
EMULATING AND VERIFYING SENSING, COMPUTATION, AND COMMUNICATION IN
DISTRIBUTED REMOTE SENSING SYSTEMS

Matthew French,1 Marco Paolieri,2 Vivek V. Menon,1 and Andrew G. Schmidt1

1Information Sciences Institute, University of Southern California
2Department of Computer Science, University of Southern California

mfrench@isi.edu, paolieri@usc.edu, vivekv@isi.edu, aschmidt@isi.edu

ABSTRACT

This paper presents updates to the Virtual Constellation En-
gine (VCE), a simulator and emulator which enables mod-
eling of sensing, computation, and communication of multi-
platform remote sensing systems. Users can launch heteroge-
neous constellations, describe different on-board processing
configurations, and simulate and verify autonomous opera-
tions. Updates in the past year include emulation of on-board
computing utilizing cloud based processors, inclusion of the
Delay Tolerant Networking (DTN) protocol in the communi-
cation modeling, and visualization and diagnostic tools which
facilitate analysis of the distributed system. To illustrate the
benefits, VCE was utilized in the development of on-board
processing implementation of a new, high data rate sensor,
Multispectral, Imaging, Detection, and Active Reflectance
(MiDAR), for both an embedded Nvidia Tegra GPU and a
Xilinx MPSoC FPGA achieving a 7.6x speedup over a desk-
top workstation and enabling this application for integration
into a distributed sensing system.

Index Terms— Remote sensing, distributed systems,
constellation, sensor web, on-board processing, MIDAR,
DTN.

1. INTRODUCTION

Remote sensing systems are experiencing a bredth of technol-
ogy advances, leading to a renaissance in how these missions
can be conceived, realized, and deployed. UAVs, CubeSats
and SmallSats equipped with science-quality instruments,
increased on-board processing capabilities, and machine
learning techniques now permit handling large volumes of
data. These increased capabilities and reduced costs have
led to concepts such as massively scaled constellations of
satellites and distributed measurement systems involving a
mixture of heterogeneous ground, UAVs, airborne, and satel-
lite based sensors. Several organizations are now planning or
implementing satellite constellations with over 1,000 nodes

This work was supported by the National Aeronautics and Space Admin-
istration (NASA) under grant 80NSSC17K0286. The views, opinions, and/or
findings expressed are those of the author(s) and should not be interpreted as
representing the official views or policies of NASA or the U.S. Government.

targeting global continuous missions for internet provision,
weather sensing, broadband communications, and other ap-
plications. Distributed measurement missions are receiving
increased attention due to the realization that the ability to
capture dynamic observations of transient events has a drastic
impact in creation of low latency data products for emergency
events such as floods, fires, or volcanic eruptions and the abil-
ity to capture higher quality science products for hydrology,
cryosphere, biodiversity, weather and more [1, 2].

These capabilities require fundamentally new approaches
to plan, develop, and test what is now a Systems-of-Systems
approach to remote sensing. High performance on-board
computing is a critical requirement in distributed measure-
ment systems. Traditional transmission of all raw data to the
ground and the delays with postprocessing and redistributing
it, are no longer viable. Emerging high fidelity sensors, such
as Multispectral Imaging, Detection, and Active Reflectance
(MiDAR) [3, 4], are producing volumes of data that exceed
the communication link capacity, even when compressed.

Additionally, to support emergencies or capture of dy-
namic science events, on-board processing is needed to more
rapidly detect the event and task other sensing platforms to re-
spond. Typically, lossless data compression achieves about 3x
data reduction, whereas calculation of Level 1 science prod-
ucts achieves 10 to 10,000x data reduction. On-board pro-
cessing enables higher level data representing the event of in-
terest to move rapidly through a distributed system, enabling
coordination with other sensing instruments in time scales
needed for mission success.

Accurately simulating and modeling the sensing, on-
board science computation, and communication of every
node in a constellation or distributed measurement system,
along with its position and trajectory, are needed to ensure
a distributed system will operate as expected. The Virtual
Constellation Engine (VCE) presented here allows mission
planners and systems engineers to perform evaluations of
different constellations and sensor web implementations.

2. VIRTUAL CONSTELLATION OVERVIEW

The Virtual Constellation Engine (VCE), depicted in Figure 1,
allows mission designers to perform evaluations of different



Fig. 1. Virtual Constellation Engine (VCE) flow to generate and evaluate constellations in a cloud environment

constellations and sensor web implementations. VCE enables
constellations of different formations to be emulated within a
scalable cloud environment, where each platform can emulate
a different on-board processing configuration. A wide variety
of processors is supported and a novel Python based source to
source code translator is provided to support rapid application
porting between processor types. The resulting system can
emulate missions at the processor level and report to end users
the overall processing throughput and power achieved on the
emulated application.

To use VCE, an end user defines the orbital elements (as
two-line element sets) of the satellites of the constellation, the
coordinates (latitude/longitude) of each base station, and the
AWS virtual machine type of each node (e.g., p3.2xlarge
for nodes equipped with a GPU or f1.2xlarge for nodes
equiped with an FPGA).

Each platform is defined as an instrument, which pro-
vides input data, an onboard processor which executes the
science application, and the communications transceiver,
which provides the output. The platforms are provided as
virtual machine images (using Amazon Machine Images),
together with a script of commands that VCE runs at startup.
From the configuration of the constellation (provided as an
input YAML file), the command-line tool of VCE generates
an AWS CloudFormation template (also in YAML format)
with a complete and reproducible setup of the cloud stack;
this includes the provisioning and configuration of VM nodes,
routers, network interfaces, and firewalls. The user can then
start and manage the cloud stack of the constellation with the
standard AWS tools.

When the cloud stack is started, VCE agents running on
each node periodically update networking parameters (based
on satellite orbits) and collect time series of measurements
(using collectd [5]) including CPU, memory, disk, and
network usage; these metrics allow the user to quantify the
processing throughput of the constellation and of each node,
highlighting stalls that can translate into missed opportunities
to capture dynamic science events.

Fig. 2. VCE AWS Architecture

2.1. Virtual Constellation Generator

In order to run a virtual constellation, end users leverage
VCE’s virtual constellation generation framework. Resources
are provisioned on Amazon’s Web Services (AWS) through
AWS CloudFormation, to obtain a fully-defined and repro-
ducible cloud stack. AWS provides a flexible framework that
allows the constellations to scale to hundreds or thousands of
nodes, representing future large-scale systems. Furthermore,
any developer can simply instantiate one or more of the nodes
of the constellation and immediately connect over SSH and
begin developing or testing payload applications, as shown in
Figure 2. These virtual platforms dramatically increase the
development capabilities by removing the hurdle of physical
access or manual maintenance of the system.

2.2. Distributed Communications and Control

Constellations require the intertwined deployment of compu-
tation, communication, and control strategies. The end user
needs to be able to specify not only the computational capac-
ity of a system, but also its communication parameters and
controlled inputs based on environmental or flight mission
scenarios. To support the accurate emulation of the opera-
tion of a constellation, VCE emulates not only the heteroge-
neous computing devices, but also the networking environ-
ment experienced by each node. To achieve this goal, VCE
leverages the NetEm component [6] of the Linux kernel to
control delay, bandwidth, and packet loss probability between
each pair of nodes in the AWS EC2 cluster of the constella-



Fig. 3. Orbits computed by VCE for bandwidth/latency em-
ulation. Nodes with line of sight are connected by a red line
annotated with the corresponding communication latency.

tion. To orchestrate changes of these networking parameters,
each node runs a client program (tcnet) which periodically
polls a control server, receives current parameters, and issues
commands necessary to produce changes in the Linux kernel
configuration of NetEm.

As illustrated in Figure 2, the nodes of the emulated satel-
lite application (App) communicate with each other through
the standard TCP/IP stack of Linux, where networking pa-
rameters are managed by tcnet and enforced by NetEm. By
controlling network parameters at the IP level, we can accu-
rately reproduce the effects of satellite latency and bandwidth
limitations on applications and higher-layer network proto-
cols such as TCP [7] with minimal overhead.

A new higher-layer network protocol supported is De-
lay/Disruption Tolerant Networking (DTN). VCE provides
support for the configuration, deployment and testing of
(DTN) protocols [8]. On startup, VCE installs the ION-
DTN protocol implementations [9] (including the DTN Bun-
dle Protocol, the Licklider Transmission Protocol, and two
CCSDS File Delivery Protocols) on each cloud node; their
configurations can be defined by the user in VCE using pro-
gramming constructs such as for loops over the nodes, their
names, and assigned IP addresses on AWS. Programmable
configuration tools are especially important to run cloud ex-
periments to constellations with a very large (or variable)
number of nodes.

Satellite orbitology used within the constellation simula-
tion can be defined using different methods. For fast, coarse
simulation, VCE computes orbits from two-line element sets
specified by the user in the configuration. For more accu-
rate orbits, VCE can import orbitology from 3rd party orbital
dynamics simulators such as 42 [10] or the Systems Tool Kit
[11]. Before starting the cloud emulation, the user can review
the 3D animated satellite orbits to validate the testing sce-
nario of the mission, Figure 3; during the animation, nodes

(satellites or base stations) are connected when line-of-sight
communication is available between them.

Finally, additional control signals and instrument param-
eters varying over time can be imported into VCE as time
series; when cloud execution is started by the user, applica-
tions running on each node are able to read the current value
of these parameters from YAML files updated by the VCE
framework.

2.3. On-board Computing Emulation

At the core of VCE is the onboard computing emulator, which
generates compute platforms based on user input parameters
to select processor type, accelerator type, memory, interfaces,
and sensor parameters. A board model is generated from the
user inputs, which is then used to generate the appropriate
board level simulation from processor simulators and emula-
tors. Simulation is provided through either QEMU for pro-
cessors or hardware simulators such as VSIM for FPGAs.
Emulation is performed by operating on processors resident
within the cloud environment. Specialized governors are used
to throttle back the clock speed, bus width, number or cores,
or other features of the state of the art processors in the cloud
to more accurately reflect the capabilities of embedded pro-
cessors utilized in remote sensing systems. [12] describes the
hardware emulation in more detail. Table 1 details all of the
processors currently supported by VCE.

Table 1. VCE Supported Processors

Processor Type Processors Devices or Platform
CPU ARM A9, A53 HPSC, FPGA SoCs
CPU PowerPC440 RAD750, NXP

FPGA Xilinx Virtex series, Ultrascale, MPSOC SpaceCube and others
FPGA Microsemi RTG4 Several
GPU Nvidia Volta, Tegra Server and mobile

VCE distributes the application developed by end users
across one or more GPU platforms in an AWS cloud envi-
ronment. This is accomplished through a socket-based API
to distribute data to either a GPU or FPGA, task these com-
pute resources to perform the computation, and collect the
results. The framework is abstracted from the developer such
that data sent to the platform emulates an instrument running
in the system.

While targeting customized accelerators yields high real
time performance, programming and optimizing heteroge-
neous resources such as FPGAs and GPUs can add several
months to the software development flow. In order to cur-
tail these long development tails we developed Hot & sPyC
[13, 14], an open-source infrastructure and tool suite for inte-
grating FPGA accelerators in Python applications. This flow
allows a developer to take existing Python code and quickly
compile computationally complex functions into efficient



Table 1

Midar 1 (ms) Midar 2 (ms) Midar 3 (ms) Total (ms)

Intel Xeon CPU 0.032 0.011 100.515 100.56 1790.03

Tegra ARM CPU 0.002 0.027 344.269 344.30 522.80

Xilinx MPSoC CPU 0.06 0.15 268.36 268.57 670.22

Volta GPU 0.06451 0.34617 37.02306 44.89 7.46 4009.47

Tegra GPU 2.13869 41.99296 141.9115 195.34 9.3 921.46

Xilinx MPSoC 
FPGA

0.065 0.080 13.137 13.282 13552.18

M
iD

AR
 a

lg
or

ith
m

 m
ap

pe
d 

to
 d

iff
er

en
t a

rc
hi

te
ct

ur
es

Time in ms for 180 MiDAR frames
0 50 100 150 200 250

13.28

195.34

100.56

Intel Xeon CPU Tegra GPU Xilinx MPSoC FPGA

(1,790 fps)

(921.46 fps)

(13,552.18 fps)

1

Fig. 4. MiDAR results for all the architectures

FPGA designs, reducing the development time down to hours
or days rather than months or years. The platform has been
demonstrated on image processing applications and shown
to achieve significant performance gains of up to 39,137x in
hardware compared to standard software running on an ARM
A9 processor [14].

2.4. Application Mapping

To demonstrate the capabilities and value of VCE, an ad-
vanced instrument and application, Multispectral, Imaging,
Detection, and Active Reflectance (MiDAR), was evaluated
for suitability in a distributed measurement mission. MiDAR
is currently used in coral reef erosion studies, and has broader
applicability to atmospheric correction, multispectral map-
ping, mineral detection, and optical communication [4]. The
original MiDAR prototype is UAV based. The platform col-
lects raw data until the hard drives are full and data is post pro-
cessed on the ground. VCE was used to evaluate the viability
of processing the MiDAR receiver algorithm both on-board
the UAV on its resident Nvidia Tegra GPU and on a satellite
on a SpaceCube3 board with Xilinx MPSoC FPGAs [15].

The summarized results for the platforms are shown in
Figure 4 for 180 MiDAR frames. The MiDAR instrument cur-
rently has a sampling rate of 140fps, but has increased SNR
with higher frame rates and has a goal of acheiving 2,500fps.
The Intel Xeon CPU, the base AWS processor, achieves a
throughput of 1,790 fps. The Tegra GPU emulation for UAV
is slower due to memory transfers and being an embedded
processor. The FPGA fabric implementation is the fastest and
has highest throughput as it can have multiple MiDAR dat-
apaths to compute frames in parallel. The Tegra GPU can
support up to 921 fps whereas the FPGA can support up to
13,552 fps, both of which are sufficient for supporting Mi-
DAR in distributed measurement missions.

3. CONCLUSION AND FUTURE WORK

The Virtual Constellation Engine (VCE) represents a frame-
work prototype which enables remote sensing architects to
rapidly posit and experiment with different satellite constel-
lation or sensor web configurations. Ongoing work is in-
vestigating different methodologies by which designers can
frame constellation level experiments and define which met-
rics they wish to observe. VCE has been open-sourced and
can be found at: https://isi-rcg.github.io/vce.

4. REFERENCES

[1] National Academies of Sciences, Engineering, and Medicine, “Thriv-
ing on our changing planet: A decadal strategy for earth observa-
tion from space,” http://sites.nationalacademies.org/
DEPS/esas2017/DEPS 169443.

[2] M. Little, “Distributed measurements and spacecraft mis-
sions,” in Earth Science Technology Forum, 2018, https://
esto.nasa.gov/files/AIST/M03.R8.01 Little v0.pdf.

[3] Ved Chirayath and Sylvia A. Earle, “Drones that see through waves
– preliminary results from airborne fluid lensing for centimetre-scale
aquatic conservation,” Aquatic Conservation: Marine and Freshwater
Ecosystems, vol. 26, no. S2, pp. 237–250, 2016.

[4] Ved Chirayath and Alan Li, “Next-Generation Optical Sensing Tech-
nologies for Exploring Ocean Worlds—NASA FluidCam, MiDAR, and
NeMO-Net,” Frontiers in Marine Science, vol. 6, Sep 2019.

[5] “Collectd homepage,” https://collectd.org/.
[6] “NetEm Homepage,” wiki.linuxfoundation.org/

networking/netem.
[7] Stephen Hemminger, “Network emulation with NetEm,” in Linux Con-

ference Australia, 2005.
[8] “Ietf drafts of delay/disruption tolerant networking protocols,”

https://datatracker.ietf.org/wg/dtn/documents/.
[9] “Ion-dtn homepage,” https://sourceforge.net/projects/

ion-dtn/.
[10] “42: A Comprehensive General-Purpose Simulation of Attitude and

Trajectory Dynamics and Control of Multiple Spacecraft Composed of
Multiple Rigid or Flexible Bodies,” .

[11] “Systems Tool Kit Website,” https://agi.com/
products/satellite-design-and-operations.

[12] A. G. Schmidt, G. Weisz, M. French, T. Flatley, and C. Y. Villal-
pando, “Spacecubex: A framework for evaluating hybrid multi-core
cpu/fpga/dsp architectures,” in 2017 IEEE Aerospace Conference,
March 2017, pp. 1–10.

[13] A. G. Schmidt, G. Weisz, and M. French, “Evaluating Rapid Appli-
cation Development with Python for Heterogeneous Processor-based
FPGAs,” in IEEE International Symposium on Field Programmable
Custom Computing Machines (FCCM), 2017.

[14] S. Skalicky, J. Monson, A. G. Schmidt, and M. French, “Hot & Spicy:
Improving Productivity with Python and HLS for FPGAs,” in IEEE
International Symposium on Field Programmable Custom Computing
Machines (FCCM), 2018.

[15] Alessandro Geist, Cody Brewer, Milton Davis, Nicholas Franconi,
Sabrena Heyward, Travis Wise, Gary Crum, David Petrick, Robin
Ripley, Christopher Wilson, et al., “SpaceCube v3.0 NASA Next-
Generation High-Performance Processor for Science Applications,” in
33rd Annual AIAA/USU Conference on Small Satellites, August 2019.

https://isi-rcg.github.io/vce
http://sites.nationalacademies.org/DEPS/esas2017/DEPS_169443
http://sites.nationalacademies.org/DEPS/esas2017/DEPS_169443
https://esto.nasa.gov/files/AIST/M03.R8.01_Little_v0.pdf
https://esto.nasa.gov/files/AIST/M03.R8.01_Little_v0.pdf
https://collectd.org/
wiki.linuxfoundation.org/networking/netem
wiki.linuxfoundation.org/networking/netem
https://datatracker.ietf.org/wg/dtn/documents/
https://sourceforge.net/projects/ion-dtn/
https://sourceforge.net/projects/ion-dtn/
https://agi.com/products/satellite-design-and-operations
https://agi.com/products/satellite-design-and-operations

	 Introduction
	 Virtual Constellation Overview
	 Virtual Constellation Generator
	 Distributed Communications and Control
	 On-board Computing Emulation
	 Application Mapping

	 Conclusion and Future Work
	 References

