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Abstract. We propose a compositional technique for efficient evaluation
of the cumulative distribution function of the response time of complex
workflows, consisting of activities with generally distributed stochastic
durations composed through sequence, choice/merge, split/join, and rep-
etition blocks, with unbalanced split and join constructs that break the
structure of well-formed nesting. Workflows are specified using a formal-
ism defined in terms of stochastic Petri nets, that permits decomposition
of the model into a hierarchy of sub-workflows with positively correlated
response times, which guarantees a stochastically ordered approximation
of the end-to-end response time when intermediate results are approxi-
mated by stochastically ordered distributions and when dependencies are
simplified by replicating activities appearing in multiple sub-workflows.
This opens the way to an efficient hierarchical solution that manages
complex models by recursive application of Markov regenerative analy-
sis and numerical composition of monovariate distributions.

Keywords: stochastic workflow · response time distribution · structured
model · compositional evaluation · stochastic ordering.

1 Introduction

A workflow is an orchestration of concurrent and sequential activities, mainly
shaped by constructs of split/join, choice/merge, and sequence, occasionally in-
cluding dependencies that break well-formed nesting and repetitions that pro-
duce transient cycles [29]. This abstraction fits a large variety of material and
digital processes, in multiple contexts such as supply chain management [18], ad-
ministration [1], composite web services [12], cloud “functions as a service” [33].

When the model is associated with a measure of probability, quantitative
evaluation may provide measures of interest for different stages of development
and operation [28, 8, 14, 7], supporting the achievement of a tradeoff between
some of them, such as the average response time, the subtask dispersion, and
the energy consumption [26]. In particular, the Cumulative Distribution Func-
tion (CDF) of the end-to-end response time is relevant for the evaluation of the
expected reward under a Service Level Agreement (SLA) with soft deadlines and
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penalty functions [16, 27]. In this case, a stochastically ordered approximation
of the CDF produces a safe approximation of the expected reward.

However, practical feasibility faces a difficult combination of recurring com-
plexities: activity durations follow general (i.e., non-Exponential) probability
distributions (GEN), often supported within firm bounds enforced by design or
by contract, which cast the problem in the class of non-Markovian processes [11];
the interleaving of actions in concurrent sub-workflows leads to explosion of the
state space and complex dependencies due to the overlap among concurrent
activities with GEN duration [6].

Compositional solution can address both complexities by avoiding explicit
representation of interleavings, limiting state space explosion and simplifying the
structure of underlying stochastic processes of individual components [6]. In [36],
mean time and standard deviation of the completion time of a workflow of ac-
tivities with GEN duration composed by fork/join, sequence, and repetition are
derived through an efficient bottom-up calculus, which is extended in [22] for the
special case of Continuous Phase (CPH) durations. In [2], the completion time
of an acyclic attack tree with CPH delays is evaluated by repeatedly compos-
ing CPH distributions in a bottom-up approach, with possible approximation to
compress their representation to maintain a bounded number of phases. In [10],
the response time of an acyclic workflow obtained by well-formed nesting of ac-
tivities with GEN durations is evaluated in a two-step approach, first applying
Markov regenerative analysis to nested sub-workflows identified so as to have
a limited degree of concurrency, and then repeatedly composing the resulting
monovariate distributions bottom-up to obtain the workflow response time.

In this paper, we propose a compositional technique for efficient evaluation of
the response time CDF of complex workflows consisting of activities with GEN
durations composed through sequence, choice/merge, split/join, and repetition
blocks, with unbalanced split and join constructs that may break the structure of
well-formed nesting. Workflows are specified using a higher level formalism de-
fined in terms of stochastic Petri nets, that permits decomposition of the model
into a hierarchy of sub-workflows with positively correlated response times. This
guarantees a stochastically ordered approximation of the end-to-end response
time when completion times of intermediate sub-workflows are approximated by
a stochastically ordered fitting distribution and when activities shared among
multiple sub-workflows are replicated as independent random variables so as to
reduce dependencies. These approximations allow an efficient hierarchical solu-
tion approach that manages complex models by recursive application of Markov
regenerative analysis and numerical composition of monovariate distributions.

The rest of the paper is organized in four sections, addressing: specification
of models and their representation as a structure tree (Section 2); decomposi-
tion of models into a hierarchy of sub-workflows identified in the structure tree
by heuristics trading approximation for complexity, and re-composition of the
end-to-end response time distribution (Section 3); results of numerical experi-
mentation (Section 4); and conclusions (Section 5). Theorem proofs and other
details are deferred to the Appendix (Section 6).
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2 Modeling workflows with structured STPNs

We specify workflows with stochastic activity durations using a formalism that
constrains expressivity of a class of stochastic Petri nets (Sections 2.1 and 2.2)
so as to ensure positive correlation among their response times and to enable
derivation of a structured representation of the model (Section 2.3).

2.1 Stochastic Time Petri Nets (STPNs)

Stochastic Time Petri Nets (STPNs) model concurrent timed systems: transi-
tions represent the execution of activities, tokens within places account for the
system logical state, and directed arcs from input places to transitions, and from
transitions to output places, define precedence relations among activities [15].
A transition is enabled if each of its input places contains at least one token;
at newly enabling, a transition samples a time-to-fire from a CDF with support
between an Earliest Firing Time (EFT) and a Latest Firing Time (LFT); upon
firing, it removes a token from each input place and adds one token to each
output place. The choice among transitions with equal time-to-fire is solved by
a random switch determined by probabilistic weights.

As shown in Fig. 1a, places are represented as circles, tokens as dots in-
side places, immediate (IMM) transitions (i.e., with zero time-to-fire) as thin
bars (e.g., as1), deterministic (DET) transitions (i.e., with nonzero determinis-
tic time-to-fire) as gray bars (e.g., z1), EXP transitions as white bars (e.g., v1),
and other GEN transition as black bars (e.g, q). Where necessary, labels indicate
rates, firing intervals [EFT,LFT ], CDF types (e.g., uniform or expolynomial).

2.2 STPN blocks

Workflows with stochastic durations can be specified using a fragment of the ex-
pressivity of STPNs, which is sufficient to represent a variety of workflow control
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Fig. 1: (a) Workflow STPN and (b) its structure tree (composite blocks in blue).
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patterns [29, 37] while making explicit a structure of composition enabling effi-
cient timed analysis. To this end, we specify workflows by recursive composition
of blocks, each defined as an STPN with a single initial place and a single final
place. The execution of a block starts when a token is added to the initial place,
and it eventually terminates, with probability 1 (w.p.1), when a token reaches the
final place. Blocks compose elementary STPN transitions through nested con-
structs of concurrent (split/join) and sequential (sequence, choice/merge, repeat)
behavior, or by acyclic compositions that break well-formed nesting through un-
balanced fork and join operations (simple split, simple join):

Block := Act | Seq{Block1, . . . ,Blockn} | AND{Block1, . . . ,Blockn}
| XOR{Block1, . . . ,Blockn, p1, . . . , pn} | Repeat{Block, p}
| DAG{Block1, . . . ,Blockn} (1)

Act is an elementary activity represented by an STPN with a single transition
with GEN duration connecting the initial and final places (e.g., Q in Fig. 1a).
Seq{Block1, . . . ,Blockn} is the sequence of n blocks Block1, . . ., Blockn
(e.g., Z in Fig. 1a).
XOR{Block1, . . . ,Blockn, p1, . . . , pn} is made of an initial immediate ran-
dom exclusive choice, with probabilities p1, . . . , pn, among n alternative blocks
Block1, . . ., Blockn, each connected to a final IMM simple merge transition
(e.g., V in Fig. 1a). XOR is said to be balanced, meaning that all the concurrent
paths started at the initial split are terminated at the final join.
AND{Block1, . . . ,Blockn} is a balanced split-join made of an initial IMM
parallel split transition that forks execution along n concurrent blocks Block1,
. . ., Blockn and a final IMM synchronization transition that terminates the
block (e.g., U in Fig. 1a).
Repeat{Block, p} is a structured cycle that executes a body Block and then
repeats with constant probability p > 0 or terminates with probability 1 − p
(e.g., {T} in Fig. 1a).
DAG{Block1, . . . ,Blockn} is the composition of blocks Block1, . . ., Blockn
in a Directed Acyclic Graph (DAG) with single initial and final places, with
blocks of simple split [29], made of an IMM transition with a single input place
and multiple output places, and simple join, made of an IMM transition with
multiple input places and a single output place. Note that, since simple split and
simple join are not necessarily balanced, a DAG can break well-formed nesting
of concurrent blocks. A DAG is termed minimal if it cannot be reduced by com-
position operators Seq, XOR or AND (e.g., in Fig. 1a, Q, R, S, T , U , and V
are composed in a minimal DAG with initial and final places Start, End, by
means of simple splits as1, as2, and simple joins aj1, aj2, aj3).

By definition, each model specified as a composition of blocks can be trans-
lated into a unique STPN. Conversely, blocks do not cover all the expressivity
of STPNs. In particular, since choices are expressed only by IMM transitions
within balanced XOR or Repeat blocks, a model cannot represent a race se-
lection where a choice is determined by values sampled by concurrent activities,
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e.g., early preemption of a timed activity that may occur in a timeout mecha-
nism. As a positive consequence, this restriction also rules out anomalies where
the early completion of some intermediate step can result in a longer workflow
duration, providing the basis to prove positive correlation among completion
times of different intermediate points in the workflow.

2.3 Structure tree

Based on the grammar of Eq. (1), a workflow can be decomposed as a structure
tree S = 〈N,E, n0〉: N is the set of nodes (blocks); E is the set of directed
edges (connecting each block with its component blocks); n0 is the root node.
In Fig. 1b, a block is represented as a box labeled with the block name; the box
is labeled also with the activity name (for Act blocks) or block type (for Seq,
AND, XOR, Repeat blocks), or contains places and transitions connecting
the component blocks (for DAG blocks). Hierarchical graphs with single-entry
single-exit blocks are inspired by program structure trees [17] and process struc-
ture trees [34]: similarly, we ensure that the structure tree is unique and robust
with respect to local changes (i.e., modifying a sub-workflow in the STPN affects
only its subtree in the structure tree) by using maximal blocks (e.g., SEQ blocks
with as many components as possible) and by matching DAG blocks with lowest
priority (i.e., Seq or AND are used instead of DAG nodes, if possible).

3 Compositional evaluation of workflows response time

We evaluate the end-to-end response time CDF of a workflow by composition
of the results of separate analyses of a hierarchy of sub-workflows. In so doing,
we repeatedly apply both straight numerical combination of monovariate CDFs
(Section 6.2 in the Appendix) and Markov regenerative transient analysis (Sec-
tion 3.1) so as to leverage their different strengths. Numerical combination turns
out to be efficient in the composition of independent sub-workflows through
well-nested operators (AND, XOR, Seq, Repeat), but it is not feasible for sub-
workflows with common dependencies (DAG). Markov regenerative analysis suf-
fers from the degree of concurrency among activities with GEN durations, and
its efficient implementation requires that sub-workflow durations be represented
in analytic form, which may require approximated fitting of numerical results.

The structure tree is used to aggregate model components and to select so-
lution techniques according to heuristics that trade approximation for complex-
ity (Sections 3.2 and 3.3) while ensuring that the final result is a stochastic upper
bound of the exact CDF of the end-to-end workflow response time (Section 3.4).

3.1 Regenerative transient analysis

The structure of a workflow naturally leads to concurrent execution of multiple
activities, which in most practical cases are generally distributed (GEN), often
within a bounded support. In this setting, the marking process {M(t), t > 0 } of
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the STPN representing a sub-workflow is a Markov Regenerative Process (MRP)
if a new regeneration point (i.e., a time instant where the Markov property is
satisfied) is eventually reached w.p.1 from any state [20]. In this case, tran-
sient probabilities Pij(t) of each marking j and initial regeneration i (including
the enabling time of each GEN transition [25]) can be evaluated by numer-
ical integration of Generalized Markov Renewal equations Pij(t) = Lij(t) +∑
k∈R

∫ t
0
dGik(u)Pkj(t− u) for all i in the set of reachable regenerations R and

for all j in the set of markings M, where the global kernel Gik(t) := P{X1 =
k, T1 6 t | X0 = i} characterizes the next regeneration point T1 > 0 and regen-
eration X1 ∈ R, while the local kernel Lij(t) := P{M(t) = j, T1 > t | X0 = i}
defines transient probabilities of the process until the next regeneration point.

In turn, kernels can be evaluated numerically if at most one GEN transition is
enabled in each state [6], or if multiple GEN transitions are enabled concurrently
but the number of firings between regeneration points is bounded [5]. For this
larger class of MRPs, kernels can be evaluated using stochastic state classes [15],
which encode the marking, joint Probability Density Function (PDF), and sup-
port of the times-to-fire of enabled transitions after each sequence of firings
between any two regeneration points. This joint PDF is continuous, with piece-
wise representation over Difference Bounds Matrix (DBM) zones [9], and can
be evaluated in closed-form by the ORIS tool (or the Sirio Java library) [24]
provided that each transition has expolynomial PDF [32].

The complexity of regenerative transient analysis of an STPN can be effi-
ciently estimated by nondeterministic analysis of the underlying TPN, which is
sufficient to identify the set of feasible behaviors of the model while avoiding
the complexity of evaluation of their measure of probability. This is obtained
by enumeration of a state class graph, encoding the continuous set of executions
of the STPN into a discrete representation [4, 35]: each vertex is a state class
S = 〈m,D〉 including a markingm and a DBM zone D [13], i.e., a continuous set
of values for the times-to-fire of enabled transitions. For each transition t that
can fire first, the graph includes a directed edge (S, t, S′) from S to the state
class S′ = 〈m′, D′〉 with marking m′ after the firing and the zone D′ of reach-
able times-to-fire. The graph is finite under fairly general conditions (requiring
that the number of reachable markings be finite and the earliest and latest firing
times of transitions be rational values [35]), it permits detection of regeneration
points (as classes where each GEN transition is newly enabled, disabled, or en-
abled since a deterministic time), and it makes explicit the number of transitions
between regeneration points and the degree of concurrency among GEN timers.

3.2 Complexity heuristics

Complexity factors. Regenerative transient analysis incurs different factors
of complexity in the enumeration of stochastic state classes, derivation of the
local and global kernels, and solution of the Markov renewal equations:

– The results of [30] show that the number of stochastic state classes depends
on the number of concurrently enabled GEN transitions, the number of fir-
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ings after which a GEN transition is persistent (i.e., continuously enabled),
and the number of expmonomial terms of the PDFs of the GEN transitions.
In our approach, the number of stochastic state classes is kept limited by
decomposing a workflow into sub-workflows that are separately analyzed.

– The results of [30] also show that the number of DBM zones and the number
of expmonomial terms of the joint PDF of each stochastic state class depend
on the same factors as the number of stochastic state classes. In particular,
at each firing, the number of DBM zones increases polynomially with the
number of persistent transitions, the number of expmonomial terms increases
linearly with the polynomial degree of the joint PDF, and, in turn, if the
analytical form of the joint PDF contains no EXP factor, the polynomial
degree increases linearly with number of fired/disabled transitions.
In our approach, the factors of complexity of stochastic state classes are kept
limited not only by decomposing a workflow into sub-workflows, but also by
approximating the numerical form of the response time distribution of a sub-
workflow with a piecewise PDF made of EXP terms (the approximation is
needed when a sub-workflow is analyzed in isolation, either through regener-
ative transient analysis or through numerical analysis, and then regenerative
transient analysis of a higher-level sub-workflow has to be performed).

– According to [15], the derivation of the kernels and the solution of the Markov
renewal equations have linear complexity in the number of stochastic state
classes and in the number of DBM zones and expmonomial terms of the
joint PDF of each stochastic state class. Moreover, the derivation of the
kernels and the solution of the Markov renewal equations also have linear
and quadratic complexity, respectively, in the number of time points, i.e., the
number of times the time step is contained in the analysis time limit. In our
approach, the derivation of the local kernel is limited to the evaluation of
Lif (t), where i is the initial regeneration and f is the final absorbing marking.

Complexity measures. To estimate the complexity of regenerative transient
analysis of an STPN, we use the state class graph of the underlying TPN to
compute the maximum number c of GEN transitions concurrently enabled in
a state class (concurrency degree) and the maximum length r of paths of a
regeneration epoch (epoch length), i.e., paths between regenerative state classes.
However, the state class graph may be huge for complex blocks with high values
of c and r, and would not tell how much of the complexity depends on the
structure of the block itself and how much on the blocks it contains, which instead
is relevant to decide how to decompose the block. To cope with both aspects, for
each block b, we compute upper bounds C and R on c and r, respectively, and
we also compute the concurrency degree c̄ and the epoch length r̄ of a simplified
block b̄, obtained by replacing each composite block of b with an (elementary)
activity block. To this end, we perform a bottom-up visit of the structure tree:

– At the bottom level, we perform nondeterministic analysis of the TPN of each
composite block, computing the tuple 〈c, r, tmin, tmax〉, where tmin and tmax
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are the minimum and the maximum execution time of the block, respectively,
and can be derived as the minimum and the maximum duration, respectively,
of paths between the initial and the final state class [35].

– At the next higher level, we perform nondeterministic analysis of the TPN
of the simplified block b̄, obtained by replacing each composite block b′ of b
with an activity block with duration interval equal to the min-max exe-
cution interval of b′ (computed at the previous step). Evaluation of the
complexity measures on the resulting state class graph Γ̄ yields the tuple
〈c̄, r̄, tmin, tmax〉. Upper bounds on c and r are C = maxS∈Ω{

∑
t∈ES Ct} and

R = maxρ∈Ψr{
∑
e∈Gρ Re}, respectively, where Ω is the set of state classes

of Γ̄ , ES is the set of transitions enabled in state class S, Ct is the concur-
rency degree upper bound of the block corresponding to transition t (1 for
activity blocks), Ψr is the set of paths of Γ̄ between regenerative state classes,
Gρ is the set of edges of path ρ, and Re is the epoch length upper bound of
the block corresponding to the transition of edge e (1 for activity blocks).

– Evaluation is repeated until the tuple 〈c̄, r̄, C,R, tmin, tmax〉 is computed for
each composite block of the structure tree (thus also for the root block).

Then, we define the complexity heuristics: a block b (a simplified block b̄) is
easy to analyze if both C and R (c̄ and r̄) are not larger than some thresholds
Θc and Θr, respectively, and complex otherwise, e.g., for the workflow STPN
of Fig. 1, R is infinite, due to the concurrency between the Repeat block T
and blocks S, U, and V (in fact, for the simplified STPN obtained replacing T
and V with an activity block each, we have c̄ = 3 and r̄ = 7). The goal of our
compositional analysis is to reduce the workflow complexity, e.g., by analyzing
block T in isolation and replacing it with a transition approximating its duration.

3.3 Analysis heuristics

In the evaluation of the response time CDF Φb(t) of a block b, we consider four
actions, each introducing a different approximation.

Action 1 (numerical analysis): If b is well-structured, i.e., neither it is a
DAG or Repeat block nor it contains DAG or Repeat blocks (e.g., U in
Fig. 1), evaluate Φb(t) by numerical analysis.

Action 2 (regenerative transient analysis): If the execution time CDF of
each activity block in b is expressed in analytical form (e.g., T in Fig. 1), evaluate
Φb(t) through regenerative transient analysis of the STPN of b, otherwise (i.e.,
if b has some activity CDF expressed in numerical form, e.g., the workflow of
Fig. 1 after the response time CDF of T is evaluated separately) replace each
numerical CDF with the analytical form of a stochastic upper bound CDF (by
Lemma 2), and evaluate a stochastic upper bound on Φb(t) through regenerative
transient analysis of the STPN of the resulting block (by Lemma 3).

Action 3 (inner block analysis): Evaluate the response time CDF of a com-
posite block c (see Fig. 6a) contained in block b (through some action α1), replace
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c with an activity block having the computed CDF as execution time CDF (see
Fig. 6b), and compute the response time CDF of the obtained block b′ (through
some action α2). Note that α1 and α2 may yield Φb(t) (e.g., if both are action 1)
or a stochastic upper bound on Φb(t) (e.g., if α1 is action 1 and α2 is action 2).

Action 4 (inner block replication): If b is a DAG block, replicate some
predecessors of a block to evaluate its response time independently of the rest
of the DAG (replicated blocks are identical). Specifically, let G = (V,E, vI , vF )
be the DAG where V is the set of vertices (i.e., blocks of b) plus (fictitious)
zero-duration initial vertex vI and final vertex vF (not shown in Fig. 1), and E
is the set of edges (i.e., precedence relations between blocks): identify vertex v ∈
V \{vI , vF } (e.g., block T in Fig. 1); let the set K of vertices in V \{vI , vF } that
are predecessors both of v and of some node u ∈ V not predecessor of v (i.e.,K =
{R}); replicate the vertices in K and the edges to/from nodes in K (i.e., add R′
to V ; add vI → R′ and R′ → T to E); evaluate the response time CDF of v (by
some action, see Fig. 6c) and replace it with an activity block with the computed
CDF as execution time CDF (see Fig. 6d); and, evaluate the response time CDF
of the obtained block (by some action), which is a stochastic upper bound on
the response time CDF Φb(t) of the original block b (by Lemma 4).

We define analysis heuristics to visit the structure tree and repeatedly select
an action until a safe approximation of the workflow response time is evaluated.
To exploit our complexity heuristics, which characterizes both the complexity of
the structure of a workflow and the complexity of the blocks that it contains, we
consider three analysis heuristics that perform a top-down visit of the structure
tree. Nevertheless, the approach is open to the definition of different heuristics.

Overall, if a block is, or can be reduced to, a well-structured composition
of independent sub-workflows, then numerical analysis guarantees efficient and
accurate evaluation. Conversely, Repeat blocks can be evaluated in isolation
through regenerative transient analysis when their parallel composition with
other blocks prevents the occurrence of regenerations. Finally, DAG blocks,
representing dependent sub-workflows, can be evaluated through regenerative
transient analysis, operating some simplification if the DAG is too complex to
analyze (i.e., analyzing some block or some sub-workflow in isolation).

Specifically, analysis heuristics 1 operates as follows on a visited block b:

1. If b is well-structured, then select action 1 (numerical analysis).

2. If b is a Seq or an AND or an XOR block, and contains DAG or Repeat
blocks at some hierarchy level, then select action 3 (inner block analysis) as
many times as the number of composite blocks of b (which are replaced with
an activity block each) and then select action 1 (numerical analysis).

3. If b is a Repeat block, use the analysis heuristics to select the next action:
(a) if b is easy to analyze, select action 2 (regenerative transient analysis);
(b) otherwise, select action 3 (inner block analysis) to compute (through

some action) the response time CDF of the block repeated by the loop.

4. If b is a DAG block, use the analysis heuristics to select the next action:
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(a) if both b and the simplified block b̄ are easy to analyze, then select
action 2 (regenerative transient analysis);

(b) otherwise, until block b becomes easy to analyze, repeatedly select ac-
tion 4 (inner block replication), each time analyzing in isolation one of
the sub-workflows AND-joined by the final IMM transition of b.

For instance, the DAG in Fig. 1 is too complex to analyze: heuristics 1 performs
regenerative transient analysis of the sub-workflow {Q,R, T} (by replicating R),
and then performs regenerative transient analysis of the obtained block.

To evaluate how approximating intermediate numerical CDFs impacts result
accuracy and computational complexity with respect to decoupling dependent
sub-workflows, we consider analysis heuristics 2, a variant of heuristics 1 that
manages complex DAG blocks (point 4a) by repeatedly performing first action 3
(inner block analysis, replacing complex composite blocks with activity blocks),
and then action 4, until the DAG is easy to analyze.

Finally, to show the efficacy of numerical analysis in the evaluation of well-
structured workflows, we consider analysis heuristics 3, another variant of
heuristics 1 that performs regenerative transient analysis in cases where heuris-
tics 1 would perform numerical analysis.

3.4 Approximation safety

We now ensure that our compositional analysis method is safe when workflows
are used to guarantee soft deadlines of SLAs. Our proofs (in the Appendix)
hinge on the idea of stochastic order and on the following lemma on the order
of independent replication of positively correlated random variables (r.v.s) [3].

Definition 1 (Stochastic order). Given two random vectors X1 and X2, we
say that “X1 is smaller than X2” (X1 6st X2), if E[f(X1)] 6 E[f(X2)] for all
monotone nondecreasing functions f . For scalar X1 and X2 with CDFs F1(x)
and F2(x), respectively, this is equivalent to F1(x) > F2(x) for all x.

Lemma 1 (Order of independent replicas under positive correlation).
Let X = (X1, . . . , Xn) be a vector of positively correlated r.v.s, i.e., Cov[f(X),
g(X)] > 0 holds for all monotone nondecreasing f, g : Rn → R. Then, X >st X,
where X is a vector of independent r.v.s with Xi ∼ Xi for all i.

In our regenerative analysis, numerical CDFs are replaced with analytical
stochastic upper bound CDFs (which guarantee stochastic order for each known
point of the numerical CDFs). The next lemma proves that such bound can be
a piecewise CDF combining a shifted truncated EXP (body) and a shifted EXP
(tail). The approximant accuracy could be improved by considering multiple
pieces for the body (e.g., to better approximate multimodel CDFs).

Lemma 2 (Stochastic upper bound CDF). Given a r.v. X with numerical
CDF F (x) with x ∈ D = {a, a + δ, . . . , a + (L − 1) δ}, a ∈ R>0, δ ∈ R>0, and
L ∈ N, let X̂ be the r.v. with CDF F̂ (x) s.t. F̂ (x) = 0 ∀x < d, F̂ (x) = 0.75 (1−
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e−λb (x−d))/(1 − e−λb(q3−d)) ∀x ∈ [d, q3], F̂ (x) = 0.25(1 − e−λt(x−q3)) + 0.75
∀x ∈ [q3,∞), where d is equal to a if F (x) starts with downward concavity
and equal to the abscissa of the intersection of the x-axis with the line tangent
to the inflection point of F (x) if F (x) starts with upward concavity, q3 is the
third quartile of X, λb is the minimum of the values that maximize F̂ (x) and
satisfy F̂ (x) 6 F (x) ∀x ∈ D ∩ [d, q3], and λt is the minimum of the values that
maximize F̂ (x) and satisfy F̂ (x) 6 F (x) ∀x ∈ D ∩ (q3,∞). Then, X̂ >st X.

In our inner block analysis, a node n in the structure tree is replaced with an
activity block with duration stochastically larger than the response time of n.
The next lemma proves that, after this approximation, the response time of the
obtained workflow is stochastically larger than the actual response time.

Lemma 3 (Stochastic order of inner block analysis). Let S = (N,E, n0)
be the structure tree of a workflow with root node n0 ∈ N , and let T (n) be the
response time of the subtree rooted in n ∈ N . If n is replaced with n′ s.t. T (n) 6st
T (n′), yielding the new structure tree S′ = (N ′, E′, n′0), then T (n0) 6st T (n′0).

In our inner block replication, ancestors of a vertex v are replicated in a DAG
block to evaluate the response time of v independently of the rest of the DAG.
The next lemma proves that, also after this approximation, the response time of
the obtained workflow is stochastically larger than the actual response time.

Lemma 4 (Stochastic order of inner block replication). Given a DAG
block G = (V,E, vI , vF ) and a vertex v ∈ V , let T (v) be the response time of v,
let K be the set of vertices in V \ {vI , vF } that are predecessors both of v and of
some node u ∈ V not predecessor of v, let F be the set of edges in E to/from a
node in K, and let G′ = (V ′, E′, v′I , v

′
F ) be the DAG s.t. V ′ includes all vertices

in V plus a new node k′ with T (k′) ∼ T (k) ∀ k ∈ K, and E′ includes all edges in
E plus an edge to/from each new node k′ for each edge to/from the corresponding
node k ∈ K. Then, T (v′F ) >st T (vF ).

4 Experimentation

In this section, we answer the following questions on our proposed approach:

Q1. Is the approach feasible for the considered concurrency structures?
Q2. Is the approach accurate with respect to a simulated ground truth?
Q3. Does the approach obtain accurate results in reasonable times?

To this end, we consider eight models combining four structures that gradually
increase the workflow complexity, evaluating how the approximation of inter-
mediate numerical results and the replication of dependent events affect result
accuracy and computational complexity. For each model, we compare a ground
truth with the results of our analysis heuristics and simulation. For our complex-
ity heuristics, we consider thresholds Θc = 3 and Θr = 10 on the concurrency
degree and the epoch length, respectively, and we consider activity durations
with uniform CDF over [0, 1]. Experiments are performed using a single core of
an Intel Xeon Gold 5120 CPU (2.20 GHz) equipped with 32 GB of RAM.
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4.1 Experimentation models

Fig. 2 shows the four structures used to build the experimentation models:

Simple DAG (Fig. 2a) has concurrency degree 3 and epoch length 8. Thus, it
can be efficiently analyzed by regenerative transient analysis.

Complex DAG (Fig. 2b) has concurrency degree 5. It cannot be analyzed as
a whole and needs to be decomposed by one of the analysis heuristics.

Complex AND (Fig. 2c) is a well-structured tree, with two instances of simple
DAG as leaves. Once the latter are analyzed by regenerative transient analysis,
the resulting tree can be analyzed numerically (analysis heuristics 1 and 2), or,
given that it has concurrency degree 4, regenerative transient analysis can be
applied to blocks A and F, and then to the resulting model (analysis heuristics 3).

Nested Repetitions (Fig. 2d) has two nested Repeat blocks, with an instance
of (simple or complex) DAG and of complex AND as leaves: once the latter are

(a) (b)

(c) (d)

Fig. 2: Structure elements used to compose experimentation models.
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analyzed in isolation, the resulting model has concurrency degree 1 and path
length 3, and can be analyzed by regenerative transient analysis (all heuristics).

Fig. 3 shows the models obtained combining the structure elements of Fig. 2.

Models 1a and 2b (Fig. 3a) are well-structured trees with two instances of
(simple and complex, respectively) DAG and an instance of complex AND as
leaves: once the latter composite blocks are analyzed, the resulting tree can be
analyzed numerically (analysis heuristics 1 and 2), or, given that it has concur-
rency degree 4, regenerative transient analysis can be applied first to blocks A
and K, and then to the resulting model (analysis heuristics 3).

Models 2a and 2b (Fig. 3b) are well-structured trees with an instance of
(simple and complex, respectively) DAG and of Nested Repetitions as leaves: as
for models 1 and 2, once the latter composite blocks are analyzed, the resulting
tree can be analyzed numerically (analysis heuristics 1 and 2), or, given that it

(a) (b)

(c) (d)

Fig. 3: Four models used for experimentation. Each model combines some
of the structures defined in Fig. 2 and is tested in a simple variant, using instances
of Simple DAG, and a complex variant, using instances of Complex DAG.
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has concurrency degree 4, regenerative transient analysis can be applied first to
blocks A and H, and then to the resulting model (analysis heuristics 3).

Models 3a and 3b (Fig. 3c) consist of a top DAG made of an instance of
(simple and complex, respectively) DAG, one of Nested Repetitions, and two
well-structured sub-trees. Once the instance of Nested Repetitions is evaluated,
the model is still too complex and must be decomposed.

Models 4a and 4b (Fig. 3d) are variants of models 3a and 3b, respectively, with
more complex well-structured trees. Once the instance of Nested Repetitions is
evaluated, the model is still too complex and must be decomposed.

4.2 Experimentation results

For each workflow of Fig. 3, a ground truth is computed by performing simulation
of the corresponding STPN through the SIRIO library of the ORIS tool [24, 31],
increasing the number of simulation runs by 100 000 at a time until the Jensen-
Shannon (JS) divergence [21, 23] between the PDFs of the last two computed
response time CDFs is lower than 0.0001, which occurs for 500 000 runs. The JS
divergence between two PDFs fa and fb is DJS (fa || fb) := 0.5DKL (fa ||Z) +
0.5DKL (fb ||Z), where Z(t) := 0.5 (fa(t) + fb(t)) ∀ t ∈ Ω is the random vari-
able that averages the input variables, Ω is a set of equidistant time points
covering the support of fa and fb, and DKL (· || ·) is the Kullback-Leibler (KL)
divergence [21, 23] defined as DKL (fa || fb) =

∑
t∈Ω fa (t) · log (fb (t) /fa (t)).

Table 1 reports the computation times and the JS divergence from the ground
truth achieved by the analysis heuristics 1, 2, and 3, and by a simulation having
computation times comparable with times of heuristics 1, and Fig. 4 shows the
response time PDFs used to compute the JS divergence. For models 1a, 1b,
2a and 2b, heuristics 1 outperforms heuristics 3 in terms of both accuracy and
complexity, achieving JS divergence lower by one or two orders of magnitude
and computation times lower by one order of magnitude, proving the efficacy of
analyzing well-structured trees through numerical analysis rather than through

Computation Times JS divergence from the GTModel GT S H1 H2 H3 S H1 H2 H3
1a 2027.1 s 1.5 s 1.5 s 1.5 s 32.7 s 0.196 91 0.000 27 0.000 27 0.033 26

1b 2711.3 s 1.0 s 1.0 s 13.8 s 10.6 s 0.190 46 0.000 84 0.003 15 0.036 81

2a 2028.7 s 0.9 s 0.8 s 0.8 s 3.2 s 0.193 85 0.003 63 0.003 63 0.060 11

2b 2723.3 s 1.4 s 1.2 s 13.9 s 3.2 s 0.184 64 0.006 62 0.009 43 0.043 10

3a 1566.8 s 2.2 s 1.9 s 3.8 s 2.4 s 0.041 05 0.026 89 0.025 69 0.082 92

3b 2232.2 s 4.2 s 3.9 s 16.8 s 2.5 s 0.081 02 0.026 60 0.025 48 0.081 73

4a 1803.9 s 1.8 s 1.7 s 72.6 s 5.9 s 0.194 71 0.019 72 0.037 30 0.075 77

4b 2534.5 s 2.6 s 2.6 s 72.0 s 6.0 s 0.202 84 0.021 98 0.039 41 0.076 71

Table 1: For each model of Fig. 3, computation time and JS divergence from the
ground truth (GT) of simulation (S), analysis heuristics 1 (H1), 2 (H2), 3 (H3).
For each model, green cells indicate the best (i.e., lowest) values of computation
time and JS divergence, while red cells indicate the worst (i.e., largest) values.
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regenerative transient analysis. This gain is less evident for models 3a, 3b, 4a and
4b, which replace large part of high-level well-nested structures of models 1a, 1b,
2a and 2b with DAG blocks.

Heuristics 1 and 2 (differing in the way complex DAG blocks are managed)
achieve the same accuracy and computation time on models 1a and 2a, because
these models include simple DAG blocks. For the remaining models, heuristics 1
achieves comparable or slightly lower accuracy and significantly lower computa-
tion time, indicating that, as expected, replicating dependent events yields less
complex models to analyze with respect to evaluating blocks in isolation and ap-
proximating intermediate numerical results. Moreover, for the considered model
structures and stochastic parameters, event replication does not introduce more
approximation than analytical fitting of intermediate numerical results.

With respect to simulation having computation time comparable to that of
heuristics 1, all analysis heuristics achieve better accuracy with JS divergence
lower by at least one order of magnitude, and up to three orders for heuristics 1.
Note that simulation could be optimized to improve both result accuracy and
computational complexity, while the analysis is in any case guaranteed to provide
a stochastic upper bound on the workflow response time CDF.

Overall, the evaluation shows that the proposed approach is feasible for com-
plex workflows, and achieves sufficient accuracy in reasonable time with respect
to the ground truth. In particular, analysis heuristics 1 achieves JS divergence
with order of magnitude between 10−4 and 10−2, in at most 3.9 s.

5 Conclusions

We proposed a compositional approach to efficiently compute a stochastic up-
per bound on the response time CDF of complex workflows. The workflow is
specified using structured STPNs to enable hierarchical decomposition into sub-
workflows, exploiting heuristics that apply either numerical analysis (if feasible)
or regenerative transient analysis, taking into account different tradeoffs between
solution accuracy and complexity. When evaluated on a suite of synthetic models
of increasing complexity, the approach achieves sufficient accuracy in a limited
computation time with respect to a ground truth obtained by simulation.

The approach is open to many extensions: the model could be extended
with other constructs and dependencies among the execution times of activities,
possibly affecting not well-formed nesting; performance could be improved by
optimizing regenerative transient analysis based on the specific class of models
and the specific reward to evaluate; other solution techniques could be integrated
to analyze some block; to fit numerical distributions, other analytical approxi-
mants could be considered in the class of expolynomial functions, or in the class
of piecewise CPHs over bounded supports [19]; and, applicability could be tested
in various relevant domains where the evaluation of deadlines missed within a
given time requires the computation of the response time CDF.
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Fig. 4: Response time PDFs of the workflow models of Fig. 3.
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6 Appendix

We recall syntax and semantics of STPNs (Section 6.1) and numerical anal-
ysis of well-structured workflows (Section 6.2), and we report theorem proofs
(Section 6.3) and a graphical representation of analysis heuristics (Section 6.4).

6.1 Formal syntax and semantics of STPNs

Syntax An STPN is a tuple 〈P, T,A−, A+, EFT, LFT, F,W,Z〉 where: P and
T are disjoint sets of places and transitions, respectively; A− ⊆ P ×T and A+ ⊆
T × P are pre-condition and post-condition relations, respectively; EFT and
LFT associate each transition t ∈ T with an earliest firing time EFT (t) ∈ Q>0

and a latest firing time LFT (t) ∈ Q>0 ∪ {∞} such that EFT (t) 6 LFT (t); F ,
W , and Z associate each transition t ∈ T with a Cumulative Distribution Func-
tion (CDF) Ft for its duration τ(t) ∈ [EFT (t), LFT (t)] (i.e., Ft(x) = P{τ(t) 6
x}, with Ft(x) = 0 for x < EFT (t) and Ft(x) = 1 for x > LFT (t)), a weight
W (t) ∈ R>0, and a priority Z(t) ∈ N, respectively.

As usual in stochastic Petri nets, a transition t is called immediate (IMM)
if EFT (t) = LFT (t) = 0 and timed otherwise; a timed transition t is called
exponential (EXP) if Ft(x) = 1 − exp(−λx) for some rate λ ∈ R>0, or gen-
eral (GEN) otherwise. For each GEN transition t, we assume that Ft can be
expressed as the integral function of a probability density function (PDF) ft,
i.e., Ft(x) =

∫ x
0
ft(y) dy. Similarly, an IMM transition t ∈ T is associated with

a generalized PDF represented by the Dirac impulse function ft(y) = δ(y − y)
with y = EFT (t) = LFT (t). A place p ∈ P is called an input or output place
for a transition t ∈ T if (p, t) ∈ A− or (t, p) ∈ A+, respectively.

Semantics The state of an STPN is a pair s = 〈m, τ〉, where m : P → N is a
marking assigning a number of tokens to each place and τ : T → R>0 associates
each transition with a time-to-fire. A transition is enabled by a marking if each
of its input places contains at least one token. The next transition t to fire
in a state s is selected from the set E of enabled transitions having time-to-fire
equal to zero and maximum priority with probabilityW (t)/

∑
ti∈EW (ti). When

t fires, s is replaced with s′ = 〈m′, τ ′〉, where: m′ is derived from m by removing
a token from each input place of t, yielding an intermediate marking mtmp, and
adding a token to each output place of t; τ ′ is derived from τ by: i) reducing the
time-to-fire of each persistent transition (i.e., enabled bym,mtmp andm′) by the
time elapsed in s; ii) sampling the time-to-fire of each newly-enabled transition tn
(i.e., enabled by m′ but not by mtmp) according to Ftn ; and, iii) removing the
time-to-fire of each disabled transition (i.e., enabled by m but not by m′).

6.2 Numerical analysis of well-structured workflows

We derive the numerical form of the response time CDF of a block by combining
bottom-up the numerical forms of the response time CDFs of the blocks that
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it contains, provided that the block has a well-formed structure, i.e., it is not a
DAG block and it does not contain DAG blocks, and that it does not contain
REPEAT blocks. Specifically, given n blocks b1, . . . , bn with response time CDF
Φ1(t), . . . , Φn(t) and PDF φ1(t), . . . , φn(t), respectively:

– the response time CDF Φseq(t) of a SEQ block made of b1, . . . , bn is derived
by performing subsequent convolutions of φ1(t), . . . , φn(t) ∀ t ∈ [0, tmax]:

Φseq(t) = Φ1,n(t)

Φ1,i(t) =

∫ t

0

∫ τ

0

φ1,i−1(x)φi(τ − x) dx dτ ∀ i ∈ {2, . . . , n}

φ1,i−1(t) =
d

dt
Φ1,i−1(t) ∀ i ∈ {2, . . . , n− 1}, φ1,1(t) = φ1(t)

(2)

– the response time CDF Φand(t) of an AND block made of b1, . . . , bn is the
CDF of the maximum among the response times of b1, . . . , bn, which is de-
rived as the product of Φ1(t), . . . , Φn(t) ∀ t ∈ [0, tmax] due to the fact that
the response times of b1, . . . , bn are independent random variables:

Φand(t) = Φ1(t) · . . . · Φn(t) (3)

– the response time CDF Φxor(t) of an XOR block made of b1, . . . , bn is derived
as the weighted sum of Φ1(t), . . . , Φn(t) ∀ t ∈ [0, tmax]:

Φxor(t) = p1 Φ1(t) + . . .+ pn Φn(t) (4)

6.3 Theorem proofs

Proof of Lemma 2. By construction, F̂ (x) 6 F (x) ∀x ∈ D ∩ [d,∞), and F̂ (x) = 0
∀x < d. Starting from the point with abscissa a, the PDF of F (x) may be either
increasing or decreasing: If the PDF is increasing, then it will reach a maximum
point that comprises an inflection point for the CDF F (x), where the concavity
changes from upward to downward (see Fig. 5b). By construction, the tangent
line to the inflection point intersects the x-axis in a point whose abscissa d is
larger than a, otherwise the CDF should have downward concavity before the
inflection point, which contradicts the hypothesis. Otherwise (i.e., if the PDF is
decreasing), F (x) has downward concavity (see Fig. 5a), d is selected equal to a,
and stochastic order is verified for ∀x ∈ D ∩ [a,∞). Therefore, X̂ >st X. ut

Proof of Lemma 3. The duration of the sub-workflow associated with any nodem
(SEQ, AND, XOR, REPEAT, DAG) is a monotone nondecreasing function of
the durations of the sub-workflows associated with its children; respectively, the
sum (SEQ), max (AND), random mixture (XOR), series (REPEAT), max over
all paths from the initial to the final node (DAG). By definition of stochastic
order, if a child n is replaced with n′ s.t. T (n) 6st T (n′), then T (m) 6st T (m′)
for the new node m′. By recursion, T (n0) 6st T (n′0) for the new root n′0. ut
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(a) Downward concavity. (b) Upward concavity.

Fig. 5: Stochastic upper bound CDF: concavity of approximated CDF.

Proof of Lemma 4. Since DAG edges denote AND-join dependencies, the re-
sponse time of a vertex v is T (v) = D(v) + max(T (k1), . . . , T (kn)) where D(v)
is the duration of the block associated with v and T (k1), . . . , T (kn) are the re-
sponse times of its predecessors. By visiting the vertices of G in topological order,
we can evaluate the response time T (vF ) of the DAG as an expression combin-
ing nonnegative block durations D(v) ∀v ∈ V through monotone nondecreasing
operators (i.e., summation and maximum). The intermediate values of this ex-
pression obtained during the visit are the response times T (·) of the nodes of G,
which, by construction, are positively correlated. In the evaluation of T (v′F ) in
G′, the random variable T (k) of each node k ∈ K is replaced with the indepen-
dent replica T (k′) ∼ T (k). Then, by Lemma 1, we obtain T (v′F ) >st T (vF ). ut

6.4 Analysis actions

Fig. 6 illustrates the application of the sequence of actions 3 and 4 on the struc-
ture tree presented in Fig. 1b. In particular, in Fig. 6a, a red and a green box
identify two sub-structures on which actions 3 and 4 are applied, respectively:

– Action 3: is applied as follows: some action (depending on the considered
analysis heuristic) is used to evaluate the response time of the sub-structure
in the red box, which is then replaced with an activity block Tnew associated
with the evaluated response time CDF (see Fig. 6b).

– Action 4 evaluates the sub-structure in the green box independently of the
rest of the DAG: the blocks that are shared with the rest of the DAG
(i.e., block R) are replicated (i.e., block Rbis is added), also adding two ficti-
tious zero-duration nodes vI and vF (see Fig. 6c); then, this sub-structure is
evaluated though some action (depending on the considered analysis heuris-
tic); finally, the sub-structure is replaced with an activity block QRTnew
associated with the evaluated response time CDF (see Fig. 6d).
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(a) (b)

(c) (d)

Fig. 6: A graphical representation for actions 3 and 4. (a) The structure
tree presented in Fig. 1b, where the red and the green boxes indicate the sub-
structures subject to actions 3 and 4, respectively. (b) The structure tree after
the application of action 3, which replaces the sub-structure in the red box with
an activity block. (c) The structure tree after the replication of block R during
action 4. (d) The structure tree after the execution of action 4, which replaces
the sub-structure in the green box with an activity block.


