
Using the ORIS tool and the SIRIO library for
model-driven engineering of quantitative analytics

Laura Carnevali1[0000−0002−5896−4860], Marco Paolieri2[0000−0001−5110−203X],
Riccardo Reali1[0000−0002−6047−3796], Leonardo

Scommegna1[0000−0002−7293−0210], Federico Tammaro1, and Enrico
Vicario1[0000−0002−4983−4386]

1 University of Florence, Department of Information Engineering, Italy
{laura.carnevali, riccardo.reali, leonardo.scommegna, federico.tammaro,

enrico.vicario}@unifi.it
2 University of Southern California, Department of Computer Science, USA

paolieri@usc.edu

Abstract. We present a Model-Driven Engineering (MDE) approach
to quantitative evaluation of stochastic models through the ORIS tool
and the SIRIO library. As an example, the approach is applied to the
case of a tramway line with reduced number of passengers to contain the
spread of infection during a pandemic. Specifically, we provide a meta-
model for this scenario, where, at each stop, only a certain number of
people can ride the tram depending on the current tram capacity, the
length of the queue of people waiting at the stop, and the number of
passengers on the tram. Then, the ORIS tool and the SIRIO library are
used as a software platform to derive a Stochastic Time Petri Net (STPN)
representation for each tramway stop and to perform its regenerative
transient analysis to obtain quantitative measures of interest, such as
the expected number of people waiting at each stop and the expected
number of tram passengers over time. Experimental results show that the
approach facilitates exploration of the space of design choices, providing
insight about the effects of parameter changes on quantitative measures
of interest and allowing balanced queue sizes at different stops.

Keywords: Quantitative evaluation · Model Driven Engineering (MDE)
· software tools and libraries · intelligent transportation systems

1 Introduction

Models are generally used to replace the system under study with a domain-
focused although simplified view [5]. By shifting the attention primarily to mod-
els, the concepts expressed are less bound to a precise technology or framework,
and closer to the problem domain [13], allowing better insight into the issues of
interest: this approach eases system understanding by domain experts, improves
the expressivity of the system description, and facilitates the maintainability of
the adopted solution. At the same time, models also support early evaluation of



2 L. Carnevali et al.

the impact of design choices on the final behavior before data become available,
enabling fast exploration of the space of possible solutions.

Model-Driven Engineering (MDE) is an approach that considers models as
primary artifacts during all software development phases [5] and connects them
with the practice of software engineering, making them living components of the
system rather than using them for documentation and study purposes only. MDE
usually consists in the use of Domain-Specific Languages (DSLs) and Domain-
Specific Modeling Languages (DSMLs), specialized in formalizing the structure
and behavior of applications, and described using meta-models to map relation-
ships, semantics, and constraints between concepts expressed in a domain [12].
This practice is also common in industrial contexts, where small DSLs are de-
veloped for narrow and well-understood domains [16]. Another important aspect
that led to the widespread use of MDE and Model-Driven Design (MDD) are au-
tomated transformations: Model-to-Text (M2T) transformations are more com-
monly used to transform a particular model instance into text-based file formats
or software artifacts available as source code (code generation), while Model-to-
Model (M2M) transformations are used to translate a model into another model.
Both techniques are referred to as “correct-by-construction” [12] given that they
do not require any subsequent modification and they avoid manual, and thus
error-prone, changes to the considered artifacts.

In a broader perspective, models can be generated at system runtime with
an inverse approach, i.e., by connecting models to operational data, possibly
persisted in a data layer, and by enabling the management of high volumes of
concrete running instances derived from a meta-model, with variability deter-
mined by runtime changes (e.g., time-dependent parameters). When combined
with the use of formal semantics and solution techniques to compute results
of a service request, this two-way approach supports dynamic state monitoring
and system control during execution as well as understanding of runtime behav-
ior, including the identification of behavioral phenomena [1]. In so doing, the
approach allows agile validation of choices in the design phase.

In this paper, we outline an MDE approach which demonstrates how to
leverage the ORIS suite [11, 14] to develop practical applications of stochastic
modeling and analysis. In particular, we focus on how to manage crowding of a
tramway line to contain the spread of a pandemic, which comprises a problem of
resource assignment: at each stop, a transit pass can be granted only to a certain
number of people, depending on the current capacity of the tram, the length of
the queue of people waiting at the stop, and the number of passengers on the
tram. To this end, we perform a context analysis to derive a meta-model of the
considered scenario. Then, we exploit MDE practices and M2M transformations
to derive a Stochastic Time Petri Net (STPN) representation for each tramway
stop, and then we perform regenerative transient analysis [8] of each tramway
stop model. Specifically, the analysis of each stop provides the expected number
of queued people over time and the expected number of tram passengers over
time, showing that the distribution of the number of queued people and the dis-
tribution of the number of tram passengers at the beginning of each tram period



Using ORIS and SIRIO for MDE of quantitative analytics 3

reach a steady state within a limited number of tram periods. Then, the steady
state distribution of the number of tram passengers at the beginning of tram
periods is used in the analysis of the subsequent tramway stop as the initial dis-
tribution of the number of tram passengers. In the theoretical perspective, the
tramway stop model fits in the class of polling systems [9], where the periodic
arrival pattern of trams is impacted by a stochastic delay (jitter). Experimental
results shows that the approach facilitates exploration of the design space, pro-
viding insight about the effects of parameter changes on performance measures
of interest, such as the expected number of queued people at each stop and the
expected number of passengers on the tram.

The rest of this paper is organized as follows. In Section 2, we describe the
application domain and we provide a meta-model to define context-specific mod-
els. In Section 3, we illustrate how the ORIS tool supports MDE of quantitative
analytics, transforming a tramway line model into an STPN and performing its
evaluation through regenerative transient analysis. In Section 4, we explain how
to support modeling and evaluation steps through the SIRIO library. In Sec-
tion 5, we illustrate the experimental results obtained analyzing the models of a
tramway line. Finally, conclusions are drawn in Section 6.

2 A tramway line meta-model

Fig. 1 shows a meta-model of the tramway scenario, designed to express a wide
range of models at different levels of granularity and derive (through M2M trans-
formations) analytic representations to get insight into the scenario. Specifi-
cally, the meta-model represents a network of tramway lines (represented by
the Network and Route classes) each characterized by a TimeBand identifying
the time period of tramway service and the frequency of tram departures. An
itinerary is an ordered sequence of StopPoint instances, each characterized by a
StopPointCapacity which can be affected by different restriction policies, e.g.,
due to maintenance works or social distancing. Each Tram has a maximum ca-
pacity in terms of number of passengers (possibly subject to restriction policies),
runs on a specific route, and stops at each stop point of the route itinerary.

The Stop class identifies the event that a tram of a certain route arrives
and stops at a specific stop point. It is described by: an ArrivalTimeTable
instance, characterized by a jitter delay with respect to the nominal arrival time;
a maximum number of passengers that can board the tram (with the possibility
to define an ad-hoc restriction policy); a flow of passengers of different types.
The latter association enables the representation of a stop point visited by a
heterogeneous group of passengers with a different arrival rate, outgoing rate
(i.e., the tendency to abandon the stop point) and disembark rate. The stop event
is characterised by parameters that may vary with the time of day (e.g., a tram
stop near a school is characterized by different flows of passengers immediately
after school hours and during a night time slot), and thus it is also characterized
by a time chunk.



4 L. Carnevali et al.

Fig. 1: Meta-model of a network of tramway lines.

Note that the class diagram representing the meta-model could be exploited
to define the domain model of a software architecture. In this context, the entire
framework could be transposed into a Software as a Service (SaaS) system of a
cloud infrastructure. On the one hand, the class diagram is designed to enable
an easy mapping of object instances to the database through standard Object-
Relational Mapping (ORM) technologies (e.g., JPA for Java EE). On the other
hand, the M2M transformation procedure, as well as the quantitative analysis
through the SIRIO library, represent business capabilities that could be conve-
niently encapsulated into a set of microservices, generating a cloud architecture
able to fulfill various use cases such as those illustrated in Fig. 2. In particular,
to avoid crowding on the tram and at tramway stops, the mentioned M2M trans-
formations (see Sections 3 and 4) enable the evaluation of the expected value
of queued people at a stop and of people traveling on a tram. Such information
could be exploited by a tramway schedule planner to modulate the frequency of
trams during a certain time band, to change the maximum capacity of a tram, or,
more generally, to adapt system parameters to guarantee some safety conditions.

3 A tramway stop model

We define a model of a tram stop (Section 3.1), and we use the ORIS tool to
derive its STPN representation (Section 3.2) and to compute rewards of interest
through regenerative transient analysis of the STPN model (Section 3.3).

3.1 Model description

We consider a model in the class of polling systems [1], i.e., systems where queue
processes are served by a component, which does not operate continuously, but



Using ORIS and SIRIO for MDE of quantitative analytics 5

Fig. 2: Use case diagram showing relevant use cases for tramway line planning.

intermittently and recurrently. In the tramway scenario, trams arrive at different
stops according to a probability distribution that combines the deterministic
interarrival time of trams with a stochastic jitter. At each stop, the tram serves
people waiting in a queue that is populated according to an arrival process.

Fig. 3 shows the object model that illustrates the considered polling system,
in conformity with the meta-model described in Section 2. The system targets a
single stop point (SP-A) of a tramway line (R1). To avoid crowding, a stop point
is associated with a capacity (CPT-A) characterized by a rejection policy, which
disables queue access to people arriving after the saturation of maximum queue
capacity, here equal to 10. A route is characterized by a frequency, which is the
inverse of the deterministic time between the arrival of two consecutive trams
at the stop point. Each individual stop event (SA1) is also characterized by a
stochastic delay defined by a jitter. In our model, we assume an interarrival time
equal to 220 s seconds and a jitter distributed as an expolynomial function f(x) =
0.075468 exp(−x/10) + 0.002516x exp(−x/10) with support [0, 60] s. Different
classes of people (STD-P) may arrive at the stop point with a specific probability
distribution; for simplicity, we only consider standard passengers arriving at the
queue according to a Poisson process with rate 0.08 passengers/second. Finally,
we consider trams with maximum capacity (CPT-T) equal to 4; additional people
waiting to board the tram are rejected (CA-S control policy).

Fig. 3: Object model of a tram stop.



6 L. Carnevali et al.

3.2 STPN representation

Fig. 4 shows the STPN model of a single tram stop. In an STPN, time processes
are modeled with transitions, represented as bars with different colors depending
on the probability density function (PDF) of their associated timers: transitions
with exponential PDFs (EXP) are represented as white thick bars (e.g., transi-
tion passengerArrival); transitions with deterministic times (DET) are repre-
sented as gray thick bars (e.g., transition serviceArrivalNominal); transitions
with non-exponential general distributions (GEN) are represented as black thick
bars (e.g., transition serviceArrival). A deterministic transition with time 0
is called immediate (IMM) and it is represented as a black thin bar (e.g., transi-
tions leaving and boarding). Discrete logical states of the system are modeled
as tokens within places, which are represented as dots or numbers within circles
(e.g., places TramCapacity and QueueCapacity, respectively). Places and tran-
sitions are connected with directed arcs, modeling precedence relations among
processes. Directed arcs from input places to transitions define preconditions,
while arcs from transitions to output places defines postconditions (e.g., the
tuple (WaitJitterDelay, serviceArrival) is a precondition).

A transition becomes enabled by a marking (i.e., an assignment of tokens to
one or more places) when each of the input places contains at least one token
(e.g., if a token is added to place WaitJitterDelay, transition serviceArrival

is enabled), and when an enabling function (if any) is satisfied for the transition
(e.g., transition passengerArrival is enabled when the tokens in place Queue

are less than or equal to those in place QueueCapacity). For each enabled tran-
sition t, a time-to-fire is sampled between its earliest firing time (EFT) and
latest firing time (LFT), according to the PDF ft(x) of the transition. When its
time-to-fire elapses, a transition becomes firable; when it fires, one token is re-
moved from each of its input places and one token is added to each of its output
places (e.g., if transition passengerArrival fires, then a token is moved from
place WaitJitterDelay to place TrainArrived), or the marking is modified ac-
cording to an update function (e.g., the firing of transition boarding removes
all tokens from place Queue, when the queue is less than the tram capacity, or
subtracts from place Queue a number of tokens equal to the remaining capacity
of the tram, when the queue is larger). In case of multiple firable transitions,
transitions with lower priority number have precedence; among transitions with

Fig. 4: The STPN of a tram stop.



Using ORIS and SIRIO for MDE of quantitative analytics 7

the same priority, one is selected with a random switch where probabilities are
proportional to transitions weights. After a firing, the times-to-fire of transi-
tions enabled before and after the token moves are reduced by the time-to-fire
of the fired transition (e.g., if passengerArrival fires before serviceArrival,
the time-to-fire of the latter transition is decreased by the time elapsed since the
previous firing).

The STPN model of Fig. 4 can be evaluated to get insight about the model
described in Fig. 3. Transitions serviceArrivalNominal and serviceArrival

model the nominal time and the stochastic jitter employed by the tram to pe-
riodically reach the considered stop. Transition passengerArrivial models the
arrival process of people at the tram stop, which is a Poisson process, as de-
scribed in Section 3.1. Finally, IMM transitions leaving and boarding are in-
troduced to represent the processes of exiting and entering the tram, which are
assumed to happen in zero time. Note that, in the model of Fig. 4, places are
used not only to represent logical states of a specific process, but also to represent
model parameters (e.g., QueueCapacity and TramCapacity) or variable coun-
ters (e.g., Queue, PassengersBeforeTramArrival, PassengersAfterLeaving

and PassengersAfterBoarding).

3.3 Model evaluation and rewards of interest

STPN models enable the application of analysis techniques that can produce in-
sight, analytics or predictions on such models. The ORIS tool provides a GUI to
draw system models and to apply such analysis methods. Evaluation of a model
involves identifying certain quantities of interest, which can be formulated as re-
wards. In ORIS, a reward is an expression including constants and token counts,
which defines a real-valued function over markings of the STPN. A reward is
used to specify quantitative measures of interest to be evaluated by the analysis
engines of ORIS; for example, to evaluate the evolution over time of the number
of queued people in the model of Fig. 4, it is sufficient to evaluate the reward
“Queue”.

The ORIS tool provides different analysis engines [11] enabling rewards eval-
uation through different techniques. The nondeterministic engine is designed
to enable nondeterministic analysis of the state space of an STPN; the Marko-
vian engine implements methods to evaluate models with underlying Continuous
Time Markov Chains (CTMC); the enabling restriction engine is tailored for the
evaluation of Markov Regenerative Processes (MRPs) under the enabling restric-
tion [7]; the forward and the regenerative engines implement different techniques
for the evaluation of MRPs without restrictions on the number of regenerative
states. The regenerative engine enables the evaluation of the transient behav-
ior of an STPN by numerical integration of the Generalized Markov Renewal
equations Pij(t) = Lij(t) +

∑
k∈R

∫ t

0
dGik(u)Pkj(t − u) for all i in the set of

reachable regenerations R and for all j in the set of markings M, where the
global kernel Gik(t) := P{X1 = k, T1 ≤ t | X0 = i} characterizes the next
regeneration point T1 ≥ 0 and regeneration X1 ∈ R, while the local kernel
Lij(t) := P{M(t) = j, T1 > t | X0 = i} defines transient probabilities of the



8 L. Carnevali et al.

process until the next regeneration point. Kernels can be evaluated using the
method of stochastic state classes [8]; this method encodes the marking, the
support of the times-to-fire of enabled transitions after each sequence of firings
between any two regeneration points, and the continuous joint PDF with a piece-
wise representation over Difference Bounds Matrix (DBM) zones [3], that can be
efficiently evaluated in closed-form by the ORIS tool when each transition has
expolynomial PDF [15].

As discussed in Section 2, we are interested in two use cases: predicting the
expected number of people waiting at a stop and predicting the expected number
of people traveling on a tram. According to the semantics of rewards in ORIS,
these metrics can be evaluated for the model of Fig. 4 by using the rewards
“Queue” and “PassengersAfterBoarding”, respectively. The evaluation can be
carried out with the GUI of ORIS, or through its analysis library SIRIO, as
presented in Section 4.

4 Combining SIRIO with MDE practices

SIRIO is a Java library from the ORIS tool suite which collects modeling, analysis
and simulation features for STPNs. In this section, we briefly illustrate how to use
the SIRIO library to model and analyze the polling system presented in Section 3
(Section 4.1) and we describe how MDE practices can transform models from
the specification of the meta-model provided in Section 2 to the SIRIO API
(Section 4.2) to evaluate quantitative measures of interest.

4.1 SIRIO modeling and evaluation

Fig. 5 shows the UML class diagram of the SIRIO STPN modeling compo-
nent. An STPN can be modeled by instancing a PetriNet object as an aggre-
gation of instances of Place and Transition. Precedence constraints between
places and transitions can be obtained by adding instances of Precondition
and Postcondition to the PetriNet object. Precondition and Postcondition
classes model precedence constraints between places and transitions, and tran-
sitions and places, respectively. TransitionFeature instances can be added to
a transition: a transition can have an EnablingFunction, a PostUpdater, and
a StochasticTransitionFunction, which represent the condition to enable a
transition, the policy to update the marking after the transition fires, and the
PDF of the time-to-fire of the transition, respectively.

In Listing 1, we provide the SIRIO implementation of the model of the polling
system, described in Section 3. Initially, a PetriNet and a Marking are created
(lines 1 and 2). Then, places are added to the PetriNet through the method
addPlace() (lines 3 to 11). The method returns a Place object, which is used
to reference the newly created place to add preconditions and postconditions.
Similarly, transitions are created through the method addTransition() (lines
12 to 16), which is called on the PetriNet object and returns a Transition
object. After creating places and transitions, it is possible to add Precondition



Using ORIS and SIRIO for MDE of quantitative analytics 9

Fig. 5: Class diagram of the SIRIO STPN modeling component.

and Postcondition instances through the methods addPrecondition() and
addPostcondition(), respectively (lines 17 to 23). To set the initial marking
of the STPN, the method setTokens() can be called for each place (lines 24 to
32). Finally, additional features can be added to transitions through the method
addFeature() (lines 33 to 50). Objects of different types can be passed to this
method to add different features: EnablingFunction objects (line 42) to add
enabling functions, PostUpdater objects (lines 33-35 and 38-39) to add update
functions, and StochasticTransitionFeature objects to add stochastic behav-
ior. Note that the StochasticTransitionFeature class implements static con-
structors to facilitate the creation of the different stochastic transition types pre-
sented in Section 3.2: newDeterministicInstance() for DET transitions (lines
48-49) and IMM transitions (lines 36 and 40); newExponentialInstance() (lines
43-44) for EXP transitions; and newExpolynomialInstance() (lines 45-47) for
expolynomial transitions.

After the creation of the model in the SIRIO specification, regenerative tran-
sient analysis can be performed. In Listing 2, analysis time limit, time tick and
error threshold are set (lines 1 to 3); these parameters are used to create a
builder of a RegTransient object (lines 6 to 10), which is then instantiated
and used to perform the analysis (lines 12 to 14); finally, the reward Queue (or
PassengersAfterBoarding) is evaluated on the solution (lines 17 and 18).

4.2 Mapping meta-models to SIRIO Petri nets

Model-to-model (M2M) transformations are used to move from one domain to
another one much closer to the solution domain [5]. In our case study, the trans-
formation between the proposed meta-model and the Petri net classes used by
SIRIO is automated by following a set of mapping rules for the entire process.
While there is loss of information in the transition from the source model to the



10 L. Carnevali et al.

1 PetriNet net = new PetriNet();
2 Marking marking = new Marking();
3 Place Boarding = net.addPlace("Boarding");
4 Place WaitJitterDelay = net.addPlace("WaitJitterDelay");
5 Place TramArrived = net.addPlace("TramArrived");
6 Place TramCapacity = net.addPlace("TramCapacity");
7 Place Queue = net.addPlace("Queue");
8 Place QueueCapacity = net.addPlace("QueueCapacity");
9 Place PassengersAfterBoarding = net.addPlace("PassengersAfterBoarding");

10 Place PassengersAfterLeaving = net.addPlace("PassengersAfterLeaving");
11 Place TramPassengersBeforeTramArrival = net.addPlace("TramPassengersBeforeTramArrival");
12 Transition serviceArrivalNominal = net.addTransition("serviceArrivalNominal");
13 Transition serviceArrival = net.addTransition("serviceArrival");
14 Transition leaving = net.addTransition("leaving");
15 Transition boarding = net.addTransition("boarding");
16 Transition passengerArrival = net.addTransition("passengerArrival");
17 net.addPostcondition(serviceArrivalNominal, WaitJitterDelay);
18 net.addPrecondition(WaitJitterDelay, serviceArrival);
19 net.addPostcondition(serviceArrival, TramArrived);
20 net.addPrecondition(TramArrived, leaving);
21 net.addPostcondition(leaving, Boarding);
22 net.addPrecondition(Boarding, boarding);
23 net.addPostcondition(passengerArrival, Queue);
24 marking.setTokens(WaitJitterDelay, 1);
25 marking.setTokens(TramArrived, 0);
26 marking.setTokens(Boarding, 0);
27 marking.setTokens(Queue, 0);
28 marking.setTokens(QueueCapacity, 10);
29 marking.setTokens(TramCapacity, 4);
30 marking.setTokens(TramPassengersBeforeTramArrival, 0);
31 marking.setTokens(PassengersAfterLeaving, 0);
32 marking.setTokens(PassengersAfterBoarding, 0);
33 boarding.addFeature(new PostUpdater(String.join(
34 "PassengersAfterBoarding=min(PassengersAfterLeaving+Queue,TramCapacity);",
35 "Queue=max(0, Queue-TramCapacity+PassengersAfterLeaving);"), net));
36 boarding.addFeature(StochasticTransitionFeature.newDeterministicInstance("0"));
37 boarding.addFeature(new Priority(0));
38 leaving.addFeature(new PostUpdater(
39 "PassengersAfterLeaving=max(0,PassengersBeforeTramArrival-1);", net));
40 leaving.addFeature(StochasticTransitionFeature.newDeterministicInstance("0"));
41 leaving.addFeature(new Priority(0));
42 passengerArrival.addFeature(new EnablingFunction("Queue<QueueCapacity"));
43 passengerArrival.addFeature(StochasticTransitionFeature.newExponentialInstance(
44 configuration.rate()));
45 serviceArrival.addFeature(StochasticTransitionFeature.newExpolynomial(
46 "0.075467664 * Exp[-0.1 x] + 0.0025155888 * x^1 * Exp[-0.1 x]",
47 new OmegaBigDecimal("0"), new OmegaBigDecimal("60")));
48 serviceArrivalNominal.addFeature(StochasticTransitionFeature.newDeterministicInstance(
49 configuration.serviceArrivalNominalTime()));
50 serviceArrivalNominal.addFeature(new Priority(0));

Listing 1: SIRIO implementation of the model described in Fig. 4.



Using ORIS and SIRIO for MDE of quantitative analytics 11

1 BigDecimal bound = new BigDecimal("2200.0");
2 BigDecimal step = new BigDecimal("10.0");
3 BigDecimal epsilon = new BigDecimal("0.001");
4

5 // analyze
6 RegTransient.Builder builder = RegTransient.builder();
7 builder.timeBound(bound);
8 builder.timeStep(step);
9 builder.greedyPolicy(bound, epsilon);

10 builder.markingFilter(MarkingCondition.fromString("Queue"));
11

12 RegTransient analysis = builder.build();
13 TransientSolution<DeterministicEnablingState, Marking> probs =
14 analysis.compute(net, marking);
15

16 // evaluate reward
17 TransientSolution<DeterministicEnablingState, RewardRate> reward =
18 TransientSolution.computeRewards(false, probs,
19 RewardRate.fromString("Queue"));

Listing 2: SIRIO implementation of the regenerative transient analysis required
to evaluate the reward Queue.

target model, STPNs are used only for analysis purposes and all the required
information is present in the solution domain. Following the classification in [4],
this M2M process can be seen as a unidirectional transformation that computes
a target model from a source model; it uses a relational approach with a set of
mapping rules to link source and target element types.

An instance of the meta-model referring to a precise train network can be
created from JSON input, or retrieved from the database and scanned with a
dedicated Visitor [6] to analyze its structure: the Visitor retrieves all the required
information associated to a precise Route instance, then each stop is treated
separately by creating different PetriNet objects and analyzed independently.
Each model is constructed following the structure introduced in Fig. 4 and then
populated with the parameters that characterize a particular stop:

– The rate of the EXP transition passengerArrival is automatically calcu-
lated as the sum of incoming rates of all passenger types;

– TramCapacity and QueueCapacity places are populated according the access
policy of the stop and tram instances (with controlled access or no limits);

– the PDF of transitions serviceArrivalNominal and serviceArrival is
obtained from the frequency and jitter attributes of the tram stop.

This procedure completely automates the transformation between models
and is implemented through the programming API and classes provided by the
SIRIO library. This approach avoids manual and error-prone construction of a
model for each stop of a tram network.



12 L. Carnevali et al.

Parameter
Stop

1 2 3 4 5 6 7 8

Queue Capacity 25 50 25 50 25 50 25 50
Arrival rate 0.01 0.01 0.02 0.02 0.04 0.04 0.08 0.08

Table 1: Queue capacity and arrival rate (passengers/s) of each stop.

5 Experimentation

In this section, we use the SIRIO library to evaluate quantitative metrics for the
case of an 8-stop tramway line. In particular, we describe our setup (Section 5.1)
and then we discuss the obtained results (Section 5.2).

5.1 Experimentation Setup

We consider the case of a tramway with 8 stops, each modeled as the system
of Fig. 4 with a tram interarrival time equal to 220 s, but with different queue
capacities and passenger arrival rates. To reduce the complexity of the analy-
sis, we consider the arrival process of people at a stop, and the boarding and
the leaving processes on/from the tram as batch processes. In particular, a to-
ken in places Queue, QueueCapacity, TramCapacity, PassengersBeforeTrain
Arrival, PassengersAfterLeaving and PassengersAfterBoarding represents
a group of exactly 5 people. In so doing, the tram capacity is set to 20 peo-
ple (4 tokens), while queue capacity depends on the considered stop, and can
have 25 or 50 people (5 or 10 tokens). Different stops are analyzed with SIRIO
in sequence, using the steady state number of people that already are on the
tram obtained from the analysis of the previous stop. To this end, we evaluate
the expected steady state value of the rewards PassengersAfterBoarding==0,
PassengersAfterBoarding==1, PassengersAfterBoarding==2, PassengersAf
terBoarding==3, and (for a full tram) PassengersAfterBoarding==4. The ob-
tained probabilities are used as the weights of a random switch that draws the
number of people on the tram arriving at the next stop, i.e., which updates the
number of tokens in place PassengersBeforeTrainArrival with a number of
tokens between 0 and 4 (0, 5, 10, 15, or 20 people). Finally, we assume that,
when the tram arrives, exactly 5 people leave it (1 token); then, as many waiting
people as possible board the tram.

The analysis of a stop is performed by evaluating transient rewards Queue
and PassengersAfterBoarding using regenerative analysis based on the method
of stochastic state classes [8], with a time limit equal to 2200 s. Parameters of
models of different tram stops (reported in Table 1) are selected with the intent
of evaluating how changes can influence these metrics.

5.2 Experimentation Results

The graphs in Fig. 6 show the transient behaviors of the expected number of
queued people at the stop (blue dashed line) and people traveling on a tram



Using ORIS and SIRIO for MDE of quantitative analytics 13

(red solid line), for each stop. In Fig. 6a and Fig. 6b, the arrival rate at the stop
is equal to 0.01 passengers/s, and it can be observed that the queue does not
saturate or saturates very slowly, respectively. In particular, since empty trams
periodically arrive at the stop, in Fig. 6a the queue is always emptied before
reaching its capacity. Moreover, the expected number of people in the queue at
the beginning of each tram period reaches a steady state. As the rate increases
(Fig. 6c to Fig. 6h), queue saturation occurs earlier. This can be mitigated
by increasing the queue capacity (compare, for example, Fig. 6c and Fig. 6d);
however, already with arrival rate equal to 0.04 s (Fig. 6e and Fig. 6f), the queue
saturates within the first two periods of tram arrival.

The red curve in each figure shows an initial period in which queued people
wait for the first tram to pass. With the exception of the first stop, where the first
tram arrives empty (the red line starts at 0), at the other stops, the tram arrives
with a number of passengers that depends on the number of people who left the
previous stop. After the first period, the distribution of the expected number
of people on the tram exhibits a periodic behavior. Since it is assumed that as
many passengers as possible board the tram, as soon as the queue saturates, the
tram becomes fully occupied, and the expected number of people on the tram
reaches its maximum value. In addition, this behavior occurs very quickly in the
final stops, which happens because trams arrive at the final stops already full.
For example, since stop 3 tram becomes full within the third period, the next
stop distributions reach the steady state almost immediately.

6 Conclusions

In this work, we illustrated how to use the ORIS tool and the SIRIO library as
a software platform to develop quantitative predictive analytics. To this end, we
combined a practical perspective, aimed at avoiding crowding at tramway stops
to limit the spread of infection in a pandemic, with a formalized abstraction in
the framework of the theory of polling systems, highlighting how the two per-
spectives are effectively connected through practices of MDE. Note that, while
the scenario of tramway lines is used as an application example to show that
ORIS and SIRIO are easily usable and provide effective support to develop effi-
cient analytics, stochastic models for distributed concurrent systems have been
widely used to represent crowd scenarios, typically exploiting fluid flow analysis
based on the solution of ordinary differential equations. As an example, in [2],
stochastic process algebra and stability analysis are used to evaluate coordina-
tion of agents in large collective systems. Stochastic process algebra and fluid
flow approximation are used also in [10] to study emergent crowd behavior.

Experimental results achieved in Section 5 suggest that, though the expected
number of queued people at a tram stop is recurrently perturbed by the pro-
cess of tram arrivals and the expected number of tram passengers is recurrently
perturbed by the process of leaving and boarding at the tram stops, the distri-
bution of the number of queued people and the distribution of number of tram
passengers at the beginning of each tram period actually reach a steady state,



14 L. Carnevali et al.

in just a few periods. Therefore, the steady state distribution of the number of
tram passengers computed at a tram stop can be considered as the initial distri-
bution of the number of tram passengers at the subsequent tram stop, enabling
the formulation of an optimization problem where the system parameters are
selected so as to balance the queue size at the various stops along the line.

Future work includes defining a theoretical framework to characterize the
obtained experimental results, extending the model with additional parameters
such as different limits on the number of people that can ride the tram at each
stop of a line, and performing a broader experimentation by varying a larger set
of parameters for a larger number of parameter values.

References

1. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27
(2009)

2. Bortolussi, L., Latella, D., Massink, M.: Stochastic process algebra and stability
analysis of collective systems. In: International Conference on Coordination Lan-
guages and Models. pp. 1–15. Springer (2013)

3. Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains in
the analysis of non-Markovian models. IEEE Tr. Soft. Eng. 35(2), 178–194 (2009)

4. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Con-
text of the Model Driven Architecture. vol. 45, pp. 1–17. USA (2003)

5. Da Silva, A.R.: Model-driven engineering: A survey supported by the unified con-
ceptual model. Computer Languages, Systems & Structures 43, 139–155 (2015)

6. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional (1995)

7. German, R., Logothetis, D., Trivedi, K.S.: Transient analysis of Markov regenera-
tive stochastic Petri nets: A comparison of approaches. In: Proc. 6th Int. Workshop
on Petri Nets and Performance Models. pp. 103–112. IEEE (1995)

8. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian
models using stochastic state classes. Perf. Eval. 69(7-8), 315–335 (2012)

9. Ibe, O.C., Trivedi, K.S.: Stochastic Petri net models of polling systems. IEEE
Journal on Selected areas in Communications 8(9), 1649–1657 (1990)

10. Massink, M., Latella, D., Bracciali, A., Hillston, J.: A combined process algebraic,
agent and fluid flow approach to emergent crowd behaviour. Tech. rep., CNR-ISTI
(2010)

11. Paolieri, M., Biagi, M., Carnevali, L., Vicario, E.: The ORIS tool: quantitative
evaluation of non-Markovian systems. IEEE Tr. Soft. Eng. 47(6), 1211–1225 (2019)

12. Schmidt, D.C.: Model-driven engineering. Computer-IEEE Computer Society-
39(2), 25 (2006)

13. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–
25 (2003). https://doi.org/10.1109/MS.2003.1231146

14. Sirio: The Sirio Library for the Analysis of Stochastic Time Petri Nets,
https://github.com/oris-tool/sirio

15. Trivedi, K.S., Sahner, R.: SHARPE at the age of twenty two. ACM SIGMETRICS
Performance Evaluation Review 36(4), 52–57 (2009)

16. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE software 31(3), 79–85 (2013)



Using ORIS and SIRIO for MDE of quantitative analytics 15

(a) Stop 1 (b) Stop 2

(c) Stop 3 (d) Stop 4

(e) Stop 5 (f) Stop 6

(g) Stop 7 (h) Stop 8

Fig. 6: Expected number of groups of 5 people waiting for a tram at the stop
(blue dashed line) and traveling on a tram (red solid line), for each stop, as a
function of time (in s).


