
The ORIS tool: app, library, and toolkit for
quantitative evaluation of non-Markovian systems

Laura Carnevali
Information Engineering Dept.

Univ. of Florence
laura.carnevali@unifi.it

Marco Paolieri
Computer Science Dept.

Univ. of Southern California
paolieri@usc.edu

Enrico Vicario
Information Engineering Dept.

Univ. of Florence
enrico.vicario@unifi.it

ABSTRACT
ORIS is a tool for quantitative modeling and evaluation
of concurrent systems with non-Markovian durations. It
provides a Graphical User Interface (GUI) for model specifi-
cation as Stochastic Time Petri Nets (STPNs), validation by
interactive simulation, and evaluation by several techniques,
computing instantaneous and cumulative rewards. It also
provides an open-source Java Application Programming In-
terface (API) to automate the workflow, and it can be used
as a toolkit for derivation and evaluation of STPNs in model
driven engineering. As distinguishing features, ORIS imple-
ments transient and steady-state analysis of STPNs with
underlying Markov Regenerative Process (MRP), and tran-
sient analysis of STPNs with underlying Generalized Semi-
Markov Process (GSMP). It also implements nondeterminis-
tic analysis of Time Petri Nets (TPNs), simulation of STPNs,
and solution methods for Continuous-Time Markov Chains
(CTMCs) and MRPs with at most one non-exponential timer
in each state. The well-engineered software architecture of
ORIS supports agile implementation of new STPN features,
new modeling formalisms, and new analysis methods.

Keywords
Software tools and libraries, stochastic models, quantitative
evaluation, stochastic Petri nets, non-Markovian processes,
Markov regenerative processes, model driven engineering.

1. INTRODUCTION
ORIS [24, 23] enables modeling of stochastic systems with

multiple concurrent general (i.e., non-Markovian) timers,
with bounded or unbounded support, and quantitative eval-
uation of their underlying stochastic processes. As shown in
Fig. 1, ORIS provides a GUI for specification of STPNs [35],
their validation by interactive simulation, and their transient
or steady-state analysis by different methods making differ-
ent assumptions on the underlying stochastic process. ORIS
also includes SIRIO [29], an open-source API enabling access
to the GUI functions and to additional features for symbolic
manipulation of multivariate distributions and generalization
of the modeling formalism and the solution techniques.

As characterizing feature, ORIS implements the method
of stochastic state classes [35, 18], enabling quantitative eval-
uation of non-Markovian models underlying an MRP [21]
(if a new regeneration is always reached with probability 1,

Copyright is held by author/owner(s).

GUI User

CRUD model

Client App

validate

«include»

evaluate

specify rewards

cumulative

first passage

solve

plot results

steady state transient

regenerative analysis

Markovian analysis

enabling restriction analysis

forward analysis

token game

nondeterministic analysis

export to Java
«extend»

«include»

«include»

«include» «include»

«extend»

«extend»

simulation

extended modeling features

generalized analysis framework

symbolic class manipulation

Figure 1: Use-case diagram of the functionalities
provided by the GUI and API of the ORIS tool.

i.e., a state satisfying the Markov condition) or a GSMP:
i) exact transient and steady-state analysis of STPNs with
underlying an MRP that always reaches a new regeneration
within a bounded number of state transitions (bounded re-
generation restriction); ii) exact transient analysis of STPNs
with bounded number of state transitions within the time
limit and approximate transient analysis of STPNs, with not
restriction on the occurrence of regenerations.

ORIS also offers a basic implementation of transient and
steady-state analysis of STPNs with underlying CTMC [30]
and transient analysis of STPNs with underlying MRP satis-
fying the enabling restriction [15] (i.e., at most one general
timer enabled in each state), which are the focus of tools
like PRISM [22], SHARPE [32], TimeNET [37], and Great-
SPN [2]. Moreover, ORIS implements transient and steady-
state simulation of STPNs, and nondeterministic analysis of
the underlying TPNs [34] based on the enumeration of the
state class graph, also used in qualitative verification tools
like Tina [5], Romeo [12], and Uppaal [3].

ORIS has been used, as a GUI or library, to perform quan-
titative evaluation of stochastic models in various application
domains, e.g., design and testing of real-time software [10,
25], performability evaluation of railway signalling systems [7]
and of repair procedures for gas and water distribution net-

works [8, 11], and human activity recognition for ambient
assisted living [9, 6]. The flexible and extensible software
architecture enables the agile implementation of new model
features and analysis algorithms, and facilitates the integra-
tion of the SIRIO library into custom software tools and
toolchains, supporting model driven engineering approaches
where STPNs are instantiated from domain metamodels and
analyzed in automated manner for many parameter values.
Moreover, ORIS has been used as a support for teaching
quantitative modeling and evaluation of non-Markovian sys-
tems in master courses of the University of Florence, e.g.,
“Quantitative Evaluation of Stochastic Models”.

The ORIS tool is freely available at oris-tool.org, and a
tutorial is available at oris-tool.org/tutorial. The source
code of the SIRIO library is available at github.com/oris-
tool/sirio under the AGPL licence, and a ready-to-use project
is available at github.com/oris-tool/sirio-examples.

This paper is a short version of [24]1, where we recall how
to build and analyze STPNs (Sections 2 and 3). Then, we
discuss how to use ORIS as a toolkit to support model driven
engineering from domain metamodels to runtime analysis
(Section 4), through an example from the context of smart
transportation. Finally, we draw our conclusions (Section 5).

2. MODEL SPECIFICATION

2.1 Stochastic Time Petri Nets (STPNs)
STPNs [35] model concurrent systems with stochastic

temporal parameters. As shown in Fig. 2, they consist of:
transitions (depicted as vertical bars) modeling activities;
tokens within places (depicted as dots inside circles) modeling
the system logical state; and directed arcs from input places
to transitions and from transitions to output places (depicted
as directed arrows), modeling token moves at the execution
of activities. A marking assigns a natural number of tokens
to each place. A transition is enabled if all its input places
contain at least one token; upon firing, it removes one token
from each input place and adds one to each output place.

A transition t is termed immediate (IMM) or deterministic
(DET) if its time to fire τ is zero or a positive value, respec-
tively. Otherwise, t is termed exponential (EXP) or general
(GEN) if τ is a continuous random variable with EXP or
GEN Probability Density Function (PDF), respectively.

As stochastic reward nets [31] and stochastic activity net-
works [28], STPNs support enabling functions restricting the
enabling of a transition through constraints on token counts.
STPNs also support update functions specifying additional
updates of token counts after a firing, reset sets forcing the
restart of selected transitions, and priorities imposed among
IMM or DET transitions. If omitted, default feature values
are an always-true enabling function, an identity update
function, an empty reset set, weight 1, and priority 0.

Arc cardinalities larger than 1 could be easily introduced
by letting the firing of a transition remove an arbitrary
number of tokens from each input place or add an arbitrary
number of tokens to each output place. Though supported by
SIRIO, arc cardinalities were not included in the ORIS GUI
to reduce model clutter, in contrast with explicit features
provided by other tools [37]; instead, arc cardinalities can be
modeled in ORIS through enabling and update functions.

1When referring to ORIS and SIRIO, please cite [24].

Figure 2: ORIS GUI: STPN model of software re-
juvenation. IMM, DET, EXP, GEN transitions are
represented by thin black bars, thick gray bars, thick
white bars, black thick bars, respectively, labeled
with e, u, r if having non-default value of enabling
function, update function, reset set, respectively.

2.2 Structure of concurrency
We recall the model specification workflow using the exam-

ple of software rejuvenation [33, 27, 13, 20] of Fig. 2, where
a software system inspired by [14] is restarted periodically
to prevent failures due to software aging and reduce unavail-
ability intervals. First, feasible behaviours are identified by
the concurrency structure and qualitative timing constraints.
Specifically, the basic structure of concurrency is represented
by the underlying Petri Net (PN) (i.e., places, transitions,
enabling and update functions, priorities), capturing the
concurrency between the aging process of the software sys-
tem (transitions fail, detect, and repair model the time
required by software aging, failure detection, and unplanned
repair, respectively) and the rejuvenation mechanism (tran-
sitions clock and rejuvenate model the time between two
consecutive rejuvenations and the rejuvenation time, respec-
tively). Update functions model the interactions between
the software system and the rejuvenation mechanism: the
update function of transition clock flushes places Up, Down,
and Detected to represent system switch-off during rejuvena-
tion; the update function of transition rejuvenate assigns a
token to place Up to model system restart after rejuvenation;
the update function of transition detect flushes place Wait

to account for disabling of rejuvenation during unplanned
repair; and, the update function of transition repair adds a
token to place Wait to model reschedule of rejuvenation.

Firm timing constraints and reset sets further restrict
possible behaviors by extending the PN into a TPN [4], de-
termining the set of timed firing sequences, i.e., sequences
of transition firings, associated with the time between each
pair of consecutive firings. In Fig. 2, we assume that the
system specification requires the failure detection time to
be lower than 4 h, the repair time to be between 4 and 24 h,
the rejuvenation time to be lower than 2 h, and the rejuvena-
tion period to be 168 h (7 days). Thus, detect, repair and
rejuvenate have support [0, 4] h, [4, 24] h, and [0, 2] h, re-
spectively, while clock has a deterministic value of 168 h.
Conversely, we assume that the failure time is unbounded,
thus fail has support [0,∞) h. The initial marking is
Up Wait, i.e., system up and rejuvenation timer just started.

https://www.oris-tool.org
https://www.oris-tool.org/tutorial
https://github.com/oris-tool/sirio
https://github.com/oris-tool/sirio
https://github.com/oris-tool/sirio-examples

2.3 Stochastic parameters
Feasible behaviours are associated with a measure of prob-

ability by setting distributions and weights of transitions,
identifying an STPN that casts the timed firing sequences of
the underlying TPN into a probability space [25]. ORIS sup-
ports expolynomial PDFs [32], i.e., products of exponentials
and polynomials, on bounded or unbounded supports, with
analytical representation over its domain or piecewise-defined
over multiple sub-domains, with EBNF syntax:

expr := prod { + prod }
prod := float { * term }
term := x | x^ int | Exp[float x]

where float and int are floating-point and integer constants,
respectively, e.g., 4.0 * Exp[-2.0 x] * x^2.

Expolynomials represent common PDFs (e.g., Erlang, uni-
form) and enable approaches to fit data (e.g., moments [36],
shape [19, 26]) obtained in different manners (e.g., esti-
mated from measurements, synthetically generated). In
Fig. 2, we assume the failure time was repeatedly mea-
sured, with values lower than x1 = 72 h (3 days), x2 = 144 h
(6 days), and x3 = 216 h (9 days) with frequency p1 = 0.001,
p2 = 0.006, and p3 = 0.016, respectively, and, larger than x3
with frequency p4 = 0.984 and mean value 672 h (28 days).
These measurements can be modeled by the PDF of tran-
sition fail, piecewise-defined over 4 intervals: i) 3 uni-
form PDFs with value 0.0000139, 0.0000694, and 0.000139
over [0, 72) h, [72, 144) h, and [144, 216) h, respectively, fitting
the PDF of time to failure within each interval [xi, xi+1) as
(pi+1 − pi)/(xi+1 − xi) ∀ i ∈ {0, 1, 2}, with x0 = p0 = 0;
ii) a shifted exponential PDF f(x) = p3α exp(−λx) for
x ∈ [x3,∞) with rate λ = 0.002193, shift x3 = 216 h, and
α = 0.003522 with mean value of 672 h when x > x3). Other,
more complex, expolynomial PDFs could be used. Con-
versely, we assume no measurements for the duration of
failure detection, repair, and rejuvenation, associating tran-
sitions detect, repair, and rejuvenate with uniform PDF.

Weights are used to select one of the enabled IMM tran-
sitions or DET transitions with the same value, modeling
discrete probabilistic choices depending on the logical state
(e.g., probability of message losses depending on the channel
conditions). Weights are defined as expressions of token
counts in the current marking, e.g., 2.0*p1. Rates of EXP
transitions can also be functions of the current marking, mod-
eling durations depending on the logical state (e.g., service
rates depending on the number of available servers).

2.4 Model validation
The model is validated by interactive simulation to achieve

confidence about its correspondence with the modeling aim,
exploring the state space either manually, by selecting the
next transition to fire, or automatically, by specifying a
number of transition firings or a stop condition (i.e., function
of the current marking). To support inspection, the firing
probability and the range of firing times of transitions are
evaluated by the method of stochastic state classes [18].

3. MODEL EVALUATION

3.1 Rewards and stop conditions
Rewards and stop conditions enable the evaluation of the

probability of a subset of execution paths satisfying specific

criteria, and to calculate the expected value of rewards ac-
crued in each state of such paths, supporting the assessment
of non-functional requirements of stochastic systems.

Rewards. ORIS supports evaluation of rewards defined
from the marking process M = {M(t), t ∈ R≥0} where M(t)
is the marking at time t ≥ 0. A reward r is an expression e
combining constants and token counts so as to define a real-
valued function over the set of markings, with EBNF syntax:

c := place id | constant
e := c | (e) | e + e | e - e | e / e | e * e | e ^ e | e == e
| e != e | e > e | e >= e | e < e | e <= e | e != e | e && e
| e || e | ! e | If(e , e , e) | min(e , e) | max(e , e)

where place identifiers evaluate to the number of tokens
assigned by the marking M(t), operators have the same
precedence as in Java, comparison operators return 0 or 1,
and If(e1, e2, e3) is a ternary conditional if operator as in
Java (i.e., it evaluates to the value of e2 or e3 depending
on whether e1 evaluates to true or false, respectively). In
particular, If(φ, 1, 0) returns the probability of φ, i.e., the
measure of probability of the set of behaviors where the mark-
ing satisfies the (state) property φ, e.g., if p1 and p2 are names
of two places, the reward expression If(p1 + p2 > 0, 1, 0)
evaluates the probability of states where at least one token
is contained in p1 or p2. Since e1 and e2 are expressions, the
ternary operator also permits more complex forms imple-
menting an if-then-else logic, with possible nesting. A reward
can also be defined as a simple expression e, which is a short-
hand of the form If(true, e, 0) and evaluates the expected
value of e, e.g., the reward expression p1 + p2 evaluates the
expected value of the sum of tokens in p1 and p2.

ORIS supports the evaluation of the expected value of
rewards during the transient evolution of the stochastic pro-
cess and at steady-state. Let pij(t) = P{M(t) = j |X0 = i}
and pij = limt→∞ pij(t) be, respectively, the transient and
steady-state probabilities for each initial regeneration i ∈ R
(initial marking with times to fire sampled independently)
and each marking j ∈M. A reward r is evaluated for each
marking j ∈M to compute the instantaneous expected re-
ward Iir(t) =

∑
j∈M r(j) pij(t) at each time t, its steady-state

expected value I
i
r = limt→∞ I

i
r(t) =

∑
j∈M r(j) pij , or its

cumulative expected value Ci
r(t) =

∫ t

0
Ir(t) dt up to t.

Rewards can be used to evaluate a variety of non-functional
requirements, e.g., for the model of Fig. 2, a measure of
system availability can be expressed as r(m) = Up, which
returns the probability to be in a correctly functioning state.

Stop Conditions. Stop conditions turn states that satisfy a
Boolean predicate into absorbing states where all transitions
are disabled and the system sojourns indefinitely, enabling
the evaluation of quantitative measures where only a sub-
set of execution paths is of interest. For example, system
reliability (i.e., the “probability that the system will con-
tinuously perform its intended function during a specified
period of time [0, T]”) can be computed using a stop condi-
tion that evaluates to true when the system is down, i.e.,
Up==0. Then, the instantaneous expected value of the reward
r(m) = Up at time T excludes execution paths where the
system is up at T but has visited a down state before.

In ORIS, stop conditions are Boolean functions s : M→
{true, false} over the set of markings, with the same syntax
as rewards, where any nonzero value is considered true.

Figure 3: ORIS GUI: for the STPN model of Fig. 2,
plots show transient rewards providing the transient
unavailability (top), cumulative unavailability (cen-
ter), and transient unreliability (bottom).

Stop conditions enable evaluation of reach-avoid objec-
tives equivalent to a bounded until operator φ1 U [0,t]φ2 of
probabilistic model checking [25], which specifies the set of
behaviors where a safety condition φ1 is always satisfied until
a goal condition φ2 is reached within the time bound t. To
evaluate the probability measure of these behaviors, the user
can run transient analysis using the stop condition !φ1 ||φ2

(i.e., stop on illegal or goal states) and evaluate the reward
φ2 for each time instant t (i.e., compute the probability
that a goal state is reached by t traversing only safe states).

Probabilistic until and probabilistic existence true U [0,t]φ2

are the most frequent specification patterns for quality and
dependability requirements of software-intensive systems in
domains like automotive systems and railway signalling [17].

Example. The model of Fig. 2 is analyzed by regenerative
transient analysis with time limit tmax = 1344 h (8 weeks)
and step size k = 0.005 h, so that probabilities are evaluated
for all t = 0, k, 2k, . . . , b tmax

k
ck. We evaluate the transient

unavailability, i.e., the probability that the system is not
working at time t, by computing the instantaneous reward
Down>0||Detected>0||Rej>0, with initial marking Up Wait.
We also evaluate the cumulative unavailability, i.e., the ex-
pected outage time within [0, t]. As shown in Fig. 3, unavail-
ability is very high (nearly 0.993) at time 168 h, since this is
the schedule time of the first rejuvenation and the probability

that the system fails sooner is low (nearly 0.009). As time
progresses, failures and repairs before rejuvenation become
more frequent, reducing unavailability at peaks produced by
the initial schedule (rejuvenation is rescheduled after repair),
and slightly increasing unavailability between peaks.

We also compute the transient unreliability, i.e., transient
probability that the system has failed at least once by time t,
by computing the instantaneous reward Down>0 with stop
condition Down>0 and initial marking Up Wait. As shown in
Fig. 3, system reliability is low: it could be improved with
more frequent rejuvenations, though reducing availability.

3.2 Analysis engines
ORIS provides a suite of analysis engines (see Fig. 1) im-

plementing different solution methods while leveraging the
same input format for rewards and stop conditions. Each
engine imposes different limitations on the class of the under-
lying stochastic process of the STPN, which result in more
efficient solution methods, but can require additional care
(or approximations) during the modeling phase. Complexity
factors of each engine are extensively discussed in [24].

Markovian Engine. It implements standard methods for
transient and steady-state analysis of CTMCs [30], requiring
STPNs with only EXP and IMM transitions, also known as
Generalized Stochastic Petri Nets (GSPNs) [1]. To overcome
this limitation, each GEN transition can be replaced (prior
to analysis) with the sequence of EXP transitions obtained
by a phase-type approximation, e.g., through PhFit [19].

Enabling Restriction Engine. It implements transient
analysis for MRPs under enabling restriction [16], requiring
STPNs with at most one GEN transition enabled in each
state. It partitions the state space in subgraphs where only
a specific GEN transition is enabled: the transient solution
of each subgraph (computed with uniformization) is used to
evaluate the global and local kernels of the MRP, which are
used to solve a system of Volterra integral equations [21].

Regenerative Engine. It implements transient and steady-
state analysis of MRPs with multiple GEN transitions en-
abled in each state [18]. Steady-state analysis requires the
bounded regeneration restriction, which can be checked for
an STPN by the (terminating) algorithm for nondeterminis-
tic analysis of the underlying TPN. Transient analysis can
lift this restriction by allowing an error in the enumeration of
MRP subgraphs [18]. The implementation leverages enumer-
ation of stochastic state classes, which encode (symbolically)
the joint PDFs of transition timers after each firing.

Forward Engine. It provides transient analysis of STPNs
without restrictions on the occurrence of regenerations [18].
The implementation enumerates a single graph of stochastic
state classes until the earliest firing times of transitions along
each sequence surpass the time bound. To reduce the number
of classes, the user can specify a truncation error, comprising
the guaranteed error bound between approximate and exact
probabilities. A truncation error is required if the STPN
allows cycles of transitions firing in zero time [18].

Nondeterministic Engine. It implements nondeterminis-
tic analysis of the state space of STPNs [34]. The implemen-
tation encodes the dense set of timed states reached by an
STPN as a directed graph (state class graph) where edges
are transition firings and nodes are state classes comprising
a marking and a set of timer values. This analysis supports
verification of qualitative properties of the model.

Figure 4: STPN model of a passenger queue.

4. MODEL-DRIVEN ENGINEERING
During early design, as well as implementation and integra-

tion stages, stochastic models provide a valuable means to as-
sess non-functional requirements of a system through the eval-
uation of quantitative performance metrics (e.g., throughput,
waiting time, rejection rate) and dependability attributes
(e.g., availability, reliability, maintainability, security). Ad-
vancements in tools that generate and evaluate these models
have enabled model-driven engineering of complex and cy-
berphysical systems ranging from real-time and self-adapting
software components, to critical infrastructures for telecom-
munication, transportation, or power/water/gas distribution.

Notably, while most existing approaches are limited to
stochastic models governed by EXP random variables, ORIS
supports models with deterministic timers (e.g., timeouts)
and non-EXP durations (e.g., delays in train networks). At
the same time, its Java library (SIRIO) and toolkit facilitate
the development of domain-specific tools exploring different
system designs and parameters. To illustrate this approach,
we consider the case study of passenger queues at tram stops.

Domain Model and System Requirements. The transportation
network includes lines and stations: trains leave from the
initial station of a line at regular time intervals, arriving
at each station after a constant delay (the nominal time to
travel from the initial station), plus a random jitter ; the
time between consecutive arrivals of passengers to a station
is also a random variable. A global admission policy controls
the number of passengers allowed to board the train, so that
passengers with similar waiting times can be admitted at the
following stations; and, if the queue is longer than a given
threshold, passengers abandon the station. We evaluate the
number of passengers waiting at a station, the probability
that at least some passenger will be denied boarding, and the
probability that a newly arrived passenger will abandon the
station, which might be used to support early evaluation of
the impact of social distancing measures during a pandemic.

STPN Model. To model the passenger queue at a station, we
define the model illustrated in Fig. 4: passengers arrive with
exponential interarrival time (transition passengerArrival)
with rate equal to 0.01 times the number of tokens in place
Arrival; trains arrive after a deterministic delay equal to
220 (transition serviceArrival) plus a jitter distributed
over [0, 60] according to either a uniform PDF, or the PDF
f(x) = C[3 exp(−x/10) + (x/10) exp(−x/10)] where C =
40−100 exp(−6). The number of passengers allowed boarding
is equal to the number of tokens in place TrainCapacity

(i.e., transition boarding has the update function “Queue
= max(0, Queue-TrainCapacity)”). When QueueCapacity

passengers are already waiting, newly arrived passengers
abandon the station (i.e., passengerArrival has enabling
function “Queue < QueueCapacity”).

Figure 5: Queue size (green), probability of board-
ing denial (red), and queue abandonment (blue) for
uniform (top) and expolynomial jitter (bottom).

Metrics Evaluation. The metrics of interest can be eval-
uated at each time t using regenerative transient analysis
and rewards “Queue” (expected number of passengers wait-
ing for a train), “If(Queue>TrainCapacity,1,0)” (prob.
of at least one boarding denial upon train arrival), and
“If(Queue==QueueCapacity,1,0)”(prob. of queue abandon-
ment upon passenger arrival). We repeat the evaluation of
these transient rewards for our two choices of jitter PDF,
using a time step ∆t = 5 for t ∈ [0, 1000]. As shown in Fig. 5,
all metrics drop sharply near the expected arrival times of the
trains: the expected number of waiting passengers oscillates
between 10 and 20, while the probability of boarding denials
(red) is higher than that of queue abandonment (blue). Using
steady-state regenerative analysis, we can evaluate the value
of these metrics at steady-state: respectively, 16.8, 0.94 and
0.43 for both jitter PDFs (uniform and the expolynomial).
Each analysis completes in under 2 minutes.

5. CONCLUSIONS
This paper illustrates the usual modeling and evaluation

workflow in ORIS. Specifically, ORIS can be used as a GUI,
supporting quick development of a model and validation of
its operation by interactive simulation or evaluation of quan-
titative metrics (see Sections 2 and 3). It can be used also as
a toolkit, supporting export of the model from the GUI as
Java code, using the SIRIO API, allowing the user to intro-
duce quantitative evaluation of parametric non-Markovian
models into larger software projects (see Section 4).

6. REFERENCES
[1] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of

generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems. ACM Trans.
Comput. Syst., 2(2):93–122, May 1984.

[2] E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli,
and G. Franceschinis. 30 Years of GreatSPN, chapter
In: Principles of Performance and Reliability Modeling
and Evaluation: Essays in Honor of Kishor Trivedi,
pages 227–254. Springer, Cham, 2016.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial
on uppaal. In SFM-RT’04, number 3185 in LNCS,
pages 200–236. Springer–Verlag, September 2004.

[4] B. Berthomieu and M. Diaz. Modeling and Verification
of Time Dependent Systems Using Time Petri Nets.
IEEE TSE, 17(3):259–273, 1991.

[5] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool
TINA – construction of abstract state spaces for Petri
Nets and Time Petri Nets. International Journal of
Production Research, 42(14), 2004.

[6] M. Biagi, L. Carnevali, M. Paolieri, F. Patara, and
E. Vicario. A continuous-time model-based approach
for activity recognition in pervasive environments.
IEEE Trans. on Human-Machine Systems,
49(4):293–303, 2019.

[7] M. Biagi, L. Carnevali, M. Paolieri, and E. Vicario.
Performability evaluation of the ERTMS/ETCS - Level
3. Transportation Research Part C: Emerging
Technologies, 82:314–336, 2017.

[8] M. Biagi, L. Carnevali, F. Tarani, and E. Vicario.
Model-based quantitative evaluation of repair
procedures in gas distribution networks. ACM Trans.
on Cyber-Physical Systems, 3(2):19:1–19:26, Dec. 2018.

[9] L. Carnevali, C. Nugent, F. Patara, and E. Vicario. A
Continuous-Time Model-Based Approach to Activity
Recognition for Ambient Assisted Living. In QEST’15,
pages 38–53. Springer, 2015.

[10] L. Carnevali, L. Ridi, and E. Vicario. A quantitative
approach to input generation in real-time testing of
stochastic systems. IEEE TSE, 39(3):292–304, 2013.

[11] L. Carnevali, F. Tarani, and E. Vicario. Performability
evaluation of water distribution systems during
maintenance procedures. IEEE Trans. on Systems,
Man and Cybernetics: Systems, to appear.

[12] G. Gardey, D. Lime, M. Magnin, and O. Roux. Roméo:
a tool for analyzing Time Petri Nets. CAV’05, 2005.

[13] S. Garg, A. Puliafito, M. Telek, and K. Trivedi.
Analysis of preventive maintenance in transactions
based software systems. IEEE TC, 47(1):96–107, 1998.

[14] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi.
Analysis of software rejuvenation using Markov
Regenerative Stochastic Petri Net. In ISSRE’95, pages
180–187, 1995.

[15] R. German. Iterative analysis of Markov regenerative
models. Perform. Eval., 44(1-4):51–72, 2001.

[16] R. German, D. Logothetis, and K. S. Trivedi. Transient
analysis of Markov regenerative stochastic Petri nets: a
comparison of approaches. In PNPM’95, pages 103–112,
1995.

[17] L. Grunske. Specification patterns for probabilistic
quality properties. In ICSE’08, pages 31–40. ACM,
May 2008.

[18] A. Horváth, M. Paolieri, L. Ridi, and E. Vicario.
Transient analysis of non-Markovian models using
stochastic state classes. Perform. Eval.,
69(7-8):315–335, July 2012.

[19] A. Horváth and M. Telek. PhFit: A General
Phase-Type Fitting Tool. In Computer Performance
Evaluation, Modelling Techniques and Tools
(TOOLS’02), pages 82–91, 2002.

[20] Y. Huang, C. M. R. Kintala, N. Kolettis, and N. D.
Fulton. Software Rejuvenation: Analysis, Module and
Applications. In International Symposium on
Fault-Tolerant Computing, pages 381–390, 1995.

[21] V. Kulkarni. Modeling and analysis of stochastic
systems. Chapman & Hall, 1995.

[22] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: verification of probabilistic real-time systems. In
CAV’11, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

[23] ORIS. Homepage. http://www.oris-tool.org, 2021.

[24] M. Paolieri, M. Biagi, L. Carnevali, and E. Vicario.
The ORIS Tool: Quantitative Evaluation of
Non-Markovian Systems. IEEE Trans. on Soft. Eng.,
47:1211–1225, 2021.

[25] M. Paolieri, A. Horváth, and E. Vicario. Probabilistic
Model Checking of Regenerative Concurrent Systems.
IEEE TSE, 42(2):153–169, Feb 2016.

[26] P. Reinecke, T. Krauß, and K. Wolter. Phase-Type
Fitting Using HyperStar. In EPEW’13, pages 164–175,
2013.

[27] F. Salfner and K. Wolter. Analysis of service
availability for time-triggered rejuvenation policies.
Journal of Sys. and Soft., 83(9):1579 – 1590, 2010.

[28] W. H. Sanders and J. F. Meyer. Stochastic activity
networks: formal definitions and concepts. In School
Europ. Educ. Forum, pages 315–343. Springer, 2000.

[29] SIRIO. https://github.com/oris-tool/sirio, 2021.

[30] W. J. Stewart. Introduction to the Numerical Solution
of Markov Chains. Princeton University Press, 1995.

[31] K. S. Trivedi. Probability and statistics with reliability,
queuing, and computer science applications. John Wiley
and Sons, New York, 2001.

[32] K. S. Trivedi and R. Sahner. SHARPE at the Age of
Twenty Two. SIGMETRICS Perform. Eval. Rev.,
36(4):52–57, Mar. 2009.

[33] A. van Moorsel and K. Wolter. Analysis of restart
mechanisms in software systems. IEEE TSE,
32(8):547–558, Aug 2006.

[34] E. Vicario. Static analysis and dynamic steering of
time-dependent systems. IEEE TSE, 27(8):728–748,
Aug. 2001.

[35] E. Vicario, L. Sassoli, and L. Carnevali. Using
stochastic state classes in quantitative evaluation of
dense-time reactive systems. IEEE TSE, 35(5):703–719,
Sept./Oct. 2009.

[36] W. Whitt. Approximating a point process by a renewal
process, I: Two basic methods. Operations Research,
30(1):125–147, 1982.

[37] A. Zimmermann. Modelling and Performance
Evaluation with TimeNET 4.4. In QEST’17, pages
300–303, 2017.

http://www.oris-tool.org
https://github.com/oris-tool/sirio

	Introduction
	Model specification
	Stochastic Time Petri Nets (STPNs)
	Structure of concurrency
	Stochastic parameters
	Model validation

	Model evaluation
	Rewards and stop conditions
	Analysis engines

	Model-driven engineering
	Conclusions
	References

