
CONSTELLATIONS IN THE CLOUD: VIRTUALIZING REMOTE SENSING SYSTEMS

Andrew G. Schmidt, Vivek Venugopalan, Marco Paolieri, Matthew French
Information Sciences Institute

University of Southern California
{aschmidt, vivekv, paolieri, mfrench}@isi.edu

ABSTRACT

This work presents the Virtual Constellation Engine (VCE),
a software framework and run-time system designed to fa-
cilitate exploration of different remote sensing constellation
and sensor web configurations from an on-board processing
perspective, using the cloud. Users can launch heterogeneous
constellations, describe different on-board processing con-
figurations, and simulate and verify autonomous operations.
VCE eases development for applications leveraging complex
compute resources and has been demonstrated on Amazon
Web Services to provide speedups over 20,000× of state of
practice systems.

Index Terms— Remote sensing, distributed systems,
constellation, sensor web, on-board processing, emulation

1. INTRODUCTION

A myriad of advances in remote sensing technologies is
spawning a renaissance in the types of observing strategies
that can be deployed from constellations of several small-sats
or cubesats collaborating on an objective autonomously [1] to
sensor webs of distributed in-situ, airborne, and satellite based
sensors. Such scalable, heterogeneous sensing solutions have
the potential to greatly impact the availability of low latency
data products for emergencies and the richness and quality
of science products for hydrology, cryosphere, biodiversity,
weather and more [2]. Example capabilities include satellite
constellations flying to take advantage of increased temporal
sampling [3], enhanced hyperspectral instrument capability
that enables next generation land imaging, ocean biology and
ecology, spectral reflectance measurements, and geobased
hyperspectral IR imagers/sounders [4].

While these capabilities are feasible, they require funda-
mentally new approaches to plan, develop, and test what is
now a Systems-of-Systems approach to remote sensing. In
particular, these objectives have new impacts on the require-
ments for on-board science computation. Previously, the re-
quirements for on-board processing were driven by increases

This work was supported by the National Aeronautics and Space Admin-
istration (NASA) under grant 80NSSC17K0286. The views, opinions, and/or
findings expressed are those of the author(s) and should not be interpreted as
representing the official views or policies of NASA or the U.S. Government.

Fig. 1. Virtual Constellation Engine (VCE) framework to
generate and evaluate constellations in a cloud environment

in sensor fidelity and the move from snapshot to continuous
observations [5]. These were largely static signal processing
chains, and it was found that heterogeneous on-board process-
ing solutions (i.e. combined multi-core CPU with customized
accelerators) could deliver orders of magnitude higher pro-
cessing power and meet these demands [6, 7, 8, 9].

These new dynamic sensing capability objectives stress
different computational requirements. Autonomy, either to
capture dynamic science events, or to execute sensor health
preservation functions, invokes not only low latency sci-
ence data product calculation, but also responsive context
switching capabilities to react properly to external events in
a safe and controlled manner. Distributed sensor webs in-
voke heterogeneous platforms with different processor types
for satellites (radiation hardened processors and Field Pro-
grammable Gate Arrays (FPGAs)), airborne platforms (em-
bedded GPUs), and in-situ sensors (IoT processors such as
RaspberryPi). Porting science applications between these
requires computer engineering level expertise due to GPU
and FPGA performance optimizations and can take several
months to complete.

The Virtual Constellation Engine (VCE), depicted in Fig-
ure 1, allows mission planners and systems engineers to per-
form evaluations of different constellations and sensor web
implementations. VCE enables constellations of different for-
mations to be emulated within a scalable cloud environment,
where each platform can emulate a different on-board pro-
cessing configuration. A wide variety of processors is sup-



Compute Node 0

Network
File System

Compilers/Tools

User 
Applications

AWS 
Private 
Cloud

Public 
Internet

User’s 
PC

tcnet
Server

FPGAMulti-Core
CPU

Compute Node N

User DataPublic
Entry Node

42 Simulator
Virtual Compute Node

tcnet
NetEmApp

GPUMulti-Core
CPU

tcnet
NetEmApp

…

Fig. 2. Architecture of network emulation on AWS

ported and a novel Python based source to source code trans-
lator is provided to support rapid application porting between
processor types. The resulting system can emulate missions
at the processor level and report to end users the overall pro-
cessing throughput and power achieved on the emulated ap-
plication. This is an important step to providing system-of-
system level validation of system of system remote sensing
applications.

2. DESIGN AND EVALUATION

The Virtual Constellation Engine (VCE), from Figure 1,
provides a framework for mission designers and systems en-
gineers to rapidly define heterogeneous constellations and
their processing payloads and execute experiments to vali-
date autonomous and dynamic objectives. By leveraging the
cloud, constellations or sensor webs of arbitrary size can be
explored, and multiple candidates can be evaluated in parallel.

An end user defines the constellation level topology and
movement using 42, a general purpose orbit dynamics sim-
ulator [10]. VCE then utilizes a Virtual Constellation gen-
erator to spawn constellation platforms in a cloud environ-
ment and emulate their performance. The computing pay-
load of each platform is defined by the On-board Comput-
ing Framework, where specific processor and memory types,
and topologies are defined. VCE then executes simulators
and emulators of these processors in the cloud environment.
The final piece in this architecture is to map specific remote
sensing applications and autonomous algorithms onto these
heterogeneous platforms. Hot & sPyC, a source to source
translator which facilitates porting Python based applications
between customized accelerators such as GPUs and FPGAs
was developed to support such platform migration [11].

The output of VCE contains reports identifying the pro-
cessing throughput of the constellation and its nodes, high-
lighting stalls that can translate into missed opportunities to
capture dynamic science events. This system enables a scien-
tist to evaluate applications spanning multiple satellites and
with different instruments to create, assess, or refine complex
applications in a sensor web environment.

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

Thermal Sulfur ATCORR Compression MiDARBe
nc

hm
ar

k 
Sp

ee
du

p 
vs

. S
pa

ce
Cu

be
 2

.0
 P

la
tf

or
m

Performance Analysis for On-Board Compute Architectures

SpaceCube 2.0 (PPC 440) Zynq (ARM A9) Hybrid (ARM A53)
Hybrid (A53+FPGA) NXP (PPC e6500) Jetson (ARM A57)

Fig. 3. VCE performance analysis on five representative
benchmark applications on different compute platforms rel-
ative to a SpaceCube 2.0 system

2.1. Virtual Constellation Generator

In order to run a virtual constellation, end users leverage
VCE’s virtual constellation generation framework. For a
virtual constellation, multiple heterogeneous nodes can be
specified through the constellation specification parameters
(number and type of resources, position, and data-rates) and
integrate with performance, environment and health models,
shown in Figure 1. The resources are implemented using
Amazon’s Web Services (AWS) through a Constellation Vir-
tual Machine (VM) Manager that allows applications and
emulation data to be distributed across the platform. AWS
provides a flexible framework that allows the constellations
to scale to hundreds or thousands of nodes to represent fu-
ture large scale systems. Furthermore, after a node has been
specified any developer can simply instantiate one or more of
these nodes and immediately begin running their experiments
in the Cloud Environment, shown in Figure 2. Users log into
a public entry node in the AWS private cloud created through
the Constellation VM Manager and provides direct access to
a Network File System (NFS) where the user’s application,
data, and tools to run experiment, collect and analyze results.
These virtual platforms dramatically increase the develop-
ment capabilities by removing the hurdle of physical access
or manual maintenance of the system. VCE includes support
for the different compute resources made available by AWS,
such as multi-core CPUs, GPUs and FPGAs, by providing
an intermediate Application Programming Interface (API) to
simplify exchanging data between the different resources.

2.2. On-board Computing Framework

At the core of our framework is ArchGen, which generates
platforms based on user input parameters to select proces-
sor type, accelerator type, memory, interfaces, and sensor
parameters. VCE provides a number of on-board compute re-



0 20 40 60 80 100 120
Time (sec)

100

120

140

160

180

200

B
an

dw
id

th
 (M

bp
s)

Node 1 to 2
Node 2 to 3
Node 3 to 4
Node 4 to 5
Node 5 to 6
Node 6 to 7
Node 7 to 8
Node 8 to 9
Node 9 to 10

Fig. 4. Emulation of network bandwidth in an AWS cluster

sources, such as multi-core CPUs (ARM A9, A53, PowerPC
440), FPGAs (Xilinx Zynq, UltraScale, Zynq UltraScale+)
and now provides support for GPUs. GPUs include both
server class and embedded class platforms which can be
found in Aerial and UAV platforms. This has a tremendous
advantage in that it is now possible to model distributed Earth
sensing applications where portions of the data is collected
at different levels of precision or coverage. The end user
codes their application and VCE distributes the application
across one or more GPU platforms in an AWS cloud environ-
ment. This is accomplished through a socket-based API to
distribute data to either a GPU or FPGA, task these compute
resources to perform the computation, and collect the results.
The framework is abstracted from the developer such that
data sent to the platform emulates a sensor running in the
system. To achieve realistic data-rates the platform incorpo-
rates performance and health models as input specifications
for each sensor.

VCE’s framework allows for rapid porting and analysis of
benchmark applications on different compute platforms. The
platform evaluation process is useful for determining which
systems should be included in a virtual constellation. Fig-
ure 3 shows the relative performance for five benchmarks on
different platform types, all generated using ArchGen. The
applications represent hyperspectral imaging computational
kernels that would be tightly coupled with the compute re-
source to provide high-performance distributed computing in
a sensor web environment. By providing a developer perfor-
mance analysis early in the development process based on dif-
ferent architectures one can quickly select platforms that best
suite performance needs.

2.3. Distributed Communications and Control

Constellations require the intertwined deployment of compu-
tation, communication and control strategies. An end user
should be able to not only specify the computational capac-

0 20 40 60 80 100 120 140
Time (sec)

0

5

10

15

20

25

30

35

40

R
TT

 (m
s)

Node 1 to 2
Node 2 to 3
Node 3 to 4
Node 4 to 5
Node 5 to 6
Node 6 to 7
Node 7 to 8
Node 8 to 9
Node 9 to 10

Fig. 5. Emulation of network latency in an AWS cluster

ity of a system, as previously described with the Constella-
tion VM Manager, but the communication and control based
on environmental or flight mission scenarios. This means to
provide an accurate emulation of the operation of a constella-
tion, we must emulate not only the heterogeneous computing
devices (CPU, GPU, FPGA), but also the networking envi-
ronment experienced by each node. To achieve this goal, our
framework leverages the NetEm component [12] of the Linux
kernel to control delay, bandwidth, and packet loss probabil-
ity between each pair of nodes in an AWS EC2 cluster. To
orchestrate changes of these networking parameters, we de-
velop a client/server tool called tcnet: each node of the
satellite constellation (emulated on EC2) periodically polls a
control server, receives current parameters, and issues com-
mands necessary to produce changes in the Linux kernel con-
figuration.

As illustrated in Figure 2, the nodes of the emulated
satellite application (App) communicate with each other
through Linux, where networking parameters are managed
by tcnet and enforced by NetEm. The communication
between tcnet clients and the server is not subject to delay
or bandwidth limitations, and it can access all of the avail-
able networking resources of AWS EC2 (possibly exchanging
control information on a separate network interface). By con-
trolling network parameters at the IP level, we can accurately
reproduce the effects of latency and bandwidth limitations
on applications and higher-layer network protocols such as
TCP [13] with minimal overhead (networking emulation is
performed in the kernel space).

In addition, a central control server allows us to easily in-
tegrate arbitrary models for the evolution of network parame-
ters of the satellite constellation over time; in particular, it en-
ables the use of network parameters computed from the out-
put of simulators such as the 42 [10], orbital dynamics sim-
ulator. This feature is particularly important to emulate the
variable delay of inter-satellite communications in low Earth
orbits (LEO), or the intermittent characteristics of commu-



nications between satellites and ground stations, UAVs and
airborne platforms.

To evaluate the effectiveness of our network emulation
solution, we run a benchmark scenario on AWS. We start
n = 10 virtual machine instances and run the tcnet client
program to fetch and apply, at time intervals of 1 second,
the network parameters from a tcnet server running on a
separate virtual machine. We consider the linear topology
1 → 2 → · · · → n and measure, at each time instant,
the round-trip time (RTT) from VM i to VM i + 1 for all
0 < i < n (through simple ping requests). The AWS
VM type is c5.large (2 vCPU, 4 GB of RAM, 0.7 Gbps
bandwidth with bursts up to 10 Gbps) and the operating sys-
tem is Ubuntu Linux 18.04 for all VMs.

In the experiment we use a network model with static
schedule to drive the tcnet server: every 10 seconds, we
change the available bandwidth. As Figure 4 illustrates,
we change the bandwidth between each pair of nodes from
100 Mbps to 200 Mbps to emulate bandwidth bottlenecks
similar to sensor overflow, loss of downlink, or when the
computation cannot keep pace with the input data. TCP
bandwidth is measured over time using the iperf3 tool.
The results highlight precise control over assigned band-
width. In addition, tcnet also allows control of packet loss
probability and packet corruption probability. Likewise, a
delay between each pair of nodes (in each direction) from
20 ms to 10 ms experiment is performed. This benchmark
allows us to test the reaction time of our network emulation
layer; as illustrated in Figure 5, the application of network
parameters is almost instantaneous.

2.4. Application Mapping

While targeting customized accelerators yields high real time
performance, programming and optimizing heterogeneous
resources such as FPGAs and GPUs can add several months
to the software development flow. In order to curtail these
long development tails we developed Hot & sPyC [14, 11],
an open-source infrastructure and tool suite for integrating
FPGA accelerators in Python applications. The aim of Hot
& sPyC is to ease the packaging, integration, and binding
of accelerators and their C/C++ based drivers callable from
a Python application. This flow allows a developer to take
existing Python code and quickly compile computationally
complex functions into efficient FPGA designs, reducing the
development time down to hours or days rather than months
or years. The platform has been demonstrated on image
processing applications and shown to achieve significant per-
formance gains of up to 39,137× in hardware compared to
standard software running on an ARM A9 processor [11].
Hot & sPyC significantly improves development productivity
by allowing developers quick software simulation validation
of their algorithms using industry standard simulation tools,
such as ModelSim, while still leveraging high-level languages

for benchmark creation and checking results.

3. CONCLUSION AND FUTURE WORK

The Virtual Constellation Engine (VCE) represents a frame-
work prototype which enables remote sensing architects to
rapidly posit and experiment with different satellite constel-
lation or sensor web configurations. Ongoing work is investi-
gating different methodologies by which designers can frame
constellation level experiments and define which metrics they
wish to observe. VCE is also continuously being upgraded
to support additional processor types. The authors intend to
make the software publicly available to support the remote
sensing community more broadly.

4. REFERENCES

[1] National Academies of Sciences, Engineering, and
Medicine, “Thriving on our changing planet: A
decadal strategy for earth observation from space,”
http://sites.nationalacademies.org/DEPS/esas2017/DEPS 169443.

[2] M. Little, “Distributed measurements and spacecraft
missions,” in Earth Science Technology Forum, 2018,
https://esto.nasa.gov/files/AIST/M03.R8.01 Little v0.pdf.

[3] W. Blackwell, “Time-resolved observations of precipitation structure
and storm intensity with a constellation of smallsats,” MIT Lincoln
Laboratory, 2016.

[4] National Research Council, “Landsat and beyond: Sustaining and en-
hancing the nation’s land imaging program,” The National Academies
Press, 2013.

[5] The National Academies of Sciences, Engineering, and Medicine, “A
framework for analyzing the needs for continuity of nasa-sustained re-
mote sensing observations of the earth from space,” 2013.

[6] A. G. Schmidt, G. Weisz, M. French, T. Flatley, and C. Y. Villal-
pando, “SpaceCubeX: A framework for evaluating hybrid multi-core
CPU/FPGA/DSP architectures,” in IEEE Aerospace Conference, 2017.

[7] M. French, A. G. Schmidt, G. Weisz, T. Flatley, G. Crum, J. Bobblit,
C. Y. Villalpando, and R. Bocchino, “SpaceCubeX: Initial simulation-
level results of hybrid on-board processing architectures,” NASA Earth
Science Technology Forum, June 2016.

[8] C. Y. Villalpando, R. Werner, J. Carson, G. Khanoyan, R.A. Stern, and
N. Trawny, “A hybrid FPGA/tilera compute element for autonomous
hazard detection and navigation,” in IEEE Aerospace Conference,
2013.

[9] N. Trawny, J.M. Carson, A. Huertas, M.E. Luna, V.E. Roback, A.E.
Johnson, K.E. Martin, and C.Y. Villalpando, “Helicopter flight testing
of a real-time hazard detection system for safe lunar landing,” in AIAA
Space, 2013.

[10] “42: A Comprehensive General-Purpose Simulation of Attitude and
Trajectory Dynamics and Control of Multiple Spacecraft Composed of
Multiple Rigid or Flexible Bodies,” .

[11] S. Skalicky, J. Monson, A. G. Schmidt, and M. French, “Hot & Spicy:
Improving Productivity with Python and HLS for FPGAs,” in IEEE
International Symposium on Field Programmable Custom Computing
Machines (FCCM), 2018.

[12] “NetEm Homepage,” wiki.linuxfoundation.org/networking/netem.
[13] Stephen Hemminger, “Network emulation with NetEm,” in Linux Con-

ference Australia, 2005.
[14] A. G. Schmidt, G. Weisz, and M. French, “Evaluating Rapid Appli-

cation Development with Python for Heterogeneous Processor-based
FPGAs,” in IEEE International Symposium on Field Programmable
Custom Computing Machines (FCCM), 2017.


