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ABSTRACT
Modern machine learning frameworks can train neural networks

using multiple nodes in parallel, each computing parameter up-

dates with stochastic gradient descent (SGD) and sharing them

asynchronously through a central parameter server. Due to com-

munication overhead and bottlenecks, the total throughput of SGD

updates in a cluster scales sublinearly, saturating as the number of

nodes increases. In this paper, we present a solution to predicting

training throughput from profiling traces collected from a single-

node configuration. Our approach is able to model the interaction

of multiple nodes and the scheduling of concurrent transmissions

between the parameter server and each node. By accounting for the

dependencies between received parts and pending computations,

we predict overlaps between computation and communication and

generate synthetic execution traces for configurations with multi-

ple nodes. We validate our approach on TensorFlow training jobs

for popular image classification neural networks, on AWS and on

our in-house cluster, using nodes equipped with GPUs or only with

CPUs. We also investigate the effects of data transmission poli-

cies used in TensorFlow and the accuracy of our approach when

combined with optimizations of the transmission schedule.
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1 INTRODUCTION
Deep learning [8] has achieved breakthrough results in several ap-

plication domains, including computer vision, speech recognition,

natural language processing. In contrast with traditional machine

learning, Deep Neural Networks (DNNs) discover internal repre-

sentations suitable for classification from training data, without

∗
Authors with equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00

https://doi.org/10.1145/3358960.3379141

Parameter Server

Worker WorkerWorker

Data Data Data

Parameters
Gradients

Figure 1: Parameter Server Architecture

the need for manual feature engineering. This approach requires

very large amounts of training data and computation: for example,

popular DNNs for image classification include millions of model

parameters (DNN weights) trained using datasets of millions of la-

beled images. Training examples are grouped in small batches and

used for optimization steps with Stochastic Gradient Descent (SGD),

which is computationally expensive (gradients are computed by

propagating output errors back to each model parameter, through

a sequence of matrix multiplications [8]).

Training performance can be improved by using more power-

ful hardware, such as GPUs and FPGAs. To improve performance

even further, machine learning frameworks such as TensorFlow [1]

can use multiple worker nodes, each performing SGD steps on a

shard of the training data. A popular architecture to share model

updates between worker nodes is the parameter server [9], illus-
trated in Fig. 1. The parameter server holds a global version of

model parameters (the DNN weights): each worker receives these

parameters (downlink phase), computes an update from a batch of

labeled examples (computation phase), and transmits its update to

the parameter server (uplink phase), where it is applied to the global
model (update phase). In asynchronous SGD (the focus of our work),

workers proceed independently; in contrast, in synchronous SGD

the parameter server waits for updates from all the workers before

sending an updated model, introducing blocking at the workers.

As the number of worker nodes increases, network traffic at the

parameter server also increases, resulting in sublinear scaling of

training throughput (examples/s processed by all the workers). For
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Figure 2: Training throughput of Inception-v3 on AWS
p3.2xlarge GPU instances for different batch sizes
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Figure 3: Analysis of an SGD step (batch of 64 examples) of
Inception-v3 training using 1worker and 1 parameter server
in TensorFlow (on AWS p3.2xlarge) and prediction results

example, Fig. 2 illustrates the training throughput measured for

the Inception-v3 model [17] when training on AWS p3.2xlarge in-
stances (each equipped with NVIDIA V100 GPU) with TensorFlow

and asynchronous SGD, for batch sizes of 16, 32, 64, 128. Through-

put saturates at 4 workers for batch sizes 16 and 32; adding more

workers yields only marginal improvements. In contrast, for batch

sizes 64 and 128 throughput saturates at 5 and 7 workers, respec-

tively: in this case, workers access the network less frequently (it

takes longer to compute a model update), reducing network load.

The goal of our work is to provide an approach to predicting

training throughput of asynchronous SGD for any number of work-

ersW , from quick job profiling performed in TensorFlow using a

single worker node. This would allow users to avoid testing multi-

ple configurations and manually checking throughput; cost savings

with respect to manual benchmarks are particularly important in

large cloud environments with GPU nodes, where users submit

multiple jobs and schedulers need to decide how many nodes to

assign to each job based on its size and ability to scale.

Existing approaches for performance prediction of asynchro-

nous SGD are based on very coarse models of computation and

communication, not accounting for dependencies and overlaps of

fine-grained operations. For example, previous work [10] infers the

duration of each SGD phase from profiling information collected

using network analysis tools such as tcpdump [19]: the time inter-

val between the end of the downlink transmission and the start of

the uplink transmission is interpreted as the single worker’s com-

putation, and the durations of these phases are used as parameters

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

Updates

Uplink

Computation

Downlink

(a) Batch size = 4

0 5000 10000 15000 20000

Time (ms)

Updates

Uplink

Computation

Downlink

(b) Batch size = 16

Figure 4: Summary of TensorFlow profiling data for 3 train-
ing steps (1 worker/1 server) on a private CPU-only cluster

of a queueing model to predict throughput. An even coarser model,

proposed in [24], estimates throughput withW workers and batch

sizeK from the network utilizationU1 measured for a single worker

asWK/(TP max(1,WU1) + 2TC ), where TP is the time required to

process a batch and TC is the model/updates transmission time.

Overview We argue that these models overlook the complexity of

computation and communication in asynchronous SGD. As illus-

trated in Fig. 3(a) for Inception-v3, the uplink phase (green) is spread

out over a long time interval. By looking at the trace information

collected with TensorFlow (Fig. 3(b)), we observe that computation

overlaps with both uplink and downlink communication: the first

part of the computation (forward propagation, in red, computing

the output error) overlaps with the downlink, while the second

part (backward propagation, in cyan, propagating the error back to

model parameters) overlaps with the uplink. As illustrated in Fig. 4,

these overlaps are not limited to a specific DNN model, batch size,

or platform. In fact, TensorFlow starts each operation in an SGD

step as soon as its dependencies are satisfied: forward propagation

at the worker can start as soon as the initial layers are received;

similarly, as soon as backward propagation completes for one of

the final layers, its uplink transmission can start.

Our proposed approach collects fine-grained profiling informa-

tion using TensorFlow traces, recording dependencies of each op-

eration in a training step. For example, for the simple 4-layer DNN

model of Fig. 5, we collect 1-worker profiling such as in Fig. 6 (but

real-world DNNs include thousands of operations): each DNN layer

results in multiple transmissions (uplink/downlink) and computa-

tions (forward/backward propagation at the worker, updates at the

server). Specifically, we collect 1-worker profiling steps (e.g., 100

steps) and then sample from them with replacement to generate

synthetic traces for multiple workers (Fig. 7). To obtain accurate

throughput estimates from synthetic traces, we need to account

for network sharing between workers and also for limitations of

recorded traces, which track only the start/end of operations but not

their active transmission intervals. Fig. 3(c) compares our prediction

results for Inception-v3 with existing methods, clearly indicating

the need for a more fine-grained approach (like ours) rather than

the coarse-grained approach in the current literature.

The contributions of our work are as follows.
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• We propose an approach for throughput prediction of asyn-

chronous SGD based on fine-grained tracing information

collected from 1-worker profiling. We account for the type

and dependencies of each operation in a discrete-event sim-

ulation with multiple workers, which allows us to predict

delays caused by network congestion with great accuracy.

To enable this approach, we overcome many limitations of

TensorFlow trace profiling data, discussed in Section 2. In

particular, we provide a model for communication overhead

due to message parsing (Section 3.2.1) and for HTTP/2 mul-

tiplexing of multiple streams (Section 3.2.2) in TensorFlow.

• We include these models in a simulation algorithm (Sec-

tion 3.4) for throughput prediction and we validate our ap-

proach using a large set of experiments for multiple DNN

models, with many batch sizes, on private clusters and public

cloud platforms, using CPU or GPU resources for each node,

for different network speeds. The results highlight that our

approach can accurately predict throughput and bottleneck

points (Section 4).

• We investigate the performance effects of state-of-the-art

optimizations on the communication strategy of TensorFlow

(Section 3.3) and show that our approach can be modified to

account for such changes, accurately predicting throughput

in these settings (Section 4).

• We investigate a model of bandwidth sharing in configura-

tions with 2 parameter servers and evaluate the accuracy of

our approach (Section 5); extension to a larger number of

parameter servers is part of our ongoing efforts.

2 PROFILING
Dependencies among operations of DNN training (adjustingweights

to fit a dataset of input/output pairs) or inference (computing out-

put classifications for new inputs) are represented in TensorFlow

as a computation graph: different operations (e.g., matrix multipli-

cations and activation functions in a layer) are nodes of this graph,

while tensors (multidimensional arrays) flow along directed edges

between nodes (i.e., the output of one operation is the input of the

next). Execution is triggered by feeding data (e.g., an input image)

into the input nodes of the graph.

Fig. 6 illustrates the computation graph of a step of distributed
training for the simple 4-layer DNN model of Fig. 5. There are two

types of operations: (1) computation operations (e.g., addition, ma-

trix multiplication, convolution) producing an output tensor from

one or more input tensors (in red, cyan, and brown); and (2) com-
munication operations, transferring data between nodes (in orange

and green). During forward propagation, a worker can compute the

output of each layer in order, after receiving its weights from the

parameter server; during backward propagation, updates to each

layer are computed in reverse order and immediately scheduled

for transmission to the parameter server. Note that dependencies

are much more complex than shown in Fig. 6: the computation

of a single layer breaks down into many basic operations that are

scheduled for execution on the CPU and GPU.

We generate profiling information for a training job (a specific

DNN processing batches of training examples of a given size) by

running distributed TensorFlow for a few SGD steps using one

parameter server and oneworker. Each step can be described as a set

of operations with mutual dependencies: in the following, for each

operation op we denote by op.waiting_for and op.dependent_ops the
set of operations that op depends on, and the set of operations that

can start only after the completion of op, respectively. Note that
the dependencies are the same for all training steps since training

steps are generated from the same DNN model.

Each operation op in the collected profiling traces uses exactly

one resource, op.res ∈ {downlink,worker, uplink, ps} where:

downlinkmodels the transmission channel of the parameter server

(used by the workers to receive up-to-date model parameters),

worker models the computation unit at the worker (CPU cores or

GPU used for SGD), uplink models the receiving channel of the

parameter server (used by the workers to transmit model updates),

and ps models the computation unit at the parameter server (used



conv0 conv1 fc0 fc1

conv0
conv1
fc0
fc1

(a) default

conv0 conv1 fc0 fc1

conv0

conv1

fc0

fc1

communication operation

network transmission

communication overhead

(b) HTTP/2 flow control disabled

conv0 conv1 fc0 fc1

conv0
conv1
fc0
fc1

(c) communication ordering enforcement

conv0 conv1 fc0 fc1

conv0
conv1
fc0
fc1

(d) communication ordering enforcement,
HTTP/2 flow control disabled

Figure 8: Different communication mechanisms

PS→WORKER1

PS→WORKER2

PS→WORKER3

Figure 9: Active connections and
bandwidth allocation change over
time as transmissions start/end

to apply model updates). For communication operations, the size

op.size of the transmitted tensor is also recorded.

Unfortunately, communication operations recorded by Tensor-

Flow profiling tools do not accurately represent the exact timings

for the transmission of the corresponding parameters. In fact, Ten-

sorFlow uses gRPC [3], a framework for remote procedure calls

(RPC) over HTTP/2, to transfer tensors and manage connections.

Tensor transfers are triggered at the beginning of each training

step: first, TensorFlow finds all tensors that need to be transferred

to another device; then, it starts a communication operation for

each such tensor through gRPC.

Fig. 8(a) shows that, when training the DNN model from Fig. 5,

each layer triggers a communication operation. For each transfer,

TensorFlow creates a corresponding RPC request: the recorded

start time of the communication operation corresponds to when

the tensor is ready on the sender side, while the recorded end time

tracks the time when the data is available to the receiver. In fact,

these start/end times do not correspond to the underlying network

transmissions: (1) Transmission can start after the recorded start

time, since gRPC API calls are asynchronous and start times only in-

dicate when transmissions are requested by the sender; for example,

Fig. 8(a) shows that, at the beginning of each step, all tensors are

available to be transmitted from parameter server to the workers,

so that the profiler records the beginning of their transmission at

the same time, although only one starts transmitting data. (2) The

duration of each recorded transmission does not necessarily repre-

sent transmission time; not only can transmissions start well after

their recorded start time, but they can be performed in parallel

or suspended, since each gRPC transfer is assigned to a different

HTTP/2 stream subject to multiplexing. (3) In addition, the recorded

end time is also increased due to the latency introduced by parsing

operations performed after the data has been transferred to the

receiver (including deserialization and memory copies).

In order to perform accurate predictions, we need to infer the

real start/end times of network transmissions (i.e., which communi-

cation operation is being served at each time) based on the limited

information provided by TensorFlow profiling. To account for (1)

and (2), we propose a model of HTTP/2 multiplexing in gRPC.

To account for (3), we propose a linear model of communication

overhead. We present and evaluate these models in Section 3.2.

3 PREDICTION
From profiling information collected in a single-worker configura-

tion, we extract detailed information on the communication and

computation operations of each SGD step. In this section, we use

profiling information to construct synthetic traces for multiple SGD

steps in a configuration with an arbitrary number of workersW . To

do so, we perform a discrete-event simulation of the operations at

each worker, accounting for the reduction in bandwidth due to the

presence of multiple workers transmitting or receiving data. In turn,

extended communication times at a worker can delay dependent

operations in an SGD step. First, we address bandwidth sharing

between multiple workers; then, we analyze the effects of HTTP/2

multiplexing of concurrent transmissions at each worker.

3.1 Bandwidth Sharing among Workers
During our profiling phase, only a single worker communicates

with the parameter server: in this case, the uplink/downlink op-

erations of the worker can use the entire network bandwidth in

each direction. In contrast, in a distributed SGD configuration with

multiple workers networking resources are shared.

In order to adapt networking of single-worker profiling traces

for multiple-workers prediction, we need to track the number of

workers currently active in the uplink/downlink direction. In fact, as
illustrated by Fig. 3(b), communication with the parameter server

is intermittent: the worker sends updates for each layer/tensor

of the model as soon as they are ready. With multiple workers,

many network states (active/inactive links) are possible (Fig. 9).

We keep track of the number of workers n active in each direction

(uplink/downlink) and assume that each active worker receives

a fraction
1

n of the available bandwidth. Our model assumes that

network capacity is shared equally, without significant background

traffic and with similar round-trip times (RTTs). Although in prac-

tice workers may split network bandwidth unevenly because of

background traffic and heterogeneous RTTs, we find this model to

be accurate for throughput prediction (Section 4).

3.2 Analysis of Single-Worker Profiling Traces
As noted in Section 2, communication operations recorded in Ten-

sorFlow during the profiling phase do not accurately represent the
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Figure 10: Overhead for each transmitted tensor size

actual transmission times because HTTP/2 flow control alternates

the transmission of different streams. This is a major obstacle to

predicting communication times in configurations with multiple

workers, since extending recorded communication operations ac-

cording to the available bandwidth yields inaccurate results. We

illustrate these challenges and our proposed solution below.

3.2.1 Parsing Overhead of Received Tensors. We benchmark the

parsing overhead of communication operations for data transfers

of different sizes. The results, illustrated in Fig. 10, suggest a linear

model op.overhead = α × op.size + β with respect to the size of

the data transferred by the operation op. The parameters α and

β are independent of the specific DNN model, and they can be

estimated once for the nodes used in the cluster. We remove this

parsing overhead from the duration of a communication operation

and assign it to a dependent computation operation.

3.2.2 Downlink and Uplink Multiplexing. HTTP/2 achieves better

performance than HTTP/1.1 (especially for web browsers) due to

the introduction of multiplexing, so that multiple streams (e.g.,

images of a web page) can be transmitted simultaneously within a

single connection between client and server without “head-of-line

blocking” due to large files being requested before smaller ones.

Stream multiplexing is the mechanism used in HTTP/2 for flow

control. The receiver side of every stream advertises a flow con-

trol windowWIN, which is a credit-based value that specifies the

amount of data it is prepared to receive, in order to prevent the

stream from overwhelming the receiver and blocking other streams.

HTTP/2 defines only the format and semantics of the flow control

window, while implementations are free to decide how it should

adapt over time to current network and memory conditions (usually

based on the bandwidth-delay product and memory pressure), and

how to switch between multiple streams.

In gRPC, the remote procedure call (RPC) library used by Ten-

sorFlow for distributed SGD training, there are two connections

(one in each direction) between each parameter server and worker.

TensorFlow creates a gRPC request, which initiates an HTTP/2

stream for each tensor that needs to be transferred to a different

node. To illustrate the stream multiplexing behavior of gRPC, we

perform an experiment that transmits concurrent HTTP/2 streams

in TensorFlow: we perform a training step of the model AlexNet [7]

with one parameter server and one worker, capture the packets of

downlink transmission using tcpdump [19] and analyze HTTP/2

frames using Wireshark [22].

The results, presented in Fig. 11, illustrate that (in a single worker

scenario) HTTP/2 switches between gRPC streams intermittently.

We observe that streams smaller than the flow control window

WIN finish without switching, while for streams larger than WIN,
HTTP/2 transmits WIN bytes and then switches to another stream.

Furthermore, stream preemption happens only once for each stream:

when a stream is selected again for transmission, it will transmit to

completion, even if its remaining size is larger thanWIN.
We adopt the following model for the multiplexing mechanism

of HTTP/2 in gRPC. We define a scheduler for each link (i.e., for

each sender/receiver pair), multiplexing streams of multiple trans-

missions. Each stream (which carries data of a communication

operation) is assigned to the scheduler as soon as its corresponding

operation starts. While the scheduler is not empty, a chunk (e.g., the
initial portion of a stream) is selected from one of the active streams

for transmission. The first time that a stream is selected, a chunk

of size up toWIN is selected by our scheduler modeling HTTP/2

multiplexing. If the remaining size of the stream is less than the cur-

rentWIN, or if the stream is selected for the second time, the entire

stream is consumed as a chunk scheduled for transmission. Once

transmission of the stream completes, another stream is selected

by the scheduler in our synthetic trace generation. An example of

this model is illustrated in Fig. 12.

This model allows us to predict HTTP/2 stream multiplexing,

which is crucial for our trace generation algorithm because of the

dependencies between different operations in an SGD step. We

extract the flow control window WIN (on average, 28 MB) from

HTTP/2 headers captured by tcpdump. When multiple streams

are multiplexed within an HTTP/2 connection between a worker

and the parameter server, given the start time of each stream and

WIN, the model infers which stream is transmitted at each time,

eventually predicting its end time. We validate the estimation ac-

curacy of our model on various platforms, by comparing the end

times of downlink streams resulting from our model with those

measured during single-worker profiling. Results are presented in

Table 1 with error statistics obtained from 100 training steps; most

HTTP/2 multiplex transmissions are modeled correctly and this

model works for different DNNs.

We observe three sources of modeling error: (1) Our model is

based on the assumption thatWIN does not change over time; in

fact,WIN fluctuates as network conditions change. If a stream is

slightly larger than WIN, its remaining portion may be transmitted

at a much later time; thus, errors in the estimation of WIN can

greatly affect end time predictions. (2) The estimation of parsing

overhead can be inaccurate because our simple linear model does

not account for fluctuations of CPU usage on the worker. (3) An-

other source of error is network instability: transmission times may

be affected by background traffic, especially on cloud platforms.

3.2.3 Worker Computation and Model Updates. We assume that,

for each additional worker, computation operations run on inde-

pendent resources not shared with other workers. In particular,

processing of a batch of training examples uses local resources at

the worker (CPU cores or a GPU); similarly, model updates run at

the parameter server independently (on separate cores).

3.3 TensorFlow Networking Optimizations
We observe that HTTP/2 stream multiplexing may introduce delays

in training steps, reducing DNN training throughput.
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Table 1: Error of endtime prediction of downlink streams

DNN Model CPU Cluster AWS Cloud

AlexNet

Average 1.82% 2.89%

Median 1.18% 0.76%

95th Percentile 3.35% 9.71%

Maximum 47.48% 45.44%

GoogLeNet

Average 1.69% 3.43%

Median 1.07% 2.76%

95th Percentile 3.74% 9.14%

Maximum 75.83% 64.24%

Inception-v3

Average 1.02% 9.23%

Median 0.35% 8.01%

95th Percentile 3.92% 20.98%

Maximum 87.88% 98.19%

ResNet-50

Average 1.26% 4.36%

Median 0.93% 3.78%

95th Percentile 2.32% 9.70%

Maximum 72.07% 97.10%

One feasible approach to improving training throughput is to

maximize the overlap between computation and communication.

Ideally, once a computation operation is completed (e.g., forward

propagation of the first DNN layer), the next computation should

start immediately, without being delayed by network transfers

of required inputs. For simple DNN models in which layers are

connected sequentially (i.e., without skip connections or branch-

ing [16]), layers should be transmitted in order during the downlink

phase to reduce blocking of computation operations; for example,

the optimal transmission order of layers in the model of Fig. 5 is

conv0 → conv1 → fc0 → fc1 (shown in Fig. 8(d)). For more com-

plex DNN models, the research prototype TicTac [4] was proposed

as a heuristic to derive efficient schedules for parameter transfers

by analyzing the critical path of the computation; these schedules

achieve performance improvements by enforcing communication

ordering in TensorFlow.

However, this type of optimization cannot be fully implemented

because of themultiplexing features of HTTP/2 and of the inevitable

switching between pending communication operations. Fig. 8(c)

shows an example where HTTP/2 can suspend transmission of the

current layer, causing the computation to block.

We find that HTTP/2 stream switching can be eliminated from

distributed TensorFlow training by disabling HTTP/2 flow control

in gRPC, as in Fig. 8(b); in this case, there is no multiplexing of

downlink and uplink transmissions, as also illustrated in Fig. 8(d),

where the time required for a training step is reducedwith respect to

Fig. 8(c). In Section 4.2, we evaluate the accuracy of our predictions

when flow control is disabled, under multiple scheduling policies

(including TicTac). To perform predictions in this setting, wemodify

the schedulers used in our synthetic trace generation to process

entire streams as a single chunk (i.e., without interruptions), in the

order in which they are scheduled.

3.4 Trace Generation for Multiple Workers
We generate a synthetic trace for each system configuration (net-

work bandwidth B, workers W , parameter servers M) through

discrete-event simulation.

A sequence of N SGD steps is sampled with replacement for each

worker from the set of steps S collected during job profiling (which

is performed only once, with a 1-server/1-worker configuration).

As illustrated in Algorithm 3.1, for each worker w ∈ W and re-

source r ∈ {downlink,worker, uplink, ps}, a separate scheduler

scheduler [w, r ] keeps a queue of pending operations. Operations

are split into smaller chunks by the scheduler; when a chunk of

workerw is completed with resource r , another chunk is selected by
the scheduler [w, r ] and added to Q (Line 31). This approach allows

us to represent the scheduling policies observed in gRPC when

HTTP/2 multiplexing of multiple streams is enabled (as in Fig. 11):

first, a chunk of each stream is selected by the scheduler; then the

remaining data is transmitted until completion.

When the last chunk of an operation is completed (Line 18),

dependent operations may become available for execution (Line 22)

and are added to schedulers for their required resources (Line 24). If

workerw is not using the required resource, the first chunk of the op-

eration can be processed (Line 29). At any time, active[downlink]

and active[uplink] track the number of workers using the down-

link and uplink resources, respectively: in our bandwidth sharing

model (summarized by Share(r ,active) in Algorithm 3.1), each



Algorithm 3.1: Simulation for synthetic trace generation.
Each operation op from the profiling traces uses a resource op.res,
has some prerequisite operations op.waiting_for, and operations

op.dependent_ops depend on it.

StartRandomStep(S,Q,w)

1 step = SampleWithReplacement(S)
2 for op in step.copy() // each step starts with downlinks
3 if op.res == downlink

4 scheduler[w , downlink].add(op)

5 // scheduler splits worker ops, runs ≤ 1 chunk/worker/resource
6 Q .add( scheduler[w , downlink].remove_chunk() )

Share(r ,active) // fraction of r assigned to each worker
1 if r in {downlink, uplink}

2 return 1/active[r ] // uplink and downlink shared equally
3 else return 1 // processing is independent for each worker

GenerateTrace(S,W )

1 Q = ∅ // set of scheduled operation chunks
2 forw inW // setup for each worker
3 completed_steps[w] = 0

4 for r in {downlink,worker, uplink, ps}

5 scheduler[w , r ] = Scheduler(r ) // empty scheduler
6 StartRandomStep(S,Q,w) // add first chunk of downlink
7 trace = Trace() // empty trace
8 active = {downlink : |W |, uplink : 0}

9 while Q , ∅

10 sort chunks x ∈ Q by x .remaining / Share(x .res, active)
11 chunk = Q .remove_min()

12 w , r = chunk.worker, chunk.res

13 duration = chunk.remaining / Share(x .res, active)
14 // chunk .main_op is the operation that the chunk is part of
15 trace.add(w , r , chunk.main_op, duration)

16 for chunk x in Q // update remaining times
17 x .remaining -= duration × Share(x .res, active)
18 if chunk.is_last // this is the last chunk of the operation
19 // dependent ops can be assigned to scheduler if ready
20 for d in chunk.main_op.dependent_ops

21 d .waiting_for.remove(chunk.main_op)

22 if d .waiting_for == ∅ // no other dependency
23 if scheduler[w ,d .res] != ∅ //w already usingd .res
24 scheduler[w , d .res].add(d) // just queue d
25 else // start running the first chunk of d
26 if d .res in {downlink, uplink}

27 active[d .res] += 1 // w becomes active
28 scheduler[w , d .res].add(d)
29 Q .add( scheduler[w , d .res].remove_chunk() )

30 if scheduler[w , r ] != ∅ // w has more chunks to run on r
31 Q .add( scheduler[w , r ].remove_chunk() )

32 else // no more chunks forw to run on resource r
33 if r in {downlink, uplink}

34 active[r ] -= 1 // become inactive
35 if scheduler[w , i] = ∅ ∀i // no more pending chunks
36 completed_steps[w] += 1 // step is over
37 if completed_steps[w] < n

38 StartRandomStep(S,Q,w)

39 return trace

worker receives a fraction 1/active[r ] of networking resource r ∈

{downlink, uplink} to transmit consecutive chunks of tensors

(in some order defined by the scheduler). In contrast, computa-

tions (forward/backward propagation at the worker and model

update at the server) run on resources (worker CPU/GPU and pa-

rameter server cores) reserved exclusively for each worker (i.e.,

Share(worker,active) = Share(ps,active) = 1). Execution times

of running chunks are extended according to the fraction of re-

source available to the worker (Lines 10 and 13). When no more

chunks are pending for the operations of a step (Line 35), a new

step is sampled and scheduled on the worker (Line 38).

The profiled SGD steps S used by the simulation are pre-processed

to remove overhead from recorded transmission times and adjusted

for the network bandwidth B available in the cluster. In partic-

ular, each communication operation is transformed into a new

communication operation (with initial duration determined by B)
and a computation operation (the overhead, which depends on the

amount of transmitted data). Overlaps between communication

and computation are modeled by the simulation algorithm using

different resources for parameter server uplink/downlink and for

computation on each node. The simulation algorithm can be ex-

tended to M parameter servers by introducing distinct resources

downlinki , uplinki , psi for each parameters server i = 1, . . . ,M
and using the model of Section 5 to share downlinki and uplinki
among the workers of the configuration.

We note that the queue Q is sorted at every iteration only for

ease of presentation at Line 10 of GenerateTrace; our implemen-

tation uses priority queues. Simulation time is proportional to the

number of steps N simulated for each worker; multiple runs can

be performed in parallel on separate cores.

4 RESULTS
4.1 Experimental Setup
All the experiments are performed using TensorFlow 1.13 and the

official TensorFlow benchmarks
1
from the v1.13 branch, with slight

modifications (less than 5 lines of code) to turn on trace recording

(used to acquire profiling information). The prediction algorithm is

validated on the following platforms: (1) private CPU cluster : 8 nodes
equipped with quad-core AMD Opteron Processor 2376 and 16 GB

ofmemory, and connected byGigabit Ethernet; (2) cloud CPU cluster :
AWS c4.8xlarge instances (36 vCPUs, 2.9 GHz, Intel Xeon E5-

2666v3, 60 GBmemory) connected by 10 Gbps networking; (3) cloud
GPU cluster : AWS p3.2xlarge instances (8 vCPUs, 2.7 GHz, Intel
Xeon E5-2686v4, 61 GB memory, 1 NVIDIA Tesla V100 GPU with

32 GB memory), connected by 10 Gbps networking.

To perform throughput prediction, we collect the following in-

formation: (1) For each platform, we use iperf to measure network

bandwidth and estimate the parameters α and β of our commu-

nication overhead model (Section 3.2.1), using the time difference

between TCP packets captured by tcpdump and the end of commu-

nication operations recorded by TensorFlow. (2) We profile each

training job (which specifies a DNN model and hyperparameters

such as the batch size) for 100 steps with one parameter server and
one worker to obtain a trace of operations within an SGD step (and

their dependencies).

1
https://github.com/tensorflow/benchmarks

https://github.com/tensorflow/benchmarks
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(e) AlexNet,
batch size = 32

Figure 13: Results on private CPU cluster, varying batch size

For each target configuration ofW workers, we run our trace

simulation procedure to generate a synthetic trace and use it to

evaluate training throughput (total number of examples/s processed

by the workers). In practice, we find that a trace of 1000 steps is

sufficient to obtain a consistent estimate. Since it requires some

time for asynchronous SGD workers to get out of the initial syn-

chronization (training starts at the same time for all workers) and

generate stable training throughput, we exclude the first 50 simu-

lated steps and compute a time-average over the remaining steps.

The predicted throughput is compared with the throughput mea-

sured in a real cluster withW workers andM parameter servers, as

the time-average over the last 50 SGD steps out of 100 measured.

4.2 Private CPU Cluster
First, to illustrate the ability of our approach to accurately predict

throughput with different batch sizes on our local CPU cluster, we

consider a fixed DNN model (AlexNet [7]) and vary the batch size

(batch sizes are small compared to GPU experiments of Section 4.3

because of the limited processing power of CPUs). Fig. 13 presents

the results, showing that prediction error is within 10% for all batch

sizes (the figure also includes quantitative comparisons to related

work detailed in Section 4.4).

Next, we evaluate the accuracy of our throughput prediction

method across different DNN models, including GoogLeNet [17],

Inception-v3 [18], ResNet-50 [5], VGG-11 [15]. Fig. 14 shows that,

in this case, prediction error is also within 10%.

By inspecting the measured traces, we find that all workers

start the downlink phase of the first SGD step at the same time,

as depicted in Fig. 15(a). As time advances, their training steps

gradually start at different times due to small variations in com-

putation and communication times. Ideally, workers continue to

interleave and eventually stabilize when their downlink and uplink

transmissions completely get out of synchronization, leading to

higher throughput (Fig. 15(b)). Such communication pattern could

be enforced through network traffic control, where the parameter

server exchanges parameters with the workers in a strictly sequen-

tial order [6]. However, in TensorFlow different workers contend
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batch size = 8

Figure 14: Results on private CPU cluster, different models
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(b) Completely interleave

Figure 15: Workers start at the same time and gradually
get out of synchronization; training steps are fastest when
workers alternate using the network.
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Figure 16: Distributed training of AlexNet with batch size
of 8 and 3 workers on private CPU cluster. As down-
links/uplinks start interleaving, throughput increases.

for bandwidth without being regulated, potentially resulting only in

partial interleaving of communication operations (Fig. 16), leading

to a more challenging environment for predicting throughput, as

explored also in Section 4.3.

Next, we explore the effects of HTTP/2 stream multiplexing.

In Section 3.3, we motivated approaches to disable HTTP/2 flow

control and enforce a specific communication ordering. To evaluate

the prediction accuracy of our method in these scenarios, we disable

flow control and repeat the experiments of Figs. 13(a) to 13(c) and

Figs. 14(c) to 14(e); corresponding results, presented in Figs. 17(a)
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(f) VGG-11,
batch size = 4

Figure 17: Prediction of different models on CPU cluster,
with flow control disabled
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(c) Random Order

Figure 18: Prediction of AlexNet, batch size = 4, with flow
control disabled, enforcing different orders on CPU cluster

to 17(c) and Figs. 17(d) to 17(f), highlight good prediction accuracy,

with errors of at most 10% in all cases but Fig. 17(b) forW = 2

workers, where the error is 20%; we observed that this was due to

lower than expected interleaving in the measurements.

We also enforce different stream transmission orderings on the

model in Figs. 13(b) and 17(b): the TIC ordering suggested by Tic-

Tac [4], the reverse of such order, and a random order. Results,

presented in Fig. 18, illustrate predictions within 10% error. Finally,

in Fig. 19 we explore prediction accuracy for the TIC ordering on

the DNN models in Figs. 14(c) to 14(e); prediction error is less than

5% for these experiments.

In conclusion, our approach can accurately predict throughput

for different stream selection orders, batch size, DNN model, and

number of workers. This indicates that the prediction algorithm

can adapt to different communication settings, and it has potential

of accurately predicting further optimizations and modifications of

the current TensorFlow implementation.

4.3 Public Cloud
We evaluate our approach on the Amazon Web Services (AWS)

cloud platform. This environment is less stable than our private CPU

cluster, as networking performance may be affected by background

traffic and by the deployment of virtual machines to racks with

different latency.

In addition, communication overhead due to parsing of received

data (Section 3.2.1) plays a much more important role, since net-

working is 10× faster (10 Gbps). For example, if overhead accounts

1 2 3 4 5 6 7
# workers

0.25

0.50

0.75

1.00

1.25

# 
sa

m
pl

es
 / 

se
c

measured
prediction

(a) Inception-v3,
batch size = 1

1 2 3 4 5 6 7
# workers

0.2
0.4
0.6
0.8
1.0
1.2

# 
sa

m
pl

es
 / 

se
c

measured
prediction

(b) ResNet-50,
batch size = 1

1 2 3 4 5 6 7
# workers

0.2

0.4

0.6

0.8

# 
sa

m
pl

es
 / 

se
c

measured
prediction

(c) VGG-11,
batch size = 4

Figure 19: Prediction of different models with flow control
disabled, enforcing TIC order on CPU cluster
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(f) GoogLeNet,
batch size = 1

Figure 20: Prediction of training onAWS cloud (CPU cluster)

for 10% of the duration of communication operations recorded in

profiling traces on a 1 Gbps network, it will account for 52.6% of

communication operations recorded on a 10 Gbps network.

4.3.1 CPU-Only Instances. As shown in Fig. 20, in most cases the

error in throughput predictions on the AWS CPU cluster is within

20% for various DNN models and batch sizes, except for Fig. 20(f)

withW = 14 workers, where the error is 22.8%. The prediction

error on AWS CPU cluster is larger than that on our private CPU

cluster, mainly because the network on the cloud is less predictable.

In fact, intermittent background traffic can cause the HTTP/2 flow

control window to change over time, leading to prediction errors.

4.3.2 GPU Instances. We also validate our approach on AWS GPU

training. Fig. 21 illustrates that prediction error is within 20% across

most DNNmodels and configurations. Prediction error is within 30%

in Fig. 21(a) forW = 2, 4, Fig. 21(f) forW = 4, and Figs. 21(g), 21(j)

and 21(k) forW = 3; and within 40% in Figs. 21(e), 21(l) and 21(m)

forW = 3. We believe that larger errors occur in scenarios with few

workers and smaller computation times (relative to communication),

where it is more difficult to accurately predict the interleaving

of data transfers between the parameter server and the workers;

critical scenarios have 2 to 4 workers and smaller batch sizes (e.g.,

the error is higher in Fig. 21(a) than Fig. 21(b)).
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batch size = 32
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(c) Inception-v3,
batch size = 64
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(e) Inception-v4,
batch size = 32
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(f) Inception-v4,
batch size = 64
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batch size = 32
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(i) ResNet-50,
batch size = 128
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(j) ResNet-101,
batch size = 32
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(k) ResNet-101,
batch size = 64
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(l) ResNet-152,
batch size = 32
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(m) ResNet-152,
batch size = 64
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(n) VGG-11,
batch size = 128

measured
prediction
Lin et al.
Cynthia

1 2 3 4 5 6 7 8 9 10
# workers

200

400

600

# 
sa

m
pl

es
 / 

se
c

(o) VGG-11,
batch size = 256

Figure 21: Prediction of training onAWS cloud (GPU cluster)

4.4 Prediction Accuracy Comparison
In Figs. 13, 14, 20 and 21, we compared prediction accuracy of

our method with Lin et al. [10] and Cynthia [24]. We observe that

the model of Lin et al. predicts throughput accurately in DNN

models with small batch sizes, while predicted throughput satu-

rates much earlier than real measurements for larger batch sizes,

where the overlap between communication and computation is

large. Throughput predicted by Cynthia is lower than measured.

To investigate whether a simple change could improve predictions,

we modified Cynthia’s model by reducing communication times

TC (which affect utilization U1 and throughput) in half, account-

ing for separate uplink/downlink network resources; in a small

set of test cases, this modification seemed to improve Cynthia’s

prediction, although still with large errors in some scenarios.
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Figure 22: Cost and time comparison between throughput
measurement and profiling/simulation-based prediction

4.5 Runtime Evaluation
Fig. 22 compares the execution time of 100 SGD steps on a cloud

GPU cluster with that of our prediction algorithm. The algorithm

execution time is evaluated using a single CPU core of an AWS

c4.large instance (2 vCPUs, 2.9 GHz, Intel Xeon E5-2666v3, 3.75 GB
memory). For example, directly measuring throughput of Inception-

v3 with batch size 128 using 1 to 10 workers (100 steps for each set-

ting) took 581 seconds. Our prediction method, including through-

put measurement for 100 steps using 1 worker and prediction of

1000 steps for settings with 2 to 10 workers took only 117s. The

prediction algorithm runs faster than actual training, and it could

be further optimized by executing simulation runs in parallel over

multiple cores or CPUs.

While the time required to obtain throughput measurements de-

pends on the batch size and network (training with many workers

can reach network bottlenecks), the execution time of the predic-

tion algorithm depends on the number of operations in an SGD step

and on the number of workers in the cluster. Predicting through-

put (instead of direct measurements) allows not only considerable

savings (each GPU instance is over 35× more expensive than the

only CPU instance used for simulation) but also shorter evaluation

times. Evaluation is particularly fast for DNNs with few operations

(e.g., AlexNet, VGG), when network speed is slow (e.g., private CPU

cluster with 1 Gbps Ethernet), when computation is slow (e.g., slow

CPU or GPU), and when batch size is large.

5 MULTIPLE PARAMETER SERVERS
When a single parameter server becomes a bottleneck, more param-

eter servers can be added to the cluster with TensorFlow. In this

case, model parameters are partitioned among parameter servers:

for each part of the model, workers send updates and receive new

parameters from a specific parameter server. We observe that the

partition of model parameters among parameter servers is often

uneven: since a DNN layer is the minimum unit of model parame-

ters assigned in TensorFlow, parameters of entire DNN layers are

assigned to parameter servers so as to balance the amount of data

and networking load due to all workers. Since the size of different

layers can vary greatly, this split can be uneven, as illustrated in

Fig. 23 for VGG-11 when model parameters are partitioned among

2 parameter servers ps1 and ps2. Each layer is assigned to the pa-

rameter server that is currently holding parameters with smallest

total size (in bytes); therefore, ps1 receives model parameters of a

larger size than ps2 (407 MB instead of 100 MB): as a result, dur-

ing training each worker will exchange more data with ps1 than
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Figure 23: Partition of VGG-11 parameters among 2 PS

with ps2. This asymmetry complicates network communication

patterns in the multiple parameter server scenario. Furthermore,

Fig. 24(b) shows that for 2 parameter servers, there are many more

network states than for a single parameter server: withW workers

andM parameter servers, there areWM distinct links that can be

used to download model parameters; each can be active or inactive

depending on whether the worker is currently downloading pa-

rameters from the specific server, resulting in 2
WM

downlink states

during simulation (and, similarly, 2
WM

uplink states).

Based on our observations from running iperf benchmarks,

we adopt a simple model for the case of 2 parameter servers: all

active connections with the same parameter server equally share

its bandwidth (for each uplink/downlink direction). In addition, we

account for configurations of active links where some worker is the

only worker exchanging data with ps1 but has to contend with n−1

other workers to exchange data with ps2. In this case, we assign

bandwidth
1

n to the connections with ps2 (equal sharing), but only

up to 1 − 1

n to those with ps1 (because the worker is already using

1

n of its transmission bandwidth for ps2).

Using this model of bandwidth sharing, we modify the trace gen-

eration approach presented in Section 3.4: first, we collect profiling

traces with 2 parameter servers and 1 worker using p3.2xlarge
AWS instances (1 × NVIDIA V100 GPU); then, we run the sim-

ulation algorithm (Algorithm 3.1) forW workers and resources

downlinki , uplinki , psi for i = 1, 2. We also run a real cluster

withW workers with GPUs and compare throughput measured

with 2 parameter servers (green curve) with our predictions (blue

curve), and with throughput measured with 1 parameter server

(purple curve). The results, presented in Fig. 25, illustrate that the

error of throughput predictions on AWS with 2 parameter servers

is within 20%, for most DNN models and batch sizes. Prediction

error is within 25% in Fig. 25(d) forW = 7, 9, Fig. 25(f) forW = 6, 8,

and Fig. 25(g) forW = 6, 7, 8. Measurements with 1 and 2 param-

eter servers illustrate that throughput is improved because of the

additional parameter server. Note that, due to the uneven split of

parameters in VGG-11, adding a second parameter server offers
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PS→WORKER2

PS→WORKER3

(a) One parameter server

PS1→WORKER1

PS2→WORKER1

PS1→WORKER2
PS2→WORKER2

PS1→WORKER3
PS2→WORKER3

………

(b) Two parameter servers

Figure 24: Possible states (active/inactive) of download links
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(b) Inception-v3,
batch size = 64
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(c) Inception-v4,
batch size = 64
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batch size = 64
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batch size = 64
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batch size = 64

1 2 3 4 5 6 7 8 9 10
# workers

200

400

600
# 

sa
m

pl
es

 / 
se

c

1ps measured
2ps measured
2ps prediction

(h) VGG-11,
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Figure 25: Prediction with 2 PS on AWS GPU cloud

only a marginal improvement in Fig. 25(h); since our method is

based on real profiling traces collected in a configuration with 2 pa-

rameter servers and 1 worker, we can account for the uneven split

and accurately predict throughput.

6 RELATEDWORK
Performance models of machine learning and data processing jobs

have been proposed in the literature with different levels of granu-

larity for computation and communication operations. Ernest [21]

and Optimus [12] use black-box analytical models of throughput

and perform, for each job, test runs with different numbers of work-

ers to estimate model parameters; in contrast, our work uses only

one profiling run, with a single worker. Jockey [2] predicts per-

formance of data processing jobs based on execution times and

dependencies of each phase, but operations in DNN training jobs

are more fine-grained than in data processing jobs.

At a lower level of granularity, works predating modern ma-

chine learning frameworks [23] estimate speedups of distributed



DNN training jobs through detailed analysis of elementary com-

putations (such as matrix operations) which are profiled through

micro-benchmarks; Paleo [13] models DNN computations layer-

wise, while [14] and [11] analyze individual computations executed

on a GPU. A common characteristic of these works is that through-

put predictions are made as a function of computing speed (mea-

sured in FLOPS) and complexity of each layer (modeled as number

of operations). However, additional factors including optimization

strategies of themachine learning framework, operation scheduling,

transmission overheads, can potentially affect training performance.

Moreover, new optimization strategies are being implemented in

machine learning frameworks; hence, such fine-grained models

need to be adapted over time. In this work, we base our model on

the profiling of individual operations in a computational graph,

which is the intermediate representation in TensorFlow: any op-

timization in the framework is reflected and accounted for in the

profiling information, so that our approach is not limited to specific

hardware platforms or framework implementations.

While the majority of analytical approaches focus on synchro-

nous SGD [20], modeling asynchronous SGD is more difficult be-

cause communication patterns between parameter servers and

workers are more complex and can change over time. Previous

work [10] builds a queueing model to estimate throughput of asyn-

chronous SGD, using this model for scheduling of heterogeneous

training jobs; coarse model parameters (the duration of down-

link/uplink and worker/server computation) are estimated from

single-worker scenario profiling. Cynthia [24] predicts training

time through an analytical model based on network and CPU uti-

lization, in order to provision cloud instances. These models are

also at a high-level of granularity and model communication and

computation as sequential phases, which is contradictory to our

findings: overlaps between communication and computation are sig-

nificant and play an important role in the optimization of training

performance, as illustrated by Fig. 3(a). We compared our prediction

results to those obtained with these methods in Section 4.4 (Figs. 13,

14, 20 and 21), highlighting major accuracy improvements.

7 CONCLUSIONS
We proposed an approach to predicting training throughput of

asynchronous SGD in TensorFlow that extracts operation-level

tracing information from minimal single-worker profiling data and

performs discrete-event simulation to generate synthetic traces.

Experimental results show good prediction accuracy across DNN

models, batch sizes, and platforms as well as variants of TensorFlow,

including optimizations of the training process. Our experiments

also indicate that the more challenging cases are those with small

number of workers and smaller computation (relative to commu-

nication) times. Although our simulation-based approach outper-

forms existing analytical modeling approaches, it is still of interest

to develop fine-grained analytical models that address the short-

comings of previous work.

Future directions include heterogeneous hardware settings, mul-

tiple (> 2) parameter servers (with more complex bandwidth shar-

ing models), and other (than gRPC) communication mechanisms,

including TensorFlow with MPI and RDMA support.
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