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Abstract Artificial neural networks (NNs) in deep learning
systems are critical drivers of emerging technologies such
as computer vision, text classification, and natural language
processing. Fundamental to their success is the development
of accurate and efficient NN models. In this article, we report
our work on Deep-n-Cheap – an open-source Automated
Machine Learning (AutoML) search framework for deep
learning models. The search includes both, architecture and
training hyperparameters and supports convolutional neural
networks and multi-layer perceptrons, applicable to multi-
ple domains. Our framework is targeted for deployment on
both benchmark and custom datasets, and as a result, offers a
greater degree of search space customizability as compared
to a more limited search over only pre-existing models from
literature. We also introduce the technique of ‘search trans-
fer’, which demonstrates the generalization capabilities of
the models found by our framework to multiple datasets.

Deep-n-Cheap includes a user-customizable complex-
ity penalty which trades off performance with training time
or number of parameters. Specifically, our framework can
find models with performance comparable to state-of-the-
art while taking 1-2 orders of magnitude less time to train
than models from other AutoML and model search frame-
works. Additionally, we investigate and develop insight into
the search process that should aid future development of deep
learning models.
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1 Introduction

Artificial NNs in deep learning systems are critical drivers
of emerging technologies such as computer vision, text clas-
sification, and autonomous applications. In particular, one
and two dimensional convolutional neural networks (CNNs)
are used for text and image related tasks respectively, while
multilayer perceptrons (MLPs) can be used for general pur-
pose classification tasks. Manually designing these NNs is
challenging since they typically have a large number of inter-
connected layers [23,40] and require a large number of deci-
sions to be made regarding hyperparameters. These hyperpa-
rameters, as opposed to trainable parameters like weights and
biases, are not learned by the network. They need to be speci-
fied and adjusted by an external entity, i.e., the designer. They
can be broadly grouped into two categories – a) architectural
hyperparameters, such as the type of each layer and the num-
ber of nodes in it, and b) training hyperparameters, such as
the learning rate and batch size. The difficulty of manually
designing hyperparameters to find a good NN is exacerbated
by the fact that several hyperparameters interact with each
other to have a combined effect on the final performance.

Motivation and Related Work: The problem of searching for
good NNs has resulted in several efforts towards automating
this process. These efforts include AutoML frameworks such
as Auto-Keras [19], AutoGluon [1] and Auto-PyTorch [27],
which are open source software packages applicable to a
variety of tasks and types of NNs. The major focus of these
efforts is on providing user-friendly toolkits to search for
good hyperparameter values.

Several other efforts place more emphasis on novel tech-
niques for the search process. These can be broadly grouped
into Neural Architecture Search (NAS) efforts such as [30,
25,24,2,28,31,37,35,9,15], and efforts that place a larger
emphasis on training hyperparameters over architecture [8,
33,5,36]. An alternate grouping is on the basis of search
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methodology – a) reinforcement learning [30,42,2], b) evo-
lution / genetic operations [28,31,37], c) gradient-based op-
timization [25,9,38] and d) Bayesian Optimization [22,36,
33,34]. Although the efforts described in this paragraph of-
ten come with publicly available software, they are typically
not intended for general purpose use, e.g., the code release
for [9] only allows reproducing NNs on two datasets. This
differentiates them from AutoML frameworks.

Deep NNs often suffer from complexity bottlenecks –
either in storage, quantified by the total number of trainable
parameters Np, or computational, such as the number of
FLOPs or the time taken to perform training and/or inference.
Prior efforts on NN search penalize inference complexity in
specific ways – latency in [9], FLOPs in [35], and both in
[15]. However, inference complexity is significantly different
from training since the latter includes backpropagation and
parameter updates every batch. For example, the resulting
network for CIFAR-10 in [9] takes a minute to perform infer-
ence, but hours to train. Moreover, while there is considerable
interest in popular benchmark datasets, in most real-world
applications deep learning models need to be trained on cus-
tom datasets for which readymade, pre-trained models do
not exist [26,4,32]. This leads to an increasing number of
resource-constrained devices needing to perform training on
the fly, e.g., self-driving cars.

The computing platform is also important, e.g., changing
batch size has a greater effect on training time per epoch on
GPU than CPU. Therefore, calculating the FLOP count is
not always an accurate measure of the time and resources
expended in training a NN. Some previous works have pro-
posed pre-defined sparsity [10,12] and stochastic depth [16]
to reduce training time, while [29] focuses on finding the
quickest training time to get to a certain level of performance.
Note that these are all manual methods, not search frame-
works.

Overview and Contributions: This paper describes Deep-
n-Cheap (DnC) – an open-source1 AutoML framework to
search for deep learning models, initially introduced by us
in [11]. We specifically target the training complexity bot-
tleneck by including a penalty for training time per epoch
ttr in our search objective. The penalty coefficient can be
varied by the user to obtain a family of networks trading off
performance and complexity. Additionally, we also support
storage complexity (number of parameters) penalties for Np.

DnC searches for both architecture and training hyperpa-
rameters. While the architecture search derives some ideas
from literature, we have striven to offer the user a consider-
able amount of customizability in specifying the search space.
This is important for training on custom datasets which can

1 The code and documentation are available at https://github.
com/usc-hal/deep-n-cheap

have significantly different requirements than those associ-
ated with benchmark datasets.

DnC primarily uses Bayesian Optimization (BO) and
currently supports classification tasks using CNNs and MLPs.
A notable aspect is search transfer, where we found that the
best NNs obtained from searching over one dataset give good
performance on a different dataset. This helps to improve
generalization in NNs – such as on custom datasets – instead
of purely optimizing for specific problems.

The following are the key contributions of this paper:

1. Complexity: To the best of our knowledge, DnC is the
only AutoML framework targeting training complexity
reduction. We show results on several datasets on both
GPU and CPU. Our models achieve performance compa-
rable to state-of-the-art, with training times that are 1-2
orders of magnitude less than those for models obtained
from other AutoML and search efforts.

2. Usability: DnC offers a highly customizable three-stage
search interface for both architecture and training hyper-
parameters. As opposed to AutoKeras and AutoGluon,
our search includes batch size (which affects training
times) and architectures beyond predefined ones. Our tar-
get users include those who want to train quickly on cus-
tom datasets, using custom architectures. We show that
DnC can find MLPs with state-of-the-art accuracy and
minimum training time for text categorization on the cus-
tom Reuters RCV1 dataset [10]; we also explore the use
of DnC on a custom Natural Language Processing (NLP)
architecture (inspired by [21]) for sentiment analysis on
Yelp datasets [41] of user reviews. We also present search
transfer to illustrate how architectures found by DnC can
be used on multiple datasets after a quick search over the
hyperparameters used during training.

3. Insights: We conduct investigations into the search pro-
cess and provide several insights that can lead to a deeper
understanding of model search methodologies. In par-
ticular, we empirically justify the value of our greedy
three-stage search approach over less greedy approaches,
and the superiority of BO over random and grid search.
We also provide a new similarity measure for BO and new
distance functions for MLPs, CNNs, and NLP models.

The paper is structured as follows: Sec. 2 outlines our
search methodology, Sec. 3 our experimental results, Sec. 4
includes additional investigations and insights, Sec. 5 com-
pares with related work, and Sec. 6 concludes the paper.

2 Our Approach

Given a dataset, our framework searches for neural network
configurations through sequential stages in multiple search
spaces. During a stage, each neural network configuration x
is trained for the same number of epochs; to obtain a good

https://github.com/usc-hal/deep-n-cheap
https://github.com/usc-hal/deep-n-cheap
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Fig. 1 Three-stage search process for DnC.

estimate of its accuracy when trained until convergence, we
use a large number of epochs (e.g., 100). Although other
works [3,24] try to predict NN performance from limited
training, we found that accurate estimates are important for
our model search method.

The goal of the search process is to minimize the objec-
tive function

f (x) = log( fp(x)+wc fc(x)) (1)

where the performance term fp(x) is the best validation error
achieved by an NN configuration x (including architecture
choices and training hyperparameters), wc controls the im-
portance given to reducing complexity, and the complexity
term fc(x) = c(x)/c0 gives a complexity metric of x (based
on either the per-epoch training time, ttr, or the number of
parameters, Np) relative to a reference value c0 (typically
obtained for a high complexity configuration in the search
space). Lower values of wc place a greater emphasis on im-
proving accuracy.

One key contribution of this work is exploring model
search with higher values of wc, which lead to reduced com-
plexity NNs that train fast, also reducing the search cost by
speeding up each evaluation of fp(x) in the search process.

2.1 Three-stage search process

The search is divided into 3 stages, summarized in Fig. 1.

Stage 1 (Core architecture search): For CNNs, the combined
search space consists of the number of convolutional (conv)
layers and number of channels in each, while for MLPs, it

is the number of hidden layers and number of nodes in each.
Other architectural hyperparameters such as batch normaliza-
tion (BN) and dropout layers and all training hyperparameters
are fixed to presets that we found to work well across a vari-
ety of datasets and network depths. Bayesian optimization is
used to minimize f and the corresponding best configuration
is the result of Stage 1.

Stage 2 (Advanced architecture search): This stage starts
from the architecture found in Stage 1 and uses grid search
to search for the following CNN hyperparameters through
a sequence of sub-stages: 1) whether to use strides or max
pooling layers for downsampling layers; 2) what fraction
of layers should use BN; 3) what fraction of layers should
use dropout, with specific drop probabilities; and 4) whether
to add shortcut connections. This is not a combined space;
instead grid search first picks the downsampling choice lead-
ing to the minimum f value, then freezes that and searches
over BN, and so on. This ordering yielded good empirical
results; however, reordering is supported by the framework.
For MLPs, there is a single grid search for dropout probabili-
ties. As in the previous stage, training hyperparameters are
fixed to presets. The result from Stage 2 is the result from the
final sub-stage.

Stage 3 (Training hyperparameter search): The architecture
is finalized after Stage 2. In Stage 3, identical for CNNs
and MLPs, we search over the combined space of initial
learning rate η , weight decay λ and batch size B, using
BO to minimize f . The final configuration after Stage 3
comprises both architecture and training hyperparameters.
The complete process is summarized in Fig. 1.
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2.2 Bayesian Optimization

Bayesian Optimization is useful for optimizing functions that
are black-box and expensive to evaluate such as f , which
requires NN training. The initial step when performing BO
is to sample n1 configurations {xxx1, . . . ,xxxn1} from the search
space, to evaluate their objective values { f (xxx1), . . . , f (xxxn1)},
and to form a Gaussian prior. The mean vector µµµ is filled
with the mean of the f values, and the covariance matrix ΣΣΣ

is such that Σi j = σ (xxxi,xxx j), where σ(·, ·) ∈ [0,1] is a kernel
function that takes a high value if two configurations xxxi and
xxx j are similar.

Then the algorithm continues for n2 steps, each step con-
sisting of sampling n3 configurations, picking the configura-
tion with the maximum expected improvement, computing its
f value, and updating µµµ and ΣΣΣ accordingly. For a complete
tutorial on BO, the reader is referred to [6], where Eq. (4)
in particular has details of expected improvement. Note that
BO explores a total of n1 +n2n3 states in the search space,
but the expensive evaluation of f only occurs on a total of
n1 +n2 states.

2.2.1 Similarity between NN configurations:

We begin by defining the distance between values of a par-
ticular hyperparameter k for two configurations xxxi and xxx j.
Larger distances denote dissimilarity. We initially considered
the distance functions defined in Sections 2 and 3 of [17],
but then adopted an alternate one that resulted in similar
performance with less tuning. We call it the ramp distance:

d(xik,x jk) = ωk

(∣∣xik− x jk
∣∣

uk− lk

)rk

(2)

where uk and lk are respectively the upper and lower bounds
for parameter k, ωk is a scaling coefficient, and rk is a frac-
tional power used for stretching small differences. Note that d
is 0 when xik = x jk, and reaches a maximum of ωk when they
are the farthest apart. xik and x jk are computed in different
ways depending on k:

– If k is batch size B or the number of layers, xik and x jk
are the actual values.

– If k is η or λ , xik and x jk are the logarithms of the actual
values.

– When k is the hidden node configuration of an MLP, we
sum the nodes together across all hidden layers. This is
because we found that the sum has a greater impact on f
than considering layers individually, e.g., a configuration
with three 300-node hidden layers has a closer f value to
a configuration with one 1000-node hidden layer than a
configuration with three 100-node hidden layers.

– When k is the conv channel configuration of a CNN, we
calculate individual distances for each layer. If the num-
ber of layers is different, the distance is maximum for

each of the extra layers, i.e., ω . This idea is inspired by
[17], as compared to alternative similarity measures in
[22,19]. We follow this layer-by-layer comparison be-
cause our prior experiments showed that the representa-
tions learned by a certain conv layer in a CNN are similar
to those learned by layers at the same depth in different
CNNs. Additionally, this approach performed better than
the summing across layers as in MLPs.

Each individual distance d(xik,x jk) is converted to its kernel
value σ(xik,x jk) using the squared exponential function, then
we take their convex combination for all K hyperparameters
using coefficients {sk} to finally get σ(xxxi,xxx j):

σ(xik,x jk) = exp
(
−

d2(xik,x jk)

2

)
(3)

σ(xxxi,xxx j) =
K

∑
k=1

skσ(xik,x jk) (4)

An example is illustrated in Fig. 2.
Note that, in the NLP models considered in Section 3,

while the initial layer is an embedding layer, i.e., a fully-
connected layer converting one-hot word vectors to dense
feature vectors, the following layers are convolutional layers
with max-pools and shortcuts. In these models, to measure
the similarity between two points xxxi and xxx j of the search
space, we use a combination of the distances defined for
MLP and CNN layers. In particular, the distance d(xik,x jk)

between embedding layers (k = 1) is computed as in MLPs
(i.e., as the difference in size of embedding vectors), while
the distance of the following layers (k > 1) is computed as in
CNNs using Eq. 2.

3 Experimental Results

This section presents results obtained with our search frame-
work on different datasets using MLP, CNN, and NLP model
architectures, along with the search settings used. Note that
most of the settings can be customized by the user; this is
one of the key contributions of our framework, which uses
limited knowledge from literature to enable wider explo-
ration of neural network architectures for custom tasks. We
used the PyTorch library on three platforms: a) cloud GPU
instances, in particular AWS p3.2xlarge instances with a
single Nvidia V100 GPU, 16 GB of memory and 8 vCPUs; b)
a private GPU cluster, where each node is equipped with four
Nvidia GeForce RTX 2080 Ti GPUs, an Intel i9-9940X CPU,
and 128 GB of RAM; c) a laptop CPU, specifically the Intel
i7 4870HQ CPU of a mid-2014 MacBook Pro with 16GB of
memory. For Bayesian optimization, we used n1 = n2 = 15
and n3 = 1000 in all experiments.
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Fig. 2 Calculating Stage 1 similarity for two conv channel configurations: xxxi = [50,80] and xxx j = [36,61,107]. Taking the 1st conv layer as
an example, the pre-decided values are u1 = 64, l1 = 16, ω1 = 3 and r1 = 1 (more details on these choices in Sec. 3). The distance is d1 =
3× [(50−36)/(64−16)]1 = 0.875, and kernel value is σ1 = exp

(
−0.5×0.8752

)
= 0.682. Similarly we get σ2 = 0.466 and σ3 = 0.01 (note that

d3 = ω3 due to the absence of the 3rd layer in xxxi). Combining these using s1 = s2 = s3 = 1/3 yields σ (xxxi,xxx j) = 0.386.

3.1 CNNs

All CNN experiments were conducted on cloud GPUs. The
datasets used are CIFAR-10 and CIFAR-100 with a split in
train-validation-test of 40k-10k-10k, and Fashion MNIST
(FMNIST) with 50k-10k-10k. Standard augmentation is al-
ways used: channel-wise normalization, random crops from
4 pixel padding on each side, and random horizontal flips.
Augmentation requires PyTorch data loaders that incur tim-
ing overheads, so we also show results on CIFAR-10 without
augmentation, loading the entire dataset into memory when
model search starts. As a result, ttr is reduced.

For Stage 1, we use BO to search over CNNs with 4–
16 conv layers, the first of which has c1 ∈ {16,17, · · · ,64}
channels and each subsequent layer has ci+1 ∈ {ci,ci+1, · · · ,
min(2ci,512)} channels. We allow the number of channels
in a layer to have arbitrary integer values, not just fixed to
multiples of 8. Kernel sizes are fixed to 3x3. Downsampling
precedes layers where ci crosses 64, 128 and 256 (this is
due to GPU memory limitations). During Stage 1, all conv
layers are followed by BN and dropout with 30% drop prob-
ability. Configs with more than 8 conv layers have shortcut
connections. Global average pooling and a softmax classifier
follow the conv portion. There are no hidden classifier layers
since we empirically obtained no performance benefit. For
both Stages 1 and 2, we used the default Adam optimizer
with η = 10−3, decayed by 80% at the half and three-quarter
points of training, batch size B = 256, and weight decay
λ = Np ≥ 106)×Np/1011, I being the indicator function.
We empirically found this rule to work well.

For Stage 2, the first grid search is over all possible
combinations of using either strides or max pooling for the
downsampling layers. Second, we vary the fraction of BN
layers through [0,0.25,0.5,0.75]. For example, if there are 7
conv layers, a setting of 0.5 will place BN layers after conv

layers 2, 4, 6 and 7. Third, we vary the fraction of dropout
layers in a manner similar to BN, and drop probabilities over
[0.1,0.2] for the input layer and [0.15,0.3,0.45] for all other
layers. Finally, we search over shortcut connections – none,
every 4th layer, or every other layer. Note that any shortcut
connection skips over 2 layers.

For Stage 3, we used BO to search over a) η ∈ {10x} for
x ∈ [1,5], b) λ ∈ {10x} for x ∈ [−6,−3], with λ converted to
0 when x <−5, and c) batch sizes B ∈ [32,33, · · · ,512]. We
found that batch sizes that are not powers of 2 did not lead to
any slowdown on the platforms used.

The penalty function fc uses normalized ttr, since this is
the major bottleneck in developing CNNs. Each configura-
tion was trained for 100 epochs on the train set and evaluated
on the validation set to obtain fp. We ran experiments for 5
different values of wc: [0,0.01,0.1,1,10]. The best network
from each search was then trained on the combined train-
ing and validation set, and evaluated on the test set for 300
epochs to get final test accuracies and ttr values.

As shown in Fig. 3, we obtain a family of networks by
varying wc, where higher wc values trade off test accuracy 1−
fp(x) for lower computational cost ttr. The latter is correlated
with search cost and Np. The last row of figures directly
plot the performance-complexity tradeoff. These curves rise
sharply towards the left and flatten out towards the right,
indicating diminishing performance returns as complexity
is increased. This highlights one of our key contributions –
allowing the user to choose fast training NNs that perform
well.

Taking augmented CIFAR-10 as an example, DnC found
the following best configuration for wc = 0: 14 conv layers
with {c}=(50,52,53,59,95,96,97,120,193,239,351,385,
488,496), the 4th layer has a stride of 2 while max pooling
follows layers 8 and 10, BN follows all conv layers, dropout
with drop probability 0.3 follows every other conv block,
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Fig. 3 Characterizing a family of NNs for CIFAR-10 augmented (1st
column), unaugmented (2nd column), CIFAR-100 augmented (3rd col-
umn) and FMNIST augmented (4th column), obtained from DnC for
different wc. We plot test accuracy in 300 epochs (1st row), ttr on com-
bined train and validation sets (2nd row), search cost (3rd row) and Np
(4th row), all against wc. The 5th row shows the performance-complexity
tradeoff, with dot size proportional to search cost.

and skip connections are present for every other conv block.
The best found η remains 10−3, batch size B is 120 and
weight decay λ = 3.35×10−5. Note that we achieve good
performance with a NN that has irregular {c} values and is
also not very deep – the latter is consistent with the findings in
[40]. Also note that the best configuration found for wc = 10
has only 4 conv layers.

3.2 MLPs

For MLP models, we ran CPU experiments on the MNIST
and FMNIST datasets using a permutation-invariant format
(i.e., input images are flattened to a single layer of 784 pixels)
without any augmentation, and GPU experiments on the
Reuters RCV1 dataset constructed as in [10]. Each dataset is
loaded into memory in its entirety, eliminating data loading
overheads.

For Stage 1, we search over 0− 2 hidden layers for
MNIST and FMNIST, number of nodes in each being 20−
400. These numbers change for RCV1 to 0−3 and 50−1000
since it is a larger dataset. Every layer is followed by a
dropout layer with 20% drop probability. Training hyperpa-

Fig. 4 Characterizing a family of NNs for MNIST (1st column) and
FMNIST (2nd column) on CPU, and RCV1 (3rd column) on GPU,
obtained from DnC for different wc. We plot test accuracy in 180 epochs
(1st row), ttr on combined train and validation sets (2nd row), Np (3rd
row), and search cost (4th row), all against wc. The search penalty is ttr
for the pink dots and Np for the black crosses.

rameters are fixed as in the case of CNNs, with the difference
that λ = I(Np≥ 104)×Np/109 for MNIST and FMNIST and
λ = I(Np ≥ 105)×Np/1010 for RCV1. For Stage 2, we do
a grid search over drop probabilities in [0,0.1,0.3,0.4,0.5],
and for Stage 3, the training hyperparameter search is identi-
cal to CNNs.

We ran separate searches for individual penalty functions
– normalized ttr and normalized Np. The latter is owing to
the fact that MLPs often massively increase the number of
parameters and thereby storage complexity of NNs [23]. The
train-validation-test splits for MNIST and FMNIST are 50k-
10k-10k, and 178k-50k-100k for RCV1. Candidate networks
were trained for 60 epochs and the final networks tested after
180 epochs. As before, wc ∈ [0,0.01,0.1,1,10] for MNIST
and FMNIST. For RCV1, the results for wc = 10 were mostly
similar to wc = 1, so we replace 10 with 0.03. The plots
against wc are shown in Fig. 4, where pink dots are for ttr
penalty and black crosses are for Np penalty.

The trends in Fig. 4 are qualitatively similar to those in
Fig. 3. When penalizing Np, the two lowest complexity net-
works in each case have no hidden layers, so they both have
exactly the same Np (results differ due to different training
hyperparameters). Of interest is the subfigure on the bottom
right, indicating much longer search times when penalizing
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Np as compared to ttr. This is because time is not a factor
when penalizing Np, so the search picks smaller batch sizes
that increase ttr with a view to improving performance. Inter-
estingly enough, this does not actually lead to performance
benefit as shown in the subfigure on the top-right, where the
black crosses occupy similar locations as the pink dots.

3.3 Natural Language Models

To evaluate our automated model search approach on a differ-
ent class of NN architectures and datasets and demonstrate
DnC’s extensibility, we consider the task of sentiment analy-
sis, a common benchmark for natural language models. While
only very large models based on transformers [39] reach
state-of-the-art accuracy on this task, smaller models using
word embeddings and conv layers such as Deep Pyramid
CNNs (DPCNNs) [21] still achieve excellent accuracy with
lower training times and inference requirements (both mem-
ory and computation). This class of architectures provides
an interesting challenge for Deep-n-Cheap, as it presents
significant differences with respect to CNNs used for image
classification, while keeping training times reasonably low
and manageable for automated model search.

Our main sentiment analysis dataset is the Yelp Reviews
Full dataset (Yelp-5) [41], a balanced subset of the 2015
Yelp Challenge. Yelp-5 includes a training set of 650k user
reviews, each with a score of 1 to 5 stars, and a test set of 50k
reviews; each class has the same number of examples and the
average number of words in a review is 155. As validation
set for model search, we reserve 52k training examples.

To preprocess the dataset, we follow the same approach
as in [21]: we remove HTML tags and stopwords from the
reviews, and then use the 30k most common words as our
vocabulary. We also use two special words to represent “out
of vocabulary” words and “padding.”

Our search space of NN architectures for sentiment analy-
sis is also inspired by the work on DPCNNs [21], since these
models achieve 68.2% accuracy in our experiments on Yelp-
5, close to the 72.9% state-of-the-art accuracy of [39] (a trans-
former model, which can be quickly fine-tuned after long
pretraining but requires considerable inference resources).
Some key characteristics of DPCNNs are as follows:

– Overlapping regions of 1, 3 or 5 words centered on each
word of a review are encoded as bag-of-word vectors of
size 30,000 (the vocabulary size).

– An initial fully-connected layer (the embedding layer)
converts each bag-of-word vector to an embedding vector
of size 250. Embedding vectors of each input region are
concatenated into a variable-length one-dimensional (1D)
vector.

– Models repeat up to 7 blocks consisting of a downsam-
pling layer (1D max-pooling with stride of 2, not included

in the first block) and two conv layers (1D, kernel size of
3). Similarly to ResNets [13], shortcut connections are
included; in particular, downsampled tensors are added
to the output of the block.

– In contrast with ResNets, all conv layers have the same
number of channels, 250, and stride of 1; thus, there is
no need for additional operations on shortcut connections
(e.g., padding or 1x1 projections) to match the dimension
of the block output.

– ReLU pre-activations are used as in [14], but without
batch normalization. By applying ReLUs to the input of
each conv layer (instead of its output), max-pooling lay-
ers and tensor additions on shortcut connections receive
linear activation signals.

– An array of max-pooling units with variable input size
reduces the output of the last block to a fixed size, which
is then used for classification in a fully-connected layer.

While borrowing the idea of using CNNs for NLP tasks
from [21], we explore a large space of architecture variants
where the output size of the embedding layer, the number of
conv layers, and the number of channels of each layer are all
configurable. To allow layers with variable channel sizes, we
use padding on shortcut connections.

In Stage 1, to search over these architecture parame-
ters, we use a strategy similar to DnC’s search strategy for
CNNs. Through BO, we select an embedding output size
from [70,300], and a number of conv layers from [2,20].
For the first conv layer, we impose a number of channels
c1 ∈ [50,300]; for each layer i > 1, we allow ci ∈ [ci−1,350]
channels. Kernel sizes are fixed at 3; after the first layer, we
add a stride-2 max-pooling layer with probability 0.5 to each
layer that is not preceded by another max-pooling layer. Dur-
ing this stage, we use 30% dropout on each conv layer, add
shortcut connections after every other conv layer (except the
last one), and train using Adam (with batch size B = 100 and
other hyperparameters as in Sec. 3.1). The input region size
is set to 1 (one-hot word encoding).

With respect to DnC’s search over image classification
CNNs, in addition to changing the type of convolutions used
(1D instead of 2D), we also exclude batch normalization (as
in DPCNNs), and pad all reviews of a batch to the longest one
(different batches can have different length). As described in
Sec. 2.2.1, we use distinct distance functions for the embed-
ding layer and for conv layers.

In Stage 2, since DPCNNs use fixed convolution strides
without batch normalization, we perform grid searches only
to add or remove shortcut connections, to include or exclude
dropout, and to select dropout probabilities from [0.15, 0.45].
We also consider dropout for the embedding layer with prob-
ability from [0.1, 0.2].

In Stage 3, we search over learning rate and weight decay
using BO with the same constraints as described in Sec. 3.1
for CNNs. We did not search over batch size because different
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Model Search (h) Test Acc. ttr (s) η λ Np (M) Depth Emb. Channels of Convolutional Layers

DPCNN 67.7 207.0 1.0e-3 1.0e-4 10.1 15 250 (14 layers) x (250 ch.)

wc = 0 93.9 67.4 171.5 1.0e-3 1.0e-4 8.5 20 113 97, 127, 135, 143, 152, 295, 347, 349, 11 x (350 ch.)

wc = 0.01 89.4 67.0 169.4 7.0e-4 1.2e-4 8.5 20 113 97, 127, 135, 143, 152, 295, 347, 349, 11 x (350 ch.)

wc = 0.1 72.8 66.7 108.7 1.4e-3 1.3e-4 3.8 6 106 89, 151, 250, 250, 267

wc = 1 50.5 65.4 58.5 1.6e-3 1.2e-4 4.6 3 150 137, 152

wc = 10 38.9 64.3 32.3 2.2e-3 1.5e-4 2.3 3 76 57, 100

Table 1 Comparison of the different models found by DnC for different values of the complexity parameter wc. For each model, we report search
time (hours), test accuracy, training time ttr (seconds), learning rate η , weight decay λ , number of parameters Np (millions), depth, size of the
embedding layer, and channels in each conv layer. All the models are trained using Adam with the same learning rate schedule; note that the DPCNN
model of [21] can reach 68.2 accuracy when trained using the author’s SGD method and hyperparameters.
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Fig. 5 Characterizing a family of NLP models for sentiment analysis
on the Yelp-5 dataset, for different values of wc (complexity weight).

batch sizes require different padding of the input examples
(which have variable length).

To train candidate architectures at each stage, we use at
most 25 epochs, stopping when 6 consecutive epochs do not
produce an improvement in validation accuracy. To avoid
overfitting, we also use early stopping: models are selected
using their best (instead of final) validation accuracy. The
selected model is then evaluated on the test dataset.

We explored different tradeoffs between accuracy and
model complexity in our search space by using different val-
ues of wc, the weight of model complexity in Eq. 1; in par-
ticular, we used wc ∈ {0,0.01,0.1,1,10} and adopted model
training time ttr as a complexity metric. The results, presented
in Table 1 and Fig. 5, clearly illustrate these tradeoffs: as wc
increases, the framework selects models that have lower test
accuracy and lower training time (our complexity metric).
Note that search cost decreases similarly to training time,
while the number of model parameters Np is higher when
wc = 1 rather than wc = 0.1. In fact, the model selected for

wc = 1 has a higher number of parameters but lower training
time than the one of wc = 0.1, because more parameters are
assigned to the embedding layer (a fully-connected layer,
which results in less computation per parameter than conv
layers). We also observe from Table 1 that model depth is
reduced from 20 to 3 when wc increases, and DnC selects a
higher learning rate η for these shallow models.

Table 1 also reports the DPCNN architecture and hyper-
parameters introduced in [21]: this model, with 15 layers and
10.1 million parameters, achieves best test accuracy in our
experiments (67.7%) but also incurs the longest per-epoch
training time (207 seconds). With wc = 0, DnC finds a model
with similar accuracy but 17% lower per-epoch training time
(171.5 seconds), fewer parameters and higher depth (20);
with wc = 0.1, the reduction of test accuracy to 66.7% al-
lows reducing per-epoch training time to 108.7 seconds. With
wc = 1, DnC achieves test accuracy of 65.4% and per-epoch
training time of 58.5 seconds: ShallowCNNs [20] achieve
similar accuracy to this model (65.8%) by also using only two
conv layers but with more parameters overall (7.8M instead
of 4.6M). Also note that, while [21] used unsupervised em-
beddings (trained with additional data) and manually-tuned
SGD to improve accuracy, all results in Table 1 use Adam
with the same learning rate schedule, without unsupervised
embeddings. In future efforts, we plan to further optimize
training strategies in Stage 3.

We also experimented with the easier Yelp-2 dataset,
where reviews are only labeled with two classes (positive
for 1-2 stars, negative for 3-4); 560k reviews are present for
training (45k reserved for validation) and 38k for testing.
Fig 6 illustrates the results of model search for multiple
values of wc, using the same search space, but training each
model only for 20 epochs (as this was sufficient for the easier
classification task). We observe a similar trend, where higher
values of wc allow DnC to select models where test accuracy
is decreased to reduce the training time ttr (our complexity
metric). While test accuracies are all within a margin of 0.6%,
training time and model parameters are reduced by more than
half when wc = 10.
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Fig. 6 Characterizing a family of NLP models for sentiment analysis
on the Yelp-2 dataset, for different values of wc (complexity weight).
Note that, the best accuracy reported on this dataset in [21] without use
of unsupervised embedding is 96.7% which is very close to our best
result (wc=0, accuracy=96.5%); however, the model identified by DnC
has fewer layers (10 layers) and parameters as compared to the model
in [21] (15 layers).

4 Investigations and insights

4.1 Search transfer

One goal of our search framework is to find models that
are applicable to a wide variety of problems and datasets
suited to different user requirements. To evaluate this aspect,
we experimented on whether a NN architecture found from
searching through Stages 1 and 2 on dataset A can be applied
to dataset B after searching for Stage 3 on it. In other words,
how does transferring an architecture compare to ‘native’
configurations, i.e., those searched for through all three stages
on dataset B. This process is shown on the left in Fig. 7. Note
that we repeat Stage 3 of the search since it optimizes training
hyperparameters such as weight decay, which are related to
the capacity of the network to learn a new dataset. This is
contrary to simply transferring the architecture as in [42].

We took the best CNN architectures found from searches
on CIFAR-10, CIFAR-100 and FMNIST (as depicted in Fig.
3) and transferred them to each other for Stage 3 searching.
The results for test accuracy and ttr are shown on the right in
Fig. 7. We note that the architectures generally transfer well.
In particular, transferring from FMNIST (green crosses in
subfigures (a) and (b)) results in slight performance degrada-
tion since those architectures have Np around 1M-2M, while
some architectures found from native searches (pink dots)
on CIFAR have Np > 20M. However, architectures trans-
ferred between CIFAR-10 and -100 often exceed native per-
formance. Moreover, almost all the architectures transferred
from CIFAR-100 (green crosses in subfigure (c)) exceed na-

Fig. 7 Top: Process of search transfer: comparing configurations ob-
tained from native search with those where Stage 3 is done on a dataset
different from Stages 1 and 2. Bottom: Results of CNN search trans-
fer to (a) CIFAR-10, (b) CIFAR-100, (c) FMNIST. All datasets are
augmented. Pink dots denote native search.

tive performance on FMNIST, which again is likely due to
bigger Np. We also note that ttr values remain very similar
on transferring, except for the wc = 0 case where there is
absolutely no time penalty.

4.2 Greedy strategy

Our search methodology is greedy in the sense that it keeps,
at the end of each stage and substage, only the configuration
with minimum f value in Eq. 1. We also experimented with a
non-greedy strategy: instead of one, we picked the three best
configurations from Stage 1, {xxx1,xxx2,xxx3}, then ran separate
grid searches on each of them to get three corresponding con-
figurations at the end of Stage 2, and finally picked the three
best configurations for each of their Stage 3 runs for a total of
nine configurations, {xxx11,xxx12,xxx13,xxx21, · · · ,xxx33}. Following
a purely greedy approach would have resulted in only xxx11,
while following a greedy approach for Stages 1 and 2 but not
Stage 3 would have resulted in {xxx11,xxx12,xxx13}. We plotted the
losses for each configuration for five different values of wc
on CIFAR-10 unaugmented (Fig. 8 shows three of these wc
values). In each case we found that following a purely greedy
approach yielded best results, which justifies our choice of a
gready strategy in DnC.



10 S. Dey et al.

Fig. 8 Search objective values (lower the better) for three best config-
urations from Stage 1 (blue, red, black), optimized through Stages 2
and 3 and three best configurations chosen for each in Stage 3. Results
shown for different wc on CIFAR-10 unaugmented.
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Fig. 9 Search objective values (lower the better) for purely random
search (30 samples, blue) vs purely grid search via Sobol sequencing
(30 samples, green) vs balanced BO (15 initial samples, 15 optimized
samples, red) vs extreme BO (1 initial sample, 29 optimized samples,
black). Results shown for different wc on CIFAR-10 unaugmented,
averaged over two runs.

4.3 Bayesian optimization vs random and grid search

We use Sobol sequencing, a space-filling method that selects
points similar to grid search, to select initial points from the
search space and construct the BO prior. We experimented
on the usefulness of BO by comparing the final search loss
f achieved by performing the Stage 1 and 3 searches in four
different ways:

– Random search: pick 30 prior points randomly, no opti-
mization steps.

– Grid search: pick 30 prior points via Sobol sequencing,
no optimization steps.

– Balanced BO (DnC default): pick 15 prior points via
Sobol sequencing, 15 optimization steps.

– Extreme BO: pick 1 initial point, 29 optimization steps.

The results in Fig. 9 are for different wc on CIFAR-10, av-
eraged over multiple runs. BO outperforms random and grid
search on each occasion. In most cases, more optimization
steps are beneficial (black bar).

4.4 Extensibility of Deep-n-Cheap

One of the virtues of the Deep-n-Cheap framework is the abil-
ity to adapt to new datasets and model architectures. While
our initial experiments focused on CNNs and MLPs for im-
age classification [11], we were able to quickly extend our
search to NLP models for sentiment analysis. This could be
achieved quite easily due to the flexibility of DnC, as follows:

Table 2 Comparison of features of AutoML frameworks

Framework Architecture search space
Training Adjust model

hyp search complexity

Auto-Keras Pre-existing architectures No No
AutoGluon Pre-existing architectures Yes No

Auto-PyTorch Customizable by user Yes No
Deep-n-Cheap Customizable by user Yes Penalize ttr, Np

– Support for the Yelp-2 and Yelp-5 datasets was included
as an input parameter by following the same conventions
used for other datasets, i.e., by preparing a Python dictio-
nary with train, test and validation data loaders.

– Since the size of the embedding layer was added to the
search space, a new metric was necessary to evaluate
model similarities; we were able to easily define this
metric from the existing layer distance metrics already
implemented in DnC for MLPs and CNNs.

– Finally, by implementing a new search strategy in DnC,
we were able to alter the search space to include only
models where (1) the first layer is an embedding, (2)
subsequent layers use stride-2 max-pooling (for down-
sampling) and 1D stride-1 convolutions, (3) batch nor-
malization is not used. To change the search bounds for
the number of layers, convolutional channels and fully-
connected units, we were able to use the command-line
options provided by DnC.

Given the differences between image classification and
sentiment analysis datasets and architectures, we believe
that these changes represent the minimum amount of work
required from the user of an AutoML framework.

5 Comparison to related work

Table 2 compares features of different AutoML frameworks.
To the best of our knowledge, only DnC allows the user to
specifically penalize complexity of the resulting models. This
allows our framework to find models with performance com-
parable to other state-of-the-art methods, while significantly
reducing the computational burden of training. This is shown
in Table 3, which compares the search process and metrics
of the final model found for CNNs on CIFAR-10, and Table
4, which does the same for MLPs on FMNIST and RCV1
for DnC and Auto-PyTorch only, since Auto-Keras and Au-
toGluon do not have explicit support for MLPs at the time of
writing.

Note that Auto-Keras and AutoGluon do not support
explicitly obtaining the final model from the search, which
is needed to perform separate inference on the test set after
the search. As a result, in order to have a fair comparison,
Tables 3 and 4 use metrics from the search process – ttr is
for the train set and the performance metric is best validation
accuracy. These are reported for the best model found from
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Table 3 Comparing AutoML results (CNNs, CIFAR-10, augmented)

Framework
Additional Search cost Best model found from search

settings (GPU hrs) Architecture ttr (sec) Batch size Best val acc (%)

Proxyless NASa Proxyless-G 96 537 conv layers 429 64 93.22
Auto-Kerasb Default run 14.33 Resnet-20 v2 33 32 74.89

AutoGluon
Default run 3 Resnet-20 v1 37 64 88.6

Extended run 101 Resnet-56 v1 46 64 91.22

Auto-Pytorch
‘tiny cs’ 6.17 30 conv layers 39 64 87.81
‘full cs’ 6.13 41 conv layers 31 106 86.37

Deep-n-Cheap
wc = 0 29.17 14 conv layers 10 120 93.74

wc = 0.1 19.23 8 conv layers 4 459 91.89
wc = 10 16.23 4 conv layers 3 256 83.82

a Since Proxyless NAS is a search methodology as opposed to an AutoML framework, we trained the final best model provided to us by the
authors [7]. This model was trained in [9] using stochastic depth and additional cutout augmentation [7] – yielding an impressive 97.92% accuracy
on their test set. The result shown here was obtained without cutout or stochastic depth, and the validation accuracy is reported to compare with the
metrics available from Auto-Keras and AutoGluon. The primary point of including Proxyless NAS is to compare to a model with state-of-the-art
accuracy that has been highly optimized for CIFAR-10.

b Auto-Keras does not support image augmentation at the time of writing this paper [18], so we used an unaugmented dataset.

Table 4 Comparing AutoML results (MLPs, FMNIST/RCV1)

Framework
Additional Search cost Best model found from search

settings (GPU hrs) MLP layers Np ttr (sec) Batch size Best val acc (%)

Fashion MNIST

Auto-Pytorch
‘tiny cs’ 6.76 50 27.8M 19.2 125 91

‘medium cs’ 5.53 20 3.5M 8.3 184 90.52
‘full cs’ 6.63 12 122k 5.4 173 90.61

Deep-n-Cheap wc = 0 0.52 3 263k 0.4 272 90.24
(penalize ttr) wc = 10 0.3 1 7.9k 0.1 511 84.39

Deep-n-Cheap wc = 0 0.44 2 317k 0.5 153 90.53
(penalize Np) wc = 10 0.4 1 7.9k 0.2 256 86.06

Reuters RCV1

Auto-Pytorch
‘tiny cs’ 7.22 38 19.7M 39.6 125 88.91

‘medium cs’ 6.47 11 11.2M 22.3 337 90.77
Deep-n-Cheap wc = 0 1.83 2 1.32M 0.7 503 91.36
(penalize ttr) wc = 1 1.25 1 100k 0.4 512 90.34

Deep-n-Cheap wc = 0 2.22 2 1.6M 0.6 512 91.36
(penalize Np) wc = 1 1.85 1 100k 5.54 33 90.4

each search. Auto-Keras and AutoGluon use fixed batch sizes
across all models, however, Auto-PyTorch and DnC also do
a search over batch sizes. We have included batch size since
it affects ttr. Each configuration for each search is run for the
same number of epochs, as described in Sec. 3. The exception
is Auto-PyTorch, where a key feature is variable number of
epochs.

We note that for CNNs, DnC results in both the fastest ttr
and highest performance. The performance of Proxyless NAS
is comparable, while taking 43X more time to train. This high-
lights one of our key features – the ability to find models with
performance comparable to state-of-the-art while massively
reducing training complexity. The search cost is lowest for
the default AutoGluon run, which only runs 3 configurations.
We also did an extended run for∼ 100 models on AutoGluon

to make it match with DnC and Auto-Keras – this results in
the longest search time without significant performance gain.

For MLPs, DnC has the fastest search times and lowest
ttr and Np values – this is a result of it searching over sim-
pler models with few hidden layers. While Auto-PyTorch
performs slightly better for the benchmark FMNIST, our
framework gives better performance for the more customized
RCV1 dataset.

6 Conclusion and Future Work

In this paper we described Deep-n-Cheap – the first AutoML
framework that specifically considers training complexity of
the resulting models during searching. While our framework
can be customized to search over any number of layers, it
is interesting that we obtained competitive performance on
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various datasets using models significantly less deep than
those obtained from other AutoML and search frameworks
in literature. We also found that it is possible to transfer a
family of architectures found using different wc values be-
tween different datasets without performance degradation.
The framework uses Bayesian optimization and a three-stage
greedy search process – these were empirically demonstrated
to be superior to other search methods and less greedy ap-
proaches. We also demonstrated how DnC can be extended
successfully for different datasets and model architectures, il-
lustrating our process on NLP models for sentiment analysis.

DnC currently supports image and text classification us-
ing CNNs, MLPs and embedding layers. Our future plans
are to extend to other types of networks such as recurrent
and other applications of deep learning such as segmenta-
tion, which would also require expanding the set of hyper-
parameters searched over. The framework is open source
and offers considerable customizability to the user. We hope
that DnC becomes widely used and provides efficient NN
design solutions to many users. The framework can be found
at https://github.com/usc-hal/deep-n-cheap.

Appendix: Validity of our covariance kernel

The validity of our covariance kernel can be proved as fol-
lows. We note that since xik and x jk are scalars, d in Eq. (2)
is the Euclidean distance. It follows from the properties of
the squared exponential kernel that σ

(
xik,x jk

)
in Eq. (3) is

a valid kernel function. So if a kernel matrix ΣΣΣ kkk were to
be formed such that Σki j = σ

(
xik,x jk

)
, then ΣΣΣ kkk would be

positive semi-definite. Writing Eq. (4) in matrix form gives
ΣΣΣ =∑

K
k=1 skΣΣΣ kkk. Since a convex combination of positive semi-

definite matrices is also positive semi-definite, it follows that
ΣΣΣ is a valid covariance matrix.

Appendix: Ensembling

One way to increase performance such as test accuracy is by
having an ensemble of multiple networks vote on the test set.
This comes at a complexity cost since multiple NNs need
to be trained. We experimented on ensembling by taking
the n best networks from BO in Stage 3 of our search. Note
that this does not increase the search cost as long as n ≤
n1 + n2. However, it does increase the effective number of
parameters by a factor of exactly n (since each of the n best
configurations have the same architecture), and ttr by some
indeterminate factor (since each of the n best configuration
might have a different batch size).

We experimented on CIFAR-10 unaugmented using n= 3
and augmented using n = 5. The impact on the performance-
complexity tradeoff is shown in Fig. 10. Note how the plus
markers – ensemble results – have slightly better performance

Fig. 10 Performance-complexity tradeoff for single configurations (cir-
cles) vs ensemble of configurations (pluses) for wc = 0 (blue), 0.01
(red), 0.1 (green), 1 (black), 10 (pink). Results using ensemble of 5 for
CIFAR-10 augmented, and 3 for CIFAR-10 unaugmented.

at the cost of significantly increased complexity as compared
to the circles – single results. However, we did not use en-
sembling in other experiments since the slight increases in
accuracy do not usually justify the significant increases in ttr.

Appendix: Changing hyperparameters of Bayesian Opti-
mization

The BO process itself has several hyperparameters that can
be customized by the user, or optimized using marginal like-
lihood or Markov chain Monte Carlo methods [34]. This
section describes the default values we used. Expected im-
provement involves an exploration-exploitation tradeoff vari-
able ξ . The recommended default is ξ = 0.01 [6], however,
we tried different values and empirically found ξ = 10−4

to work well. Secondly, f is a noisy function since the com-
puted values of network performance are noisy due to random
initialization of weights and biases for each new state. Ac-
cordingly, and also considering numerical stability for the
matrix inversions involved in BO, our algorithm incorporates
a noise term σ2

n . We calculated its value from the variance
in f values as σ2

n = 10−4, which worked well compared to
other values we tried.

Appendix: Adaptation to various platforms

While most deep NNs are run on GPUs, situations may arise
where GPUs are not readily or freely available and it is de-
sirable to run simpler experiments such as MLP training on
CPUs. DnC can adapt its penalty metrics to any platform. For
example, the FMNIST results shown in Fig. 4 were on CPU,
while Table 4 shows results on GPU (to do a fair comparison
with other frameworks). As a result, the ttr values are an order
of magnitude faster, while the performance is the same as
expected.

https://github.com/usc-hal/deep-n-cheap
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