makes sleep system calls
for amounts of time equal to the processing times measured in
TensorFlow; exchanged data has the same size. Measurements
obtained with this client-server program, also reported in
Fig. 3, are similar to TensorFlow measurements; this suggests
that a performance model should account for the different
processing times at each node, and for the interaction between
network access and TCP connections. To better account for the
interference among transmission sessions, we propose the use
of a queueing model for throughput estimation.

The input to the queueing model (presented in Section III-B)
includes 4 parameters evaluated through profiling with 1 server
and 1 worker: downlink time SD (weights transmission from
server to worker), worker time SW (gradient computation),
uplink time SU (gradient transmission from worker to server),
server time SS (gradient application). These parameters define
the interaction pattern of a single worker, illustrated in Fig. 4;
our model accounts for the interaction of multiple workers
accessing shared resources (parameter server and network).

To measure these parameters in a 1-worker 1-server cluster
running TensorFlow, we use tcpdump to collect TCP packets
during profiling of the training procedure. This is the most
reliable method, since TensorFlow uses the binary protobuf
format to serialize data before transmission with the gRPC
protocol over TCP; analysis of TCP packets allows us to avoid
framework-dependent instrumentation, enabling the applica-
tion of our approach to other machine learning frameworks.

For example, Fig. 5 shows the uplink and downlink band-
width usage measured from packet transmissions collected
by tcpdump while training the VGG16 DNN model on

 0

 0.5

 1

 1.5

 2

 2.5

 3

 101000 103000 105000

B
a

n
d

w
id

th
 U

s
a

g
e

 (
M

B
/m

s
)

Time (ms)

Parameter Server to Worker
Worker to Parameter Server

Fig. 5: tcpdump measurements for one parameter server
and one worker training VGG16 in TensorFlow

Google Compute Engine using one parameter server and a
single worker node equipped with GPU. We can see that
communication between the parameter server and the worker
follows the repetitive pattern abstracted in Fig. 4. We measure
transmission times SD and SU directly, and estimate the
processing times SW and SS from the time elapsed between
the end of a transmission and the beginning of the next one.
We average these measurements over up to 200 server-worker
interactions (which require only a few minutes).

B. Queueing Model

We model asynchronous SGD training as the closed queue-
ing system illustrated in Fig. 6. There are exactly K tasks,
one for each worker of distributed SGD; a task models the
processing of a mini-batch of examples at a worker, the trans-
mission of a gradient to the parameter server, its application,
and the transmission of up-to-date parameters back to the
worker. Each task k = 1, . . . ,K belongs to a different class
(or chain) which determines its routing among the queues of
the network: task k visits the kth worker node (an infinite
server, IS, station), the uplink station (a processor sharing, PS,
station), the parameter server (a first-come first-served, FCFS,
station), and the downlink station (another PS station), before
returning to the kth worker node.

Although the connection of each worker with the parameter
server can cross many network switches, the model abstracts
the network fabric as one non-blocking switch [30], and only
focuses on its ingress and egress ports (e.g., NICs), while
the PS policy approximates the behavior of packet-switching
networks. The FCFS policy of the parameter server models
the sequential application of gradients from different workers;
after a task leaves this station, it goes to the downlink station,
modeling weights waiting to be sent back to the worker.

Our goal is to estimate the throughput at the parameter
server, i.e., the number of mini-batches processed per time unit
in a training job, using all workers. To compute the throughput
of our model, we use Mean Value Analysis (MVA), a recursive
algorithm calculating equilibrium queue sizes, waiting times,
and throughputs in product-form queueing networks [31].
The requirements for product-form queues impose exponential
distributions for the service time at FCFS stations (in our

TABLE I: Summary of notation

1, . . . ,K Worker nodes / task classes in the system
L(k) := {k, U, S,D} Stations visited by class k: kth worker node,

uplink (U), parameter server (S), downlink (D)
Sl
k Service time of class k at station l

~n := (n1, . . . , nK) Number of tasks in the system, for each class
N l

k(~n) Mean number of tasks of class k at station l
Xl

k(~n) Mean throughput of class k at station l
T l
k(~n) Mean response time of class k at station l
ρlk(~n) Class k utilization at station l

case, the parameter server—unless a PS discipline is assumed),
while other stations can have general service times.

Table I summarizes our notation. Let ~n∗ = (n∗1, . . . , n
∗
K)

represent the populations of task classes {1, . . . ,K}: in our
model, n∗k = 1 for all k as each worker has exactly one task.
MVA computes mean response times T lk(~n

∗) for all classes k
and stations l incrementally, for each ~n = (n1, . . . , nk) such
that n1 = 0, . . . , n∗1, n2 = 0, . . . , n∗2, and so on, starting from
T lk(~0) = 0 and using the identity (following from the Arrival
Theorem [32]):

T lk(~n) =

{
Slk

[
1 +

∑K
j=1N

l
j(~n− ~ek)

]
if l is PS/FCFS

Slk if l is IS
(1)

where ek is a vector with k-th component equal to 1 and others
equal to 0, and ~n − ~ek is the population vector ~n decreased
by 1 in class k. In Eq. (1), N l

j(~n − ~ek) can be recursively
computed from previous values T lj(~n− ~ek) using Little’s law
N l
k(~n) = X l

k(~n)T
l
k(~n) where X l

k(~n) = nk/
∑
l∈L(k) T

l
k(~n).

Then, the mean system throughput (as mini-batches/second)
with K workers is given by X(K) :=

∑K
k=1X

S
k (~n

∗), i.e., the
throughput of all classes at the parameter server S. Note that,
while the rest of this paper considers the case where worker
nodes are homogeneous (i.e., with the same bandwidth and
computation times), this model can be applied to heteroge-
neous workers. Additional performance metrics can also be
derived, such as mean class utilization ρlk(~n

∗) = X l
k(~n
∗)Slk

for all k, l.
Results for X(K) are compared in Fig. 7 with throughput

measurements obtained by running TensorFlow with a param-
eter server and K = 1, . . . , 10 workers, for the DNN model
of size 8 MB described in Section III-A. As parameters of
our model, we use the results of the 1-worker profiling using
tcpdump: SW = 29 ms (processing at the worker), SS =
18 ms (processing at the parameter server), SD ≈ SU = 72 ms
(downlink and uplink). We use these mean service times for all
the classes of the queueing model, i.e., SWk = SW , SSk = SS ,
SDk = SD, SUk = SU for all k = 1, . . . ,K.

As shown in Fig. 7, the real throughput of TensorFlow is
higher than predicted by our model with PS uplink/downlink
(yellow line) when there are 2 to 3 workers in the system
(throughput scales almost linearly for 2 workers), while pre-
dictions are accurate with more than 3 workers. We address
this phenomenon in the next section.

IS

IS

IS
Downlink Queue Uplink Queue Parameter Server

Worker Nodes

Class 2

Class 1

Class 3

Fig. 6: Queueing model of a distributed machine learning application with a parameter server architecture

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

M
in

i-
b

a
tc

h
e

s
/s

Workers

TensorFlow Measurements

FCFS Network Model (Approx MVA)

PS Network Model (Exact MVA)

Fig. 7: Throughput with PS and FCFS uplink/downlink

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 200200 200400 200600

O
u

ts
ta

n
d

in
g

 W
in

d
o

w
 S

iz
e

Time (ms)

Worker 1
Worker 2

Fig. 8: Outstanding window size for two async workers

C. On the Effects of Short TCP Transmissions

To investigate the almost linear speedup of TensorFlow with
2 workers, we analyzed TCP packets exchanged while running
TensorFlow. Fig. 8 illustrates the TCP outstanding window
size (data sent but not yet acknowledged), which shows that
the workers send data during different time slots, without
competing for network bandwidth. This phenomenon is due
to the fact that data sent from the workers to the parameter
server, and vice versa, has similar size (proportional to the
number of weights). If one worker can finish its uplink (or
downlink) transmission before the other node, it has a higher
chance of starting the next transmission first (after processing
at the parameter server or worker); in case of transmission
overlaps, TCP congestion control will favor the node that
is already transmitting (transmission times are comparable to
those required to adapt to bandwidth sharing), thus creating
a self-reinforcing mechanism where asynchronous workers
transmit at different times.

This phenomenon is also possible for more than two

Worker Up PSDown DownPSUpWorker 1 Time
Worker Up PSDown DownPSUpWorker 2

Worker Up PSDown DownPSUpWorker 3

Worker Up PSDown DownPSUpWorker 4

Worker Up PSDown DownPSUpWorker 5

Worker Up PSDown DownPSUpWorker 6

Fig. 9: Illustration of linear speedup in asynchronous SGD

workers. As shown in Fig. 9, if worker computation times
are long enough, workers can send updates to the parameter
server without competing for network bandwidth. For instance,
the distributed training job illustrated in Fig. 9 allows up to
5 workers to transmit their updates without overlaps.

When an ongoing TCP flow is strongly advantaged with
respect to new flows, uplink and downlink stations can be
modeled as FCFS queues with deterministic service times.
Since exact MVA requires exponential service times in FCFS
stations, we adopt the approximate MVA solution of [31,
Eq. (3.29)], which gives downlink/uplink response times

T lk(~n) = Slk +

K∑
j=1

Slj

[
N l
j(~n− ~ek)−

1

2
ρlj(~n− ~ek)

]
(2)

for l = D,U , where ρlk(~n) = X l
k(~n)S

l
k is the utilization

of station l by class k. With this FCFS network model, the
predicted throughput X(K), illustrated in Fig. 7 (green line),
shows good accuracy for less than 4 workers, but overestimates
the measured throughput when K ≥ 4.

In fact, as the number of workers increases, network
bandwidth is shared among workers. To model increasing
transmission overlaps, we combine Eqs. (1) and (2) to obtain

T lk(~n) = γl T l,PS
k (~n) + (1− γl)T l,FCFS

k (~n) (3)

where γl := g(ρlk(~n)) is a function of the utilization of station
l ∈ {D,U}, T l,PS

k (~n) is defined as in Eq. (1), T l,FCFS
k (~n) is

defined as in Eq. (2). In this model, which we call Hybrid
MVA, γl should be close to 1 under heavy load (network shared
equally) and to 0 under light load (exclusive network access).
For predictions in our CPU-only cluster (Fig. 10), we use:

g(ρ) =

{
ρ−0.8
0.2 if ρ ≥ 0.8,

0 otherwise.
(4)

Therefore, our throughput estimation considers overlapping
transmissions only when the link utilization is higher than 0.8.
This model is specific to our environment; for other environ-
ments (e.g., large-scale data centers), an appropriate form of
g must be determined through preliminary profiling.

IV. SCHEDULING MECHANISMS

The performance model presented in Section III allows us
to estimate the throughput of a training job when a different
number of nodes is assigned by a scheduler. But, even with
exact knowledge of the throughput function, no optimal algo-
rithm is known for response time minimization of a Poisson
stream of jobs with general size distribution [14].

In this section, we describe heuristics for this problem when
preemption is allowed and jobs are moldable or malleable.
In Section VI, we consider extensions that allow users to
check intermediate results and decide whether to terminate
a job early. This can be of particular benefit for DNN training
jobs, where users submit jobs with different combinations of
hyperparameters (e.g., learning rate, number of layers, neurons
in each layer), monitor their training progress, and terminate
jobs corresponding to non-promising models.

Problem Definition. Jobs arrive to the system as a Poisson
stream with fixed rate λ; for each job, the scheduler knows
the job size (total number of training examples to process, i.e.,
number of epochs specified by the user, multiplied by the
number of training examples per epoch) and the throughput
function Xi(w), which gives the throughput (training examples
processed per second) of job i using w nodes (w− 1 workers
when w > 1, as one node is used for the parameter server).
The cluster has W homogeneous nodes and each node can be
assigned to at most one job at a time. If M jobs with remaining
sizes J t1, ..., J

t
M are present at time t, the remaining service

time of job i with wti nodes is Sti (w
t
i) = J ti /Xi(w

t
i). Our goal

is to determine the proper node allocation wti ≥ 0 for all i, t
so as to minimize the mean response time, i.e., the mean time
spent in the system by a job (waiting or in service).

A. Motivation for Parallel Scheduling Heuristics

It is natural to consider extensions of the Shortest-
Remaining-Processing-Time (SRPT) policy (which is optimal
in a single-node setting), e.g., allocating all nodes to the
job that can achieve the shortest service time; this policy
minimizes the time to the next job departure, and it was
shown to minimize mean response time when job throughput
increases linearly with the number of workers [14]. However,
an SRPT-type policy is not optimal when speedups from
additional workers are sublinear or non-monotonic, such as
those presented in Section III for DNN training jobs. In this
case, assigning all nodes to a single job can result in an
inefficient use of resources, since (beyond a certain point)
additional workers produce only minor service time reduction.

To gain insight into our scheduling heuristics (described
below), consider the following. Our goal is to minimize mean
response time by assigning an appropriate number of nodes
to each job. A job’s response time consists of its service time
(with the allocated resources) and its waiting time (i.e., time
waiting for resource availability). Intuitively, as the number
of nodes allocated to each job increases, the service times
of individual jobs (likely) decrease, but the waiting times of
individual jobs (likely) increase (i.e., with larger allocation of

nodes per job, it is more likely that an arriving job will find
all nodes busy upon arrival, as the resources are more likely
to be used in a less efficient manner).

Consider the two extremes of (1) allocating all nodes to
one job (for instance, the job with the shortest remaining
service time) and (2) allocating one node per job. Option (1)
decreases the service time but potentially increases the waiting
time, while option (2) increases the service time but potentially
decreases the waiting time. How significant the effect is on the
waiting time (of either option) largely depends on the system
utilization: under light loads, the effect is not as significant,
while under heavy loads it is. Thus, the heuristics we develop
next are motivated by (a) efficient use of resources (so as
to decrease the service time but with meaningful returns on
additional resources allocated) while (b) incorporating the
tradeoff (with corresponding effect on waiting time) through
the explicit consideration of system utilization.
KNEE mechanism. As already noted, assigning all nodes to
one job can waste resources while achieving minor throughput
improvements. In the KNEE mechanism, we stop assigning
nodes to job i when the next relative speedup

δi(w) :=
Si(w)− Si(w − 1)

Si(w − 1)

becomes lower than a fixed threshold α, i.e.,

wKNEEi = min {w ≤W : δi(w) ≥ α and δi(w + 1) < α}

where W is the budget of available nodes.
High Efficiency, Low Latency (HELL) mechanism. Our
second heuristic jointly considers service time and efficiency
of each assignment of nodes to a job. The policy adopts the
“speedup per assigned node” [16] as an efficiency metric:

Speedup si(w) :=
Si(1)

Si(w)
and Efficiency Ei(w) :=

si(w)

w
.

For each job i, we select the number of nodes that minimizes
the ratio between service time and efficiency:

wHELLi = argmin
w≤W

{
Si(w)

Ei(w)

}
.

Since this heuristic suggests an allocation that tries to
achieve short response time (favoring jobs with short service
time) with high efficiency, we refer to it as High Efficiency,
Low Latency (HELL) mechanism. With respect to the KNEE
heuristic, HELL always considers efficiency; in contrast, for
small α, KNEE tends to allocate additional nodes even when
throughput improvements are limited. Later, we provide an
approach for KNEE to adapt α to system load.

In the following sections, we evaluate the impact of KNEE
and HELL on the scheduling of malleable and moldable jobs.

B. Malleable Job Scheduling

In the malleable job scheduling case, the scheduler can dy-
namically update the number of nodes allocated to a job during
execution time. This functionality is supported by TensorFlow
through checkpointing: the parameter server periodically saves

ALGORITHM 1: Malleable KNEE Job Scheduling
Input: Number of nodes W and jobs M , remaining service

times St
1(w), ..., S

t
M (w) for w ≤W , knee threshold α < 0.

Output: Node allocations wt
1, ..., w

t
M .

A ← {1, . . . ,M} // jobs to schedule
wt

i ← 0 for all i = 1, . . . ,M // default node assignment
while W > 0 and |A| > 0 do

for all i ∈ A do
wKNEE

i ← min {w ≤W : δi(w) ≥ α ∧ δi(w + 1) < α}
where δi(w) := [St

i (w)− St
i (w − 1)]/St

i (w − 1)

j ← argmini∈A S
t
i (w

KNEE
i) // shortest knee service

wt
j ← wKNEE

j

W ←W − wKNEE
j

A ← A \ {j}
end

ALGORITHM 2: Malleable HELL Job Scheduling
Input: Number of nodes W and jobs M , remaining service

times St
1(w), ..., S

t
M (w) for w ≤W .

Output: Node allocations wt
1, ..., w

t
M .

A ← {1, . . . ,M} // jobs to schedule
wt

i ← 0 for all i = 1, . . . ,M // default node assignment
while W > 0 and |A| > 0 do

for all i ∈ A do
wHELL

i ← argminw≤W {St
i (w)/E

t
i (w)}

where Et
i (w) := St

i (1)/[wS
t
i (w)] // efficiency

j ← argmini∈A S
t
i (w

HELL
i)/Et

i (w
HELL
i)

wt
j ← wHELL

j

W =W − wHELL
j

A = A \ {j}
end

the weights to disk and restores them when model training
is restarted. Thus, we can reassign resources at arrivals or
departures, when the number of jobs in the system changes.

Since reassignment of nodes is allowed, greedy allocations
can be advantageous for scheduling mechanisms. This inspires
our malleable KNEE and HELL job scheduling heuristics.
Malleable KNEE Job Scheduling. In this heuristic, detailed
in Algorithm 1, the scheduler repeatedly selects the job j that
has the shortest remaining time Stj(w

KNEE
j), i.e., using node

assignments before the knee threshold α or before exhausting
the available workers W . The same step is repeated until all
remaining nodes are assigned or all jobs are scheduled for
execution. Note that this algorithm may not assign all available
nodes, especially if the knee point is reached with few nodes.
Malleable HELL Job Scheduling. In this heuristic, detailed
in Algorithm 2, the scheduler selects the job j that has the
minimum ratio Sj(w)/Ej(w) for a number of nodes wHELLj

less than or equal to the available ones W . The same step
is repeated until all remaining nodes are assigned or all jobs
are scheduled for execution. Note that this algorithm can also
terminate before assigning all available nodes.

Since these heuristics can leave nodes idle (especially when

the number of jobs is much lower than the number of nodes),
we adopt a filling mechanism to assign the remaining nodes.
In this mechanism, the minimum number of idle nodes is
assigned to the job that can achieve the shortest remaining time
with the use of such additional nodes; formally, if W nodes
are still available at the end of Algorithm 1 or 2, we assign

w = min
1≤i≤M

{w ≤W | Sti (wti + w) < Stk(w
t
k) for all k} (5)

additional nodes to the job i achieving the minimum in Eq. (5).
This procedure is repeated until all nodes are assigned or no
job can achieve minimum service time with additional nodes.

C. Moldable Job Scheduling

Malleable job scheduling (presented in Section IV-B) is
more flexible in utilizing system resources, since their alloca-
tion can be modified after job arrivals or departures. However,
if the number of workers allocated to a DNN training job
changes, the complexity of repartitioning and redistributing the
job may be significant. In this section, we consider the case
of moldable job scheduling, where the level of parallelism
(number of workers) of a job does not change after the
beginning of its execution (but jobs can still be preempted).

In this case, poor initial allocation choices can have sig-
nificant consequences, because the job has to continue using
the same number of workers even when the system has idle
nodes. One strategy is to let a job wait for an ideal number of
nodes instead of starting earlier with fewer nodes. However, if
the ideal number is quite large, the job may have to wait for
a long time before starting service, or block other jobs from
executing once it begins, even when the reduction in service
time is marginal. On the other hand, if the ideal number of
nodes is small, the job can be executed immediately, but it will
likely run for a long time, due to reduced parallelism. Thus,
we evaluate two heuristics derived from the malleable HELL
and KNEE mechanisms.

Moldable HELL Job Scheduling. Similarly to Algorithm 2,
this mechanism evaluates node allocations based on the metric
Sti (w)/E

t
i (w); however, the metric is now evaluated for all

w ≤W , where W is the total number of nodes in the cluster,
to find the optimal node assignment wHELLi for job i. If
less than wHELLi nodes are available (after assigning nodes
to jobs with higher metric), the moldable HELL mechanism
waits before scheduling job i, since the number of allocated
nodes cannot be modified later. In contrast with our malleable
heuristics, moldable HELL scheduling is not work-conserving,
i.e., it can leave computing power unused.

Moldable KNEE Job Scheduling. As described earlier, the
number of nodes allocated by the KNEE mechanism depends
on the value of α: with smaller α, the job will have larger
wKNEEi . Since the level of parallelism of the job cannot be
changed, the scheduler should use a smaller value of α when
the system load is low (in order to utilize more resources) and
a larger value of α when the system load is high (in order to
be more efficient). Thus, we use the system load λE[S(1)]/n
as a knob to control how many nodes should be allocated to

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Exact MVA

Approx MVA

Hybrid MVA

(a) 3 CONV layers (batchsize=8)

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Exact MVA

Approx MVA

Hybrid MVA

(b) 3 CONV layers (batchsize=16)

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Exact MVA

Approx MVA

Hybrid MVA

(c) 3 CONV layers (batchsize=32)

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8 9 10

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Exact MVA

Approx MVA

Hybrid MVA

(d) InceptionV3 (batchsize=32)

Fig. 10: Throughput estimation in CPU cluster

TABLE II: Summary of throughput estimation error

DNN MVA
Error

Max Mean Min

3 CONV layers
(batchsize=8)

Exact 18% 8% 0.24%
Hybrid 9% 5% 2%

3 CONV layers
(batchsize=16)

Exact 18% 13% 3%
Hybrid 8% 4% 2%

3 CONV layers
(batchsize=32)

Exact 21% 14% 3%
Hybrid 12% 8% 3%

InceptionV3
Exact 9% 6% 3%
Hybrid 11% 4% 0.05%

a job. For an acceptable range [αL, αH], the value of α used
for scheduling at load x is α(x) = αL + x(αH − αL).

As in Algorithm 1, this heuristic allocates nodes based on
the value of α. However, unlike Algorithm 1, where job i
can receive less than wKNEEi nodes, our moldable KNEE
mechanism starts job i only when wKNEEi nodes become
available. This heuristic will not allocate nodes to job i if there
are not enough nodes to meet its ideal assignment wKNEEi ;
thus, it is not work-conserving.

V. EVALUATION AND VALIDATION

In this section, we first validate the accuracy of our through-
put prediction model on different workloads by comparing
predictions with measurements collected in a TensorFlow
cluster. We then investigate the performance of the proposed
scheduling heuristics based on throughput predictions. All
simulations in this section were run until the 95% confidence
intervals were smaller than 5% of the estimated values.

A. Throughput Estimation Validation

We evaluate the accuracy of our throughput estimation
model under different settings: first, using synthetic DNN
models and InceptionV3 on our own cluster of CPU-only

 0

 1

 2

 1 2 3 4 5 6 7

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Approx MVA

Exact MVA

(a) InceptionV3 (batchsize=32)

 0

 0.5

 1

 1.5

 1 2 3 4 5 6 7

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Approx MVA

Exact MVA

(b) ResNet-152 (batchsize=32)

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1 2 3 4 5 6 7

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Approx MVA

Exact MVA

(c) VGG16 (batchsize=32)

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1 2 3 4 5 6 7

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Approx MVA

Exact MVA

(d) VGG16 (batchsize=64)

Fig. 11: Throughput estimation in the cloud GPU cluster

nodes; then, using popular DNN models for image recognition
and GPU instances in a public cloud environment.

CPU Cluster. First, we validate our asynchronous SGD model
on a synthetic 16 MB DNN model with three convolutional
layers and two fully connected layers, using our own cluster
(described in Section III-A.) For this DNN model, we use
batch sizes of 8, 16, and 32 examples/update, and illustrate the
results in Figs. 10a to 10c, respectively. From these figures,
we see that our Hybrid MVA model can accurately estimate
throughput and speedups, which allow the HELL heuristic to
identify worker assignments with high efficiency. Similarly,
although the model underestimates throughput for batch size
of 32, the knee of throughput curves can be selected accurately,
allowing the KNEE heuristic to make node assignments close
to those using exact throughput values.

Next, we validate our throughput estimation models by
running Google’s InceptionV3 DNN [27] in TensorFlow using
CPU-only nodes. Results, reported in Fig. 10d, show that our
Hybrid MVA model slightly overestimates the throughput with
2 to 4 workers; with more than 4 workers, there is almost no
difference between our estimate and the measurements. This
inaccuracy is likely due to the fact that the Inception model
has more dynamic update patterns, while our synthetic model
results in repetitive update patterns. However, throughput
predictions are sufficiently accurate to allow the scheduler to
select efficient resource allocations also in this case.

Moreover, as illustrated in Table II, our throughput es-
timation based on hybrid MVA outperforms the estimation
based on exact MVA. This is largely due to the fact that its
throughput model accounts for the synchronization between
traffic generated by the workers, particularly when the time
spent processing at a worker is greater than the time spent on
the network due to traffic (i.e., in cases (a), (b), and (c)). When
transmission times are substantially higher than the processing
time at a worker (i.e., in case (d)), the synchronization effects
are quite small, resulting in higher error rates. However, this
should not be the typical case in DNN training applications,
as users will likely increase batch sizes in such situations,

to increase the worker processing time (thus reducing the
overhead of communication).
Cloud GPU Cluster. To validate our throughput estimation
model on more complex DNNs and running environments,
we train popular DNN models for image recognition us-
ing GPU-enabled instances on Google Compute Engine. In
particular, we consider InceptionV3 [27], ResNet-152 [28],
and VGG16 [29], with batch size of 32 examples (and also
64 for VGG16). Model sizes are, approximatively, 100 MB
for InceptionV3, 232 MB for Resnet-152, and 528 MB for
VGG16. We measure throughput of each model by running the
TensorFlow benchmarks [33] with the ImageNet data set [34].
Each experiment is repeated by allocating 1 to 8 instances of
Google Compute Engine, each with 4 vCPUs, 15 GB of RAM,
and one K80 GPU. Each instance runs TensorFlow 1.6.0 on
Ubuntu 16.04 LTS with CUDA 9.0 and cuDNN 7.0: out of
the allocated instances, one acts as parameter server, while
the others are used as worker nodes. Each worker node has
exactly 1 GPU and communicates through TCP (over Ethernet)
with the parameter server. The available bandwidth of Google
Compute Engine (8 Gbps) is limited using Linux tc to 1 Gbps
for InceptionV3, 3 Gbps for ResNet-152, 5 Gbps for VGG16.

Results, reported in Fig. 11, illustrate a close match between
the throughput predicted by our models and that measured
in TensorFlow. For InceptionV3 (Fig. 11a), a PS networking
model (Exact MVA) provides better predictions at high loads,
while FCFS networking (Approximate MVA) is more accurate
at low loads. FCFS networking is also more accurate for
ResNet-152 and for VGG16 (Figs. 11b to 11d). The non-
monotonic trend of Approximate MVA in Fig. 11b is due to the
error associated with this solution method: in fact, simulation
of the queueing model indicates a monotonic increase.

B. Scheduling Evaluation

Next, we perform experiments to investigate the perfor-
mance, and specifically, mean response time, of our schedul-
ing heuristics. In contrast with the validation of throughput
estimation, which uses our experimental testbed, we use a
simulator to evaluate the benefits of scheduling mechanisms
in a larger cluster. We simulate a cluster with 100 physical
nodes, each with 1 GPU and a 1 Gbps Ethernet interface.
(In this environment, we assume that physical nodes are
interconnected by a high-speed top-of-rack switching archi-
tecture, so that the transmission bottleneck of each node is the
bandwidth and buffer size of its interface.) To demonstrate
that our mechanism is suitable for general DNN training
jobs, we consider the workloads of four widely-used DNN
models, listed in Table III. To estimate the throughput of each
DNN model, we use the workload characteristics (model size,
TFLOPS per batch, dataset size, training epochs) reported
in the existing literature [35]. We use the performance of a
specific GPU as a reference to calculate the processing time
at each worker as well as at the parameter server. We assume
that each node is equipped with one NVIDIA Grid K520
GPU, which provides 1229 GFLOPS [36]. To generate our
synthetic workload, job inter-arrival times are sampled from

an exponential distribution with rate λ and a DNN architecture
is drawn uniformly at random from the four in Table III (NiN,
GoogLeNet, AlexNet, VGG19) for the new job. Then, the
model size of the DNN is used to estimate uplink and downlink
transmission times on a 1 Gbps network; worker processing
time is estimated for mini-batches of 1024 examples using the
corresponding TFLOPS/batch; and the total job size (number
of SGD steps) is selected by sampling the number of training
epochs from a Gaussian distribution with mean reported in
Table III and variance equal to 2.

Performance Baselines. We use the two basic mechanisms de-
scribed in Section IV-A as our baseline heuristics, one focusing
on reducing the processing time (i.e., allocating all nodes to
one job) and the other focusing on reducing the waiting time
(i.e., executing as many jobs simultaneously as possible). For
the strategy of allocating all nodes to a job, we use an SRPT-
type job scheduling mechanism as a representative policy. For
the strategy of executing as many jobs as possible, we adopt a
modified version of the iterative mechanism proposed in [39],
which assigns a minimum number of nodes to each job and
then uses a “filling mechanism” to improve resource utilization
(Waterfill mechanism). We also compare with JSQ-Chunk [15],
where nodes are split into chunks of equal size and incoming
jobs are assigned to the chunk with shortest queue (we repeat
simulations to select the optimal chunk size, ranging from 7
to 40 in our experiments).

Performance Metrics. The primary performance metric in our
evaluation is the mean response time of jobs, and we compare
mean response time of each algorithm under the same system
load. To compare different algorithms fairly, we define system
load as λE[S(1)]/W where λ is the arrival rate, E[S(1)] is
the expected service time using only one node, and W is the
number of nodes in the system. Note that, for the same value of
system load, different algorithms will result in different system
utilization due to the differences in the number of nodes that
they allocate to each job.

Scheduling Results. We first evaluate malleable KNEE and
HELL mechanisms, as illustrated in Fig. 12. Fig. 12a shows
the results with jobs drawn uniformly at random from all four
DNN architectures, and Fig. 12b illustrates the results with
jobs only from larger DNNs (AlexNet and VGG19). SRPT
produces the worst performance since it wastes resources for
small marginal gains; Waterfill also performs poorly, since it
runs too many jobs simultaneously and does not favor the
completion of short jobs. The KNEE and HELL heuristics
achieve similar performance when the system load is low,
largely due to the benefits of the filling mechanism which
allows the HELL heuristic to allocate a similar number of
nodes per job as the KNEE heuristic. When the system load
is high, the KNEE heuristic performs worse than the HELL
heuristic. Examination of our simulation traces confirms that
this is due to KNEE allocating more nodes to a job than HELL,
resulting in fewer jobs being executed simultaneously. The
more aggressive allocation of nodes to jobs by KNEE is due
to the use of small values of α (0.01).

TABLE III: Synthetic workload collected by [35] from previous literature

Name Total Examples |D| Model Size Forward+Backward TFLOPS/batch of 1024 Epochs

NiN [37] 50, 000 (CIFAR-10, CIFAR-100) 30 MB 6.7 200

GoogLeNet [2] 1.2× 106 (ILSVRC 2014) 54 MB 9.7 200

AlexNet [38] 1.2× 106 (ILSVRC 2012) 249 MB 7.0 90

VGG19 [29] 1.2× 106 (ILSVRC 2012, ILSVRC 2014) 575 MB 120 74

1

2

3

4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e

(1
0

5
 s

e
c
o

n
d

s
)

System Load

SRPT
WATERFILL

HELL-FILL
KNEE-FILL
JSQ-Chunk

(a) Workload with four DNNs

1
2
3
4
5
6
7
8
9

10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e

(1
0

5
 s

e
c
o

n
d

s
)

System Load

SRPT
WATERFILL

HELL-FILL
KNEE-FILL
JSQ-Chunk

(b) Workload with two large DNNs

Fig. 12: The performance of malleable job scheduling

We note that both policies perform better than JSQ-Chunk
with multiple speedup functions [15]. In our experiments, the
HELL mechanism with filling performs better when the system
load is high for all types of training jobs.

Next, we compare the KNEE and HELL mechanisms for
moldable scheduling. We do not include the two baseline
algorithms, as they were already shown to produce worse
allocations on the (easier) problem of malleable scheduling.
Fig. 13a shows the results with jobs drawn uniformly at
random from all four DNN architectures, and Fig. 13b illus-
trates the results with jobs only from larger DNNs (AlexNet
and VGG19). As shown in both figures, moldable HELL
and KNEE perform similarly when the system utilization
is low, but the KNEE mechanism outperforms the HELL
mechanism at higher loads. This difference is due to the fact
that the moldable KNEE mechanism is able to execute more
jobs simultaneously by allocating fewer nodes to each job at
higher loads (due to the load-dependent α), while the HELL
mechanism waits for the same, ideal number of nodes for each
job (irrespective of the load). Both heuristics perform better
than JSQ-Chunk with multiple speedup functions.

Summary. In order to reduce the response time, it is im-
portant to allocate a proper number of workers to each job.
If this number can be modified during execution, the HELL
mechanism with filling achieves better response time under all
situations (in on our experiments). However, the complexity
of changing the degree of parallelism may not be negligible.
Thus, we considered the corresponding moldable scheduling
mechanisms, and showed that the KNEE mechanism has
greater flexibility to adjust its allocation under different system
loads with respect to response time, as illustrated in Fig. 13.

VI. EXTENSION TO EARLY TERMINATION

As noted earlier, one special property of DNN training jobs
is that users submit many jobs with different hyperparameter
settings, monitor their progress, and then terminate jobs (cor-
responding to less promising combinations) before the end

1

2

3

4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e

(1
0

5
 s

e
c
o

n
d

s
)

System Load

Moldable KNEE

Moldable HELL

JSQ-Chunk

(a) Workload with four DNNs

1
2
3
4
5
6
7
8
9

10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e

(1
0

5
 s

e
c
o

n
d

s
)

System Load

Moldable KNEE

Moldable HELL

JSQ-Chunk

(b) Workload with two large DNNs

Fig. 13: The performance of moldable job scheduling

of their execution. In this section we explore one possible
direction to account for early termination during scheduling.

A. Scheduling Heuristic with Early Termination

To reduce mean response time in this scenario, one approach
is to account for the current job progress during scheduling.
We define the current progress of job i at time t as pti = 1− Jt

i

Ji
,

where Ji is the initial job size and J ti is the remaining job
size at time t. A newly-submitted job has progress pti = 0;
intuitively, it should have higher priority over long-running
jobs as it is more likely to be terminated by the user. On the
other hand, jobs with short remaining time should also have
high priority. To combine both criteria, we propose to use,
during scheduling, service times adjusted as follows:

Sti (w) =
J ti

X(w)

(
1

1− pti

)γ
where w is the number of workers and γ ≥ 0.

Using a large value of γ gives higher priority to new jobs,
but penalizes those that completed a large fraction, resulting in
(potentially) higher mean response time. The optimal choice of
γ depends on the behavior of users in the cluster. Accounting
for this behavior is the subject of ongoing research.

B. Evaluation of Early Termination Heuristic

Fig. 14 depicts the Cumulative Distribution Function (CDF)
of response time under the malleable HELL mechanism when
different values of γ are used. As shown in the figure, our
extension speeds up the early fraction of a job when γ > 1.
For instance, without the extension, the mean time to complete
40% of the job requires around 41 hours, while our extension
with γ = 1.05 results in only ≈ 26.8 hours, which reduces
the time by 35%. However, this type of improvement comes at
the cost of increasing the mean response time for completing
the entire job. Thus, benefits depend on the type of jobs
running in the system. If users are interested in exploring a
greater number of hyper-parameter values and models, and
less sensitive to the time required to obtain final results, the

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

105 106

C
D

F

Response Time (seconds)

γ=0.00
γ=0.50
γ=1.00
γ=1.05
γ=1.50
γ=2.00

Fig. 14: Job response time CDF for early termination

scheduler can use a large value of γ. Otherwise, a small γ
(e.g., between 1 and 1.05 in our experiment) is preferable.

VII. EXTENSION OF DISTRIBUTED SGD MODELS

In Section III, we addressed the problem of throughput
prediction for asynchronous SGD clusters where, after pro-
cessing each mini-batch of training examples, worker nodes
exchange gradients and up-to-date parameters with a single
server node, using TCP over Ethernet. While these settings
cover an important class of asynchronous SGD approaches,
many variants are relevant for scheduling of large-scale DNN
training workloads.

We believe that one of the most important is the use of
multiple parameter servers: as evident from our measurements,
very large DNN models (such as ResNet or VGG) quickly
saturate the receiving interface of the parameter server when
many asynchronous workers transmit their gradients. The
extension of our queueing model to multiple parameter servers
is not trivial, as each worker processes the next mini-batch
only after receiving up-to-date DNN parameters from all server
nodes, thus introducing a synchronization point. In Fig. 15
we illustrate a simple extension of our models to multiple
parameter servers: the solutions of Eq. (1) and Eq. (2) are
evaluated for reduced uplink, downlink, and parameter server
times; in particular, when m parameter servers are assigned
to a job, the uplink service time is modeled as SUk /m, the
downlink service time is modeled as SDk /m, and the service
time of the parameter server is modeled as SSk /m. This model
assumes a uniform split of the parameters among server nodes,
and synchronous server completions at different server nodes.

Validating the model in the same GPU-enabled cloud en-
vironment, we observe encouraging results with m = 2
servers for InceptionV3 and ResNet-152, while, for VGG16
and for all configurations with m = 3 parameter servers, our
models severely overestimate the throughout measured using
TensorFlow. Analyzing tcpdump logs of each parameter
server, we observe an unbalanced split of VGG16 parameters
among parameter servers (for m = 3, one of the servers
holds 4 times more parameters). This anomaly, due to the
greedy parameter allocation algorithm used by TensorFlow,
causes a performance bottleneck in the system and a lower-
than-expected throughput in Figs. 15e and 15f. To tackle
these situations, we plan to extend our profiling procedure

by instantiating server processes (without running actual DNN
training) for varying values of m, in order to analyze the exact
split of the DNN weights among multiple parameter servers.

Given the implementation-dependent nature of these phe-
nomena, we plan to validate our models on other machine
learning frameworks, such as MXNet. Future work also in-
cludes modeling and validation of asynchronous SGD when
GPUs are connected by dedicated Infiniband links (instead
of TCP over Ethernet) or located on the same node and
communicating over PCIExpress.

VIII. CONCLUSIONS

We focused on reducing the mean response time of machine
learning jobs in a shared distributed computing environment.
To this end, we developed a performance model for estimating
the throughput of a distributed training job as a function of the
number of workers allocated to it. Based on the throughput
estimation, we proposed and evaluated scheduling heuristics
that utilize resources efficiently in order to reduce the mean job
response time. We also considered an extension for providing
quick feedback to users, to facilitate early termination of jobs
corresponding to non-promising DNN models, as early job
termination is a desirable feature for machine learning training
applications.

ACKNOWLEDGEMENTS

This work was supported in part by the NSF CCF-1763747
award. The authors would like to thank anonymous referees
and Hardik Surana for useful feedback that helped improve
the final version of this paper.

 0

 1

 2

 3

 4

 1 2 3 4 5 6

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Approx MVA

Exact MVA

(a) InceptionV3 (batch=32, m = 2)

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Approx MVA

Exact MVA

(b) InceptionV3 (batch=32, m = 3)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Approx MVA

Exact MVA

(c) ResNet-152 (batch=32, m = 2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Approx MVA

Exact MVA

(d) ResNet-152 (batch=32, m = 3)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow

Approx MVA

Exact MVA

(e) VGG16 (batch=32, m = 2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7

B
a

tc
h

e
s
/s

e
c
o

n
d

Workers

TensorFlow
Approx MVA

Exact MVA

(f) VGG16 (batch=32, m = 3)

Fig. 15: Throughput estimation in cloud GPU cluster with
m parameters servers and varying number of workers

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR’15, 2015, pp. 1–9.

[3] M. Abadi and al., “TensorFlow: Large-scale machine learning on het-
erogeneous systems,” 2015, software available from tensorflow.org.

[4] Caffe2: A New Lightweight, Modular, and Scalable Deep Learning
Framework. [Online]. Available: https://caffe2.ai

[5] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed
systems,” CoRR, vol. abs/1512.01274, 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

[6] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012.

[7] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[8] K. Jansen and L. Porkolab, “Computing optimal preemptive schedules
for parallel tasks: linear programming approaches,” Mathematical pro-
gramming, vol. 95, no. 3, pp. 617–630, 2003.

[9] N.-Q. Nguyen, F. Yalaoui, L. Amodeo, H. Chehade, and P. Toggen-
burger, “Solving a malleable jobs scheduling problem to minimize
total weighted completion times by mixed integer linear programming
models,” in ACIIDS’16. Springer, 2016, pp. 286–295.

[10] S. Chretien, J.-M. Nicod, L. Philippe, V. Rehn-Sonigo, and L. Toch,
“Job scheduling using successive linear programming approximations
of a sparse model.” in Euro-Par, vol. 12. Springer, 2012, pp. 116–127.

[11] J. Błażewicz, M. Machowiak, J. Weglarz, M. Y. Kovalyov, and D. Trys-
tram, “Scheduling malleable tasks on parallel processors to minimize
the makespan,” Annals of Operations Research, 2004.

[12] D. G. Feitelson, “Job scheduling in multiprogrammed parallel systems,”
1997.

[13] J. Du and J. Y.-T. Leung, “Complexity of scheduling parallel task
systems,” SIAM Journal on Discrete Mathematics, 1989.

[14] K. C. Sevcik, “Application scheduling and processor allocation in mul-
tiprogrammed parallel processing systems,” Performance Evaluation,
vol. 19, no. 2-3, pp. 107–140, 1994.

[15] B. Berg, J. L. Dorsman, and M. Harchol-Balter, “Towards optimality in
parallel scheduling,” CoRR, vol. abs/1707.07097, 2017.

[16] D. L. Eager, J. Zahorjan, and E. D. Lazowska, “Speedup versus effi-
ciency in parallel systems,” IEEE Transactions on Computers, vol. 38,
no. 3, pp. 408–423, 1989.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in NIPS Proceedings, 2012,
pp. 1106–1114.

[18] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced ana-
lytics.” in NSDI, 2016, pp. 363–378.

[19] A. Ulanov, A. Simanovsky, and M. Marwah, “Modeling scalability of
distributed machine learning,” in ICDE’17. IEEE, 2017, pp. 1249–1254.

[20] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “SLAQ: quality-
driven scheduling for distributed machine learning,” in SoCC Proceed-
ings, 2017, pp. 390–404.

[21] L. Kleinrock, Queueing Systems. Wiley, 1975.
[22] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:

Tricks of the Trade - Second Edition, 2012, pp. 421–436.
[23] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,

J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server.” in OSDI, 2014.

[24] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training system.”
in OSDI, vol. 14, 2014, pp. 571–582.

[25] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré, “Asynchrony begets
momentum, with an application to deep learning,” in 54th Annual
Allerton Conference on Communication, Control, and Computing, 2016,
pp. 997–1004.

[26] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed
synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in CVPR’16, 2016.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR’16, 2016, pp. 770–778.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[30] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
ACM SIGCOMM Comp. Comm. Review, vol. 43, no. 4, 2013.

[31] M. Reiser, “A Queueing Network Analysis of Computer Communication
Networks with Window Flow Control,” IEEE Transactions on Commu-
nications, vol. 27, no. 8, pp. 1199–1209, Aug 1979.

[32] M. Reiser and S. S. Lavenberg, “Mean-value analysis of closed multi-
chain queuing networks,” Journal of the ACM (JACM), 1980.

[33] tf cnn benchmarks: High performance benchmarks. [Online]. Available:
https://www.tensorflow.org/performance/benchmarks

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[35] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Firecaffe:
near-linear acceleration of deep neural network training on compute
clusters,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2592–2600.

[36] S. Hadjis, C. Zhang, I. Mitliagkas, D. Iter, and C. Ré, “Omnivore:
An optimizer for multi-device deep learning on cpus and gpus,” arXiv
preprint arXiv:1606.04487, 2016.

[37] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[38] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[39] G. Sabin, M. Lang, and P. Sadayappan, “Moldable parallel job schedul-
ing using job efficiency: An iterative approach,” in Workshop on Job
Scheduling Strategies for Parallel Processing. Springer, 2006.

