
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Predicting Throughput of Distributed
Stochastic Gradient Descent

Zhuojin Li, Marco Paolieri, Leana Golubchik, Sung-Han Lin, and Wumo Yan

Abstract—Training jobs of deep neural networks (DNNs) can be accelerated through distributed variants of stochastic gradient descent
(SGD), where multiple nodes process training examples and exchange updates. The total throughput of the nodes depends not only on
their computing power, but also on their networking speeds and coordination mechanism (synchronous or asynchronous, centralized or
decentralized), since communication bottlenecks and stragglers can result in sublinear scaling when additional nodes are provisioned. In
this paper, we propose two classes of performance models to predict throughput of distributed SGD: fine-grained models, representing
many elementary computation/communication operations and their dependencies; and coarse-grained models, where SGD steps at each
node are represented as a sequence of high-level phases without parallelism between computation and communication. Using a PyTorch
implementation, real-world DNN models and different cloud environments, our experimental evaluation illustrates that, while fine-grained
models are more accurate and can be easily adapted to new variants of distributed SGD, coarse-grained models can provide similarly
accurate predictions when augmented with ad hoc heuristics, and their parameters can be estimated with profiling information that is
easier to collect.

Index Terms—Distributed Machine Learning, Stochastic Gradient Descent, Performance Prediction, Scalability, PyTorch.

✦

1 INTRODUCTION

In recent years, deep learning [17] has achieved breakthrough
results in many domains, including computer vision, speech
recognition, and natural language processing; notably, to
improve accuracy on increasingly difficult tasks, deep neural
networks (DNNs) with more parameters and with compu-
tationally expensive training have been proposed [10], [32],
[33], [34], [12]. At the same time, to reduce training times,
deep learning has embraced hardware accelerators (including
GPUs, FPGAs and ASICs [16]) to “scale up” and distributed
training algorithms to “scale out”. However, finding the best
configuration (e.g., number of workers) for scale-out usually
requires exhaustively profiling on the performance of every
possible scenario, which is extremely time-consuming and
not scalable for a large number of jobs.

One difficulty in estimating performance of distributed
machine learning is that each training algorithm and architec-
ture can exhibit distinct scalability. The prevalent approach
for distributed training is data-parallel stochastic gradient
descent (SGD), where multiple worker nodes train a local
copy of the same DNN model using different shards of data;
model updates are then shared between workers, using either
a centralized or decentralized architecture, as illustrated in
Fig. 1. To coordinate workers, two main strategies exist:
in Sync-SGD, a worker can proceed to the next SGD step
only after all other workers have completed the current step
and exchanged model updates (i.e., workers start each step

• Zhuojin Li, Marco Paolieri, Leana Golubchik, and Wumo Yan are
with the University of Southern California, Department of Computer
Science, 941 Bloom Walk, Los Angeles, CA 90089, USA. E-mail:
{zhuojinl,paolieri,leana,wumoyan}@usc.edu

• Sung-Han Lin is with Meta, 1 Hacker Way, Menlo Park, CA 94025,
USA. E-mail: sunghanl@fb.com. This work was completed prior to
the author joining Meta.

Submitted to the IEEE Transactions on Parallel and Distributed Systems.

Parameter Server

Worker WorkerWorker

Data Data Data

Pa
ram
ete
rs

Gra
die
nts

(a) Centralized
(Parameter Server)

Worker Worker

Worker
Data

Data

Data

(b) Decentralized
(Ring AllReduce)

Figure 1: Centralized and Decentralized Architectures

synchronously, using up-to-date copies of the model); in
Async-SGD, workers can start local SGD steps independently
of each other, using copies of the DNN model where only
some of the updates have been applied. Async-SGD can
achieve higher job throughput (total examples processed, per
second, by all workers assigned to a training job) than
Sync-SGD, because workers are never idle while waiting
for stragglers [5]; nonetheless, accuracy of trained DNN
models is more reliable for Sync-SGD, which is equivalent to
single-worker training with larger batch size [3], [9], [11].

Both Sync-SGD and Async-SGD can be implemented
using either a centralized or decentralized architecture [2].
A popular centralized architecture is the parameter server
architecture of Fig. 1a, where one or multiple parameter server
nodes hold the global version of the DNN model: before
each SGD step, workers pull the latest model parameters
(downlink phase), independently run SGD on a batch of
training examples (computation phase), and send gradients
back to the parameter server (uplink phase); then, the
parameter server updates the global model with the received
gradients (update phase). In contrast, decentralized architec-
tures commonly use the ring network topology illustrated
in Fig. 1b: after an SGD step, workers perform an AllReduce
operation to exchange and aggregate their updates.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

1 2 3 4 5 6 7
Workers

20

40

60

80

100

120

140

160

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Sync-SGD
Async-SGD

(a) Throughput

1 2 3 4 5 6 7
Workers

0.2

0.4

0.6

0.8

1.0

1.2

D
ow

nl
in

k
Ti

m
e

(s
)

Sync-SGD
Async-SGD

(b) Downlink Time

Figure 2: Training ResNet-152 (batch size of 32 examples) on
AWS p3.2xlarge with PS architecture

2 3 4 5 6 7
Workers

50

100

150

200

250

300

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Ring AllReduce

(a) Throughput

2 3 4 5 6 7
Workers

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
an

sm
is

si
on

 T
im

e
(s

) Ring AllReduce

(b) Transmission Time

Figure 3: Training ResNet-152 (batch size of 32 examples) on
AWS p3.2xlarge with Ring AllReduce architecture

Fig. 2a shows the throughput measured for a training
job of the ResNet-152 image classification DNN [10], using
one parameter server and an increasing number of AWS
p3.2xlarge worker instances, each equipped with an
Nvidia V100 GPU and 10Gbps network. For both Sync-
SGD and Async-SGD, throughput initially scales linearly
but then starts saturating at 5 workers (Sync-SGD) and
6 workers (Async-SGD) due to a network bottleneck at
the parameter server: Fig. 2b shows that the average time
to transmit the up-to-date model (in each training step)
increases with the number of workers; as expected, Async-
SGD can achieve higher throughput. In contrast, with the
decentralized architecture of Fig. 1b, workers using an
AllReduce operation can balance network traffic across links:
Fig. 3a shows that the throughput of decentralized Sync-SGD
can scale linearly as the number of worker nodes grows,
since the transmission time of Ring AllReduce operations
(i.e., the time to exchange data among all workers) converges
to a constant [24], as shown in Fig. 3b 1; while introduced
in [20], decentralized Async-SGD is not presented because
most decentralized architectures use Sync-SGD [8], [4], [13].

To predict scaling characteristics of distributed SGD, most
existing works [27], [26], [21], [37] propose coarse-grained
analytical models, which partition each SGD step into a
strict sequence of communication and computation phases (down-
link, compute, uplink, update). In fact, machine learning
frameworks such as TensorFlow and PyTorch define commu-
nication and computation operations at a much lower level of
granularity, with dependencies that allow, once satisfied, to
overlap their execution. For example, Fig. 4a shows the trace
of an SGD step with overlaps between communication and

1. We observe higher-than-expected transmission time with 7 workers,
due to the significant influence from background traffic on the cloud;
this does not, however, substantially affect the job throughput.

0 50 100 150 200 250 300

Time (ms)

Update

Uplink

Computation

Downlink

(a) Timeline of a Training Step

1 2 3 4 5 6 7
Workers

100

200

300

400

500

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Ours (fine)
Lin et al.
Cynthia
Ours (coarse)

(b) Comparison of Approaches

Figure 4: Training ResNet-50 (batch size of 64 examples) on
AWS p3.2xlarge with Async-SGD

computation: the worker starts the feedforward phase of
the computation (red) as soon as it receives the first DNN
layer during the downlink operation from the parameter
server (yellow); similarly, as soon as the backward phase
of the computation (cyan) is completed for a DNN layer,
its uplink transmission to the parameter server (green) is
initiated. To capture parallelism within an SGD step, our
preliminary work [19] proposes a fine-grained model where
tensor operations are executed as soon as their dependencies
are satisfied, and the gradients of a tensor can be transmitted
in parallel with the computation of other tensors.

Fig. 4b compares our throughput predictions with exist-
ing approaches for a training job of ResNet-50 (batch size
64) on AWS p3.2xlarge. As illustrated, existing coarse-
grained models (yellow, purple) can noticeably mispredict
job throughput. Our fine-grained model of Async-SGD
introduced in [19] (red) analyzes dependencies between
tensor operations (i.e., GPU events such as computation and
data transmission) in the computation graph: profiling traces
collected on a single worker are then used for a discrete-event
simulation estimating throughput with multiple workers.
While more accurate than coarse-grained models, this ap-
proach is computationally more expensive and requires fine-
grained profiling data, which can be difficult to obtain with
some ML frameworks (e.g., currently TensorFlow v2.4 [1] and
PyTorch v1.7 [23] provide no support for profiling distributed
training) and may incur measuring errors due to profiling
overhead of GPUs and other hardware accelerators.

To summarize, performance prediction on distributed
SGD is challenging, because a diversity of distributed train-
ing scenarios (e.g., DNNs, hardware platforms, optimized
algorithm implementations) can exhibit distinct scalability.
Existing coarse-grained models ignore the parallelism within
a training step, resulting in poor predictions when commu-
nication and computation overlap; the fine-grained model
in our preliminary work [19] is computationally expensive
and only targets a specific implementation in TensorFlow. A
detailed review of related work is given in Section 5.

In this paper, we conduct a comprehensive study on both
coarse-grained and fine-grained performance models for dis-
tributed SGD, and systematically evaluate their extendability
across a broad range of scenarios. Specifically, we make the
following contributions.

• We propose heuristics to address the loss of informa-
tion in our coarse-grained model of Async-SGD [21]
due to ignoring parallelism between computation
and communication operations. Our improved coarse-
grained models (blue curve in Fig. 4b) produce
throughput predictions with accuracy similar to fine-

Z. LI, M. PAOLIERI, L. GOLUBCHIK, S.-H. LIN, AND W. YAN: THROUGHPUT PREDICTION OF DISTRIBUTED SGD 3

grained models, but they require only limited profil-
ing information and can be evaluated very quickly.

• We apply our fine-grained Async-SGD model of
[19] to the machine learning framework PyTorch.
Our evaluation shows that this fine-grained model
can be successfully adapted to different underlying
communication libraries (Gloo and NCCL), achieving
predictions with average errors from 2.8% to 5.8%.

• We propose new models, coarse-grained and fine-
grained, for Sync-SGD with centralized and decen-
tralized architectures. These models account for strag-
glers due to the unequal split of network bandwidth
among workers, and they can predict job throughput
with average errors from 2.7% to 4.8%.

• We perform an extensive evaluation of coarse-grained
and fine-grained prediction models using a PyTorch
implementation of Sync-SGD and Async-SGD, for
several real-world DNNs, and on multiple cloud
environments (CloudLab [6] and AWS) with heteroge-
neous computing units (Xeon E5-2630 CPUs, Nvidia
V100 GPUs, and Nvidia T4 GPUs). We highlight the
results for GPU clusters in Table 1 to illustrate that
both approaches can achieve low errors in throughput
predictions, once they account for parallelism between
computation and communication.

2 ASYNCHRONOUS SGD
In this section, we present coarse-grained and fine-grained
models for Async-SGD with parameter server architecture.
In Async-SGD, each worker independently pulls the global
model from the parameter server, performs a local SGD
step, and pushes the resulting gradients of each DNN
layer back to the parameter server, where they are applied
to the global model. Workers compete for downlink and
uplink networking with the parameter server, through an
intermittent communication pattern: to predict network
transmission rates, our models estimate the mean number
of workers concurrently transmitting or receiving data
from the parameter server. In addition, we account for
heterogeneous processing rates at the workers, which can
be provisioned independently and with different types of
hardware accelerators.

Notably, through a heuristic correction, our coarse-
grained model can also address distributed SGD implemen-
tations where fine-grained communication and computation
operations overlap; this occurs in several real-world im-
plementations, where a worker can start the feedforward
computation of a DNN layer as soon as the downlink
of that layer and the feedforward of the previous layer
have completed; similarly, a worker can start the uplink
of the gradients of a layer as soon as its backpropagation
computation has completed, as illustrated in Fig. 4a.

2.1 Coarse-grained Model
In our coarse-grained model of Async-SGD with parameter
server architecture, each SGD step completed by a worker
includes a simple sequence of operations: downlink, com-
pute, uplink, update. While compute operations use local
resources, the rest of the operations use resources shared

1
"!

1
""

1
"!

1
"!

1
"!

1
"#

	"/"/∞

	"/"/1

Downlink Uplink

Computation

Update

Class 1

Class 2

Class !

"/"/1 − '()(*+* "/"/1 − '()(*+*

Figure 5: Queueing Model of Async-SGD

with other workers. To model resource sharing, we adopt
the queueing model illustrated in Fig. 5, where each worker
k ∈ {1, ...,K} has exactly one task circulating through the
queueing stations: after a local computation on a dedicated
station (modeled as a G/G/∞ queue, since it serves at most
one task), the task is routed to the uplink, update, and downlink
stations (modeled as G/G/1 queues), which are shared with
tasks of other workers. While the scheduling model at the
update station is always processor sharing (PS, i.e., n tasks are
served in parallel with rate 1/n), we solve the model using
either a First Come First Serve (FCFS) or PS model at the
downlink and uplink stations: when network utilization is
low, FCFS is an appropriate model because transmissions
of different workers tend to use the links exclusively until
completion (TCP congestion control mechanisms favor the
node that is already transmitting); when network utilization
is high, multiple workers share the network long enough to
reach similar bandwidth proportions, and this is accurately
modeled by a PS model.

The notation for our queueing model is summarized
in Table 2. Let T l,PS

k and T l,FCFS
k denote the mean response

times at station l ∈ {k, U, S,D} calculated with a PS or
FCFS model, respectively, for the task of worker k. For this
queueing model, the response times T l,PS

k and T l,FCFS
k can

be obtained recursively from the mean service times Sl
k

using exact or approximate mean value analysis [29], [28],
respectively. The recursion is on the population vector n⃗ =
(n1, ..., nK), where nk ∈ {0, 1} is the population of each class
k = 1, ...,K :

T l,PS
k (n⃗) = Sl

k

(
1 +

K∑
j=1

N l
j(n⃗− e⃗k)

)
(1)

T l,FCFS
k (n⃗) = Sl

k +
K∑
j=1

Sl
j

(
N l

j(n⃗− e⃗k)−
1

2
ρlj(n⃗− e⃗k)

)
(2)

In these equations, ρlj and N l
j are the utilization and mean

number of tasks of worker j at station l, and e⃗k is a vector
with k-th component equal to 1 and other components equal
to 0. The solution starts with nk = 1 for all k and evaluates
T l,PS
k (n⃗) or T l,FCFS

k (n⃗) for all n⃗ ∈ {0, 1}K ; at each step of the
recursion, N l

j(n⃗− e⃗k) and ρlj(n⃗− e⃗k) are evaluated through
the identities (from Little’s Law)

N l
k(n⃗) = X l

k(n⃗)T
l
k(n⃗)

ρlk(n⃗) = X l
k(n⃗)S

l
k

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Async-SGD Sync-SGD

Basic Overlap Heterogeneous Heterogeneous with overlap Basic Overlap Decentralized

Coarse 4.7% (11.1%) 4.7% (15.2%) 4.8% (16.0%) 3.8% (11.4%) 3.2% (10.0%) 4.1% (10.5%) 5.0% (11.6%)

Fine 5.4% (15.0%) 4.4% (11.4%) 3.5% (11.1%) 3.0% (9.6%) 5.2% (11.9%) 4.7% (10.2%) 2.5% (9.3%)

Table 1: Overview: Average (Maximum) Errors of Coarse-grained and Fine-grained Models on AWS GPU Clusters

K Number of workers
k ∈ {1, ...,K} Workers (task classes of queueing model)

L(k) := {k, U, S,D} Stations visited by class k:
k-th worker node, uplink (U),
parameter server (S), downlink (D)

Sl
k Service time of class k at station l

n⃗ := (n1, ..., nK) Number of tasks, for each class
N l

k(n⃗) Mean number of tasks of class k at station l

Xl
k(n⃗) Mean throughput of class k at station l

T l
k(n⃗) Mean response time of class k at station l

ρlk(n⃗) Class k utilization at station l

Table 2: Notation

using the mean throughput X l
k(n⃗) = nk/

(∑
l∈L(k) T

l
k(n⃗)

)
.

In our queueing model, the transmission times TU
K and TD

K

increase as the number of workers K in the system grows.
Finally, once we evaluate T l,PS

k and T l,FCFS
k in Eqs. (1)

and (2), the throughput of a distributed SGD job using
K workers is given by:

XFCFS(K) =
K∑

k=1

1

T k
k + TU,FCFS

k + TS,PS
k + TD,FCFS

k

(3)

XPS(K) =
K∑

k=1

1

T k
k + TU,PS

k + TS,PS
k + TD,PS

k

(4)

where XPS(K) and XFCFS(K) are the job throughput calcu-
lated with a PS or FCFS model, respectively. Our PS and FCFS
models (for high and low network utilization, respectively),
are combined as:

Xjob(K) =

{
XFCFS(K) if ρFCFS ≤ ρT ,
XPS(K) otherwise.

(5)

When network utilization ρFCFS is less than the threshold ρT ,
the FCFS solution XFCFS(K) is used; when ρFCFS is greater
than ρT , the PS solution XPS(K) is used.

2.1.1 Correction for Overlapping Operations
In many real-world implementations of Async-SGD, there
are fine-grained computation and communication operations,
e.g., one operation for each DNN layer or for each DNN
tensor within a layer. These fine-grained operations have
dependencies on each other, but they can often be executed
in parallel, as illustrated by Fig. 4a: for example, downlink
and computation stages can overlap because the feedforward
computation of a DNN layer can start as soon as its downlink
and previous feedforward operations have completed, while
other downlink operations are still in progress; similarly,
the gradient uplink of a DNN layer can start as soon as its

backpropagation has completed, while the backpropagation
of other layers is still in progress. These overlaps are more
noticeable when many workers share network resources
to communicate with the parameter server: in this case,
workers transmit at reduced rates and downlink/uplink
operations take longer, so that an increased fraction of the
computation overlaps with communication operations. When
these overlaps are ignored, job throughput can be severely
mispredicted.

To account for overlaps between downlink and feed-
forward computation, and between backpropagation and
uplink, we propose a heuristic correction to our model: we
profile feedforward and backpropagation times SF

k and SB
k ,

respectively; we solve our hybrid model in Eq. (5) to estimate
the response times of downlink and uplink queues (TD

k and
TU
k , respectively); then, we replace the computation time

SW
k = SF

k + SB
k in our model with

SW
k = max

(
0, SF

k − TD
k

)
+max

(
0, SB

k − TU
k

)
(6)

and we solve our model again to evaluate job throughput.
This corrected model assumes that the entire downlink and
uplink operations (with durations TD

k and TU
k) overlap with

feedforward and backpropagation, respectively.

2.1.2 Profiling
In our preliminary work [21], the durations of downlink and
uplink operations were measured directly, by monitoring
network traffic in a profiling job with a single parameter
server and a single worker node; in turn, the duration
of computation and update operations were estimated as
the time between transmissions. However, these estimated
can be inaccurate due to overlaps in communication and
computation, and to intermittent gradient transmissions, as
illustrated in Fig. 4a.

To address this problem, we estimate the mean service
time of downlink and uplink stations (without contention
with other workers) as

SD
k = SU

k =
M

B

where M is the size of the DNN model and B is the total
network bandwidth.

For the computation time SW
k , we separately profile the

feedforward SF
k and backpropagation SB

k times for each type
of worker k, to apply the correction of Eq. (6). Note that our
model allows workers with heterogeneous computing power,
since we individually profile computation times for each type
of worker node; instead, the downlink/uplink times SD

k and
SU
k , and the mean service time SS

k at the parameter server,
are the same for all workers (i.e., they are independent of k).

Z. LI, M. PAOLIERI, L. GOLUBCHIK, S.-H. LIN, AND W. YAN: THROUGHPUT PREDICTION OF DISTRIBUTED SGD 5

2.2 Fine-grained Model
Instead of modeling centralized Async-SGD as a sequence of
four phases, our fine-grained model represents an SGD step
as a directed acyclic graph where nodes denote the execution
of communication or computation operations, and directed
edges are dependencies between operations. The granularity
of individual operations depends on the type of profiling
information: for example, using low-level GPU profiling,
computation operations correspond to the execution of
GPU kernels (e.g., a GEMM function); if profiling collects
execution times for each DNN layer, a computation operation
represents the time for forward or backward propagation of
a layer. Similarly, communication operations can represent
individual tensors (weights during downlink and gradients
during uplink), or entire DNN layers.

This fine-grained model provides an abstraction for
simulating SGD steps with multiple workers, by accounting
for reduced transmission rates due to the sharing of network
resources. We adopt a PS model to share network resources
among multiple workers: when n workers are sending or
receiving data from the parameter server, transmission times
recorded during single-worker profiling are multiplied by n.

Our earlier work [19] applied this approach to the dis-
tributed SGD implementation of TensorFlow 1.13, collecting
low-level GPU profiling information. In this paper, we
adapt the approach to predict throughput for the PyTorch
framework; since the current PyTorch (v1.7) does not support
the collection of profiling traces for distributed SGD, we built
our own profiler to record, for each DNN layer, the execution
times of communication and computation operations. No-
tably, our work shows that a fine-grained approach can be
applied to a broader class of machine learning frameworks,
including those without support for distributed profiling; in
addition, we confirm that profiling information collected for
each layer has sufficient granularity to characterize overlaps
between communication and computation, and that low-
level GPU profiling is not required.

2.2.1 Profiling
Using traces collected on a single worker, we profile two
types of operations: (1) computation operations, namely
forward or backward propagation of DNN layers at a worker,
or the aggregation of gradients at the parameter server;
(2) communication operations, which include transmission of
parameters (during downlink) or gradients (during uplink)
between the worker and the parameter server. For each
profiled operation op, we record:

• op.res ∈ {DOWNLINK, WORKER, UPLINK, PS}, the re-
source used by op: DOWNLINK represents the network
link used to transmit the DNN parameters from the
parameter server to workers; WORKER represents the
compute resources at workers, used for the forward
or backward propagation; UPLINK represents the
network link used to transmit the gradients from
the workers to the parameter server; PS represents
resources at the parameter server, used to update the
global model with the received gradients.

• For each communication operation op (i.e., when
op.res ∈ {DOWNLINK, UPLINK}), we record the size
of the transmitted data as op.size.

0 5 10 15 20 25 30 35 40
Data size (MB)

0

5

10

15

20

25

30

35

Tr
an

sm
is

si
on

 T
im

e
(m

s)

Measurement

Figure 6: Point-to-point Transmission Time for Different Data
Sizes on AWS 10Gbps Network

• For each computation operation op (i.e., when
op.res ∈ {WORKER, PS}), we record the measured
duration as op.dur.

• For each operation op, we record the operations that
it depends on, as op.waiting_for, and the operations
that depend on op, as op.dependent_ops. For example,
the feedforward computation operation of a DNN
layer depends on: (1) the communication operation
transmitting that layer, and (2) the feedforward com-
putation operation of the previous layer.

The current PyTorch v1.7 supports point-to-point com-
munication through the Gloo backend [7]. We benchmarked
the performance of this backend on AWS EC2 instances
with 10Gbps networking; the results in Fig. 6 show that
transmission time is a linear function of data size, for a
wide range of input sizes. Therefore, in the following we
use a simple linear model (data size divided by network
bandwidth) to estimate transmission times.

2.2.2 Simulation Algorithm
We present a simulation algorithm (Algorithm 2.1) to gener-
ate N -step synthetic traces with W workers from the S-step
profiling trace collected using a single worker. For each opera-
tion, op.remaining represents the remaining amount of work
to complete the operation: for communication operations,
op.remaining is initialized as op.size/B; for computation
operations, it is initialized as op.dur. For each worker w ∈ W
and resource r ∈ {DOWNLINK, WORKER, UPLINK, PS}, we
use a queue scheduler[w, r] to store all operations ready to
run (i.e., without pending dependencies). Q refers to the
queue of operations in progress: for each worker w and
resource r, only one operation can be in Q at a time. During
each iteration, we remove from Q the operation op with
minimum remaining time (Line 11), subtract its remaining
time from other operations in Q (Line 15), and update
the dependencies of operations waiting for op (Line 18).
Finally, we add another operation to Q (Line 28), if the same
worker has other operations requesting the same resource
and without unsatisfied dependencies.

This algorithm supports heterogeneous compute nodes,
provided that we collect profiling traces on each type of com-
pute nodes to estimate op.dur. Overlaps of communication
and computation are simulated by executing operations in
parallel once their dependencies are satisfied. For example,
forward propagation of a layer can start when the worker
has received its parameters (from a downlink operation) and
forward propagation of the previous layer has completed;
similarly, an uplink communication can start as soon as
backward propagation of a layer has completed.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Algorithm 2.1: Simulation

STARTRANDOMSTEP(S,Q,w, active)
1 step = SAMPLEWITHREPLACEMENT(S)
2 for op in step.copy() // each step starts with downlinks
3 if op.res == DOWNLINK

4 scheduler[w, DOWNLINK].add(op)
5 // scheduler stores worker operations, which are ready to run
6 Q.add(scheduler[w, DOWNLINK].remove_op())
7 active[DOWNLINK].append(w)

GENERATETRACE(S,W)
1 Q = ∅ // set of operations in progress
2 trace = TRACE() // empty simulated trace
3 active = {DOWNLINK : [], UPLINK : []}
4 for w in W // setup for each worker
5 completed_steps[w] = 0
6 for r in {DOWNLINK, WORKER, UPLINK, PS}
7 scheduler[w, r] = Scheduler(r) // empty scheduler
8 STARTRANDOMSTEP(S,Q,w,active) // first downlink
9 while Q ̸= ∅

10 sort Q by x.remaining / SHARE(x.worker, x.res, active)
11 next = Q.remove_min()
12 w, r = next.worker, next.res
13 eta = next.remaining / SHARE(w, r, active)
14 trace.add(w, r, next, eta)
15 for operation x in Q // update remaining work
16 x.remaining -= eta × SHARE(x.worker, x.res, active)
17 // dependent ops can be assigned to scheduler if ready
18 for d in next.dependent_ops
19 d.waiting_for.remove(next)
20 if d.waiting_for == ∅ // no other dependency
21 if scheduler[w, d.res] != ∅ // w already using d.res
22 scheduler[w, d.res].add(d) // just queue d
23 else // start running operation d

24 scheduler[w, d.res].add(d)
25 active[d.res].append(w) // w becomes active
26 Q.add(scheduler[w, d.res].remove_op())
27 if scheduler[w, r] != ∅ // w has more ops to run on r
28 Q.add(scheduler[w, r].remove_op())
29 else // no more operations of w to run on r

30 active[r].remove(w) // become inactive
31 if scheduler[w, i] == ∅ ∀i // no more pending ops
32 completed_steps[w] += 1 // step is over
33 if completed_steps[w] < N

34 if MODE == ASYNC
35 STARTRANDOMSTEP(S,Q,w,active)
36 else if MODE == SYNC and Q == ∅
37 // start next step after all workers complete
38 for w′ in W

39 STARTRANDOMSTEP(S,Q,w′, active)
40 return trace

SHARE(w, r, active) // fraction of r assigned to worker w
1 if r in {DOWNLINK, UPLINK}
2 if LINK_MODEL == FCFS
3 // the first worker obtains full bandwidth
4 if active[r].front() == w return 1 else return 0
5 else if LINK_MODEL == PS
6 return 1/active[r].length // equally sharing
7 else if LINK_MODEL == ALL_REDUCE
8 return 1 // full bandwidth
9 else return 1 // processing is independent for each worker

3 SYNCHRONOUS SGD
In this section, we present coarse-grained and fine-grained
models for Sync-SGD, where all workers start each SGD
step at the same time, using an up-to-date copy of the DNN
model. When a parameter server architecture is used, the
parameter server transmits the current DNN model to the
workers (in parallel) and waits to receive gradients; only after
gradients from all workers have been received and applied
to the DNN model, the parameter server starts the next SGD
step. When a decentralized architecture is used, workers
compute gradients and then exchange them with each other,
usually through an AllReduce operation on a ring topology
(to reduce network traffic). After each worker has received
and applied updates from all the other workers, it proceeds
to the next SGD step.

A problem common to both of the above architectures
is that of straggler workers: an SGD step can take longer
for a worker due to the variability in the performance of
computation and communication resources. For example,
heterogeneous workers process training examples at dif-
ferent rates; or, in a parameter server architecture, uplink
and downlink operations can receive varying and unequal
shares of network bandwidth to the parameter server. Fig. 7
illustrates this phenomenon with a trace where the downlink
operation starts at the same time for all the workers, but
terminates earlier for worker 1; similarly, uplink phases of
workers 0 and 2 start at a similar time, but the uplink of
worker 2 is faster, even though the same amount of data is
transmitted by each worker. As a consequence, workers 1 and
2 must wait for worker 0 before starting the next SGD step.
It is also worth noting that, similarly to Fig. 4a, downlink
and uplink operations of Sync-SGD can also overlap with
the forward and backward propagation, respectively. All of
these aspects are addressed by our models of Sync-SGD.

3.1 Coarse-grained Model
We now describe the details of our coarse-grained analytical
model for Sync-SGD, under both centralized and decentral-
ized architectures. The notation for our coarse-grained model
is summarized in Table 3.

3.1.1 Parameter Server Architecture

K Number of workers
M Model size
B Network Bandwidth
TD Duration of Downlink phase
TU Duration of Uplink phase
TF Duration of Feed-forward
TB Duration of Back-propagation
TC Duration of Computation phase, including TF and TB

TS Duration of Update phase on parameter server

Table 3: Notation

In Sync-SGD, workers start each SGD step at the same
time, with the same sequence of downlink, compute, uplink,
and model update phases. With a parameter server architec-
ture, as the number of workers increases, the duration of the
compute phase is the same, but downlink and uplink take

Z. LI, M. PAOLIERI, L. GOLUBCHIK, S.-H. LIN, AND W. YAN: THROUGHPUT PREDICTION OF DISTRIBUTED SGD 7

0 100 200 300 400 500

Time (ms)

Worker 0

Worker 1

Worker 2

Downlink Forward Backward Uplink Update IdleDownlink Forward Backward Uplink Update Idle

Figure 7: Trace of Sync-SGD with 3 workers

Downlink Computation Uplink Update Idle

(a) PS

Downlink Computation Uplink Update Idle

(b) FCFS

Figure 8: Bandwidth Sharing Models in Sync-SGD

longer because more workers share the network resources
to/from the parameter server. Assuming a uniform split
of network resources (PS model), a simple model for the
duration TPS of a Sync-SGD step with one parameter server
and K workers is then

TPS = TD + TC + TU + TS

=

(
K · M

B

)
+ (TF + TB) +

(
K · M

B

)
+ TS (7)

where M is the model size, B is the total network bandwith
to/from the parameter server, and TF , TB , TS are the
computation times for the forward, backward, and model
update phases. With this model, illustrated in Fig. 8a, the
execution of each phase proceeds synchronously at the
different workers.

In fact, in cloud environments with background traffic,
network bandwidth can be split unevenly among workers,
and this model can severely underestimate job throughput;
this is illustrated in Fig. 9a, where we compare the predictions
of this model (red line) with actual measurements (green
line) in a cluster of AWS p3.2xlarge instances training
ResNet-152. Fig. 8b shows an extreme case of uneven sharing,
where different workers have continuous access to the entire
network bandwidth for the duration of their transmissions
(FCFS model): the downlink phase “offsets” the execution of
SGD phases at the different workers, which can then transmit
their gradients at different times, without contention for
network resources. In this case, a model for the duration
TFCFS of a Sync-SGD step with one parameter server and
K workers is

TFCFS =

(
K · M

B

)
+ (TF + TB) +

(
M

B

)
+ TS . (8)

This extreme case is also unlikely to happen in practice,
and leads to overestimating job throughput, as illustrated in
Fig. 9a (blue line). Instead, we find that a linear combination
of these models provides reliable estimates of job throughput;
in particular, we adopt a simple average:

THybrid =
TPS + TFCFS

2
(9)

=

(
KM

B

)
+ (TF + TB) +

(
(K + 1)M

2B

)
+ TS

Fig. 9a illustrates that this model (purple line) is very close
to the measured throughput (green line).

1 2 3 4 5 6 7
Workers

40

60

80

100

120

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
PS
FCFS
Hybrid

(a) Non-overlap

1 2 3 4 5 6 7
Workers

60
80

100
120
140
160
180
200
220

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Hybrid
Hybrid (w/ heuristic)

(b) Overlap

Figure 9: Training ResNet-152 (batch size of 32 examples) on
AWS p3.2xlarge with centralized Sync-SGD

2 3 4 5 6 7 8
Workers

200

300

400

500

600

Ti
m

e
(m

s)

Measurement
Theory

(a) Gloo AllReduce for 40MB
Data on 1Gbps Network

5 10 15 20 25 30 35
Data Size (MB)

10

20

30

40

50

60

Ti
m

e
(m

s)

Upper Bound
6 Workers
5 Workers
4 Workers
3 Workers
2 Workers

(b) NCCL AllReduce for Dif-
ferent Data Sizes on 10Gbps
Network

Figure 10: Performance of AllReduce with Different Backends

Finally, to account for the effects of overlapping commu-
nication and computation, we follow a similar approach to
Section 2.1.1, where a maximum overlap of communication
and computation is assumed; for Sync-SGD, from Eq. (9) we
obtain our final model for the duration of each SGD step:

T
Overlap
Hybrid = max

(
KM

B
,TF

)
+max

(
(K + 1)M

2B
, TB

)
+ TS

(10)
Fig. 9b shows that this modified model (yellow line) achieves
more accurate predictions than the basic model of Eq. (9)
(purple line) for Sync-SGD with overlapping communication
and computation.

3.1.2 Decentralized Architecture

For Ring AllReduce update operations over homogeneous
networks, communication time is estimated in [24] as
2(K − 1)T/K, where K is the number of participants and
T represents the time required to transmit data between
two workers. The intuition behind the formula is that each
Ring Allreduce operation of data size M on K processors
consists of (1) a ReduceScatter operation, which requires each
processor to send data of size M/K for (K − 1) times, and
(2) an AllGather operation, which requires another trans-
missions of M/K data for (K − 1) times on each processor.
As the number of participants K increases, communication
time approaches the upper bound 2T . We validate the
performance of the Ring AllReduce implementation using
two different backends available in PyTorch2: Gloo [7] in our
CPU cluster (Fig. 10a), and NCCL [22] in our GPU cluster
(Fig. 10b). In both cases, we find this model to be an accurate
estimate of transmission times.

2. MPI [31] is another optional backend which requires rebuilding
PyTorch from source; here we choose Gloo and NCCL as they are
recommended by the PyTorch documentation for communication
between CPUs and GPUs, respectively.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Since workers exchange and combine gradients with
an AllReduce operation at the end of each training step,
AllReduce implements the uplink, update and downlink
phases in Sync-SGD with a decentralized architecture. A
model of the duration T of each SGD step is then:

T = (TF + TB) + 2(K − 1)M/(KB) . (11)

3.2 Fine-grained Model
We now extend our fine-grained model of Async-SGD to
Sync-SGD for both centralized and decentralized architec-
tures, by modifying the communication mechanism and link
sharing models.

3.2.1 Parameter Server Architecture
For the parameter server architecture, we include a synchro-
nization barrier in the simulation (Line 36) to ensure that
the next step starts only when all pending operations of
the current step have completed (i.e., when Q is empty). In
addition, similarly to Section 3.1.1, we repeat the simulation
using two network sharing models: PS, where all workers
share the network bandwidth equally (Line 5); and FCFS,
where the next worker transmission receives the entire
bandwidth, until completion (Line 2). After running the
simulation with both sharing models, we use the average of
their throughput estimates as our prediction.

3.2.2 Decentralized Architecture
In Sync-SGD with a decentralized architecture, all workers
exchange gradients at the end of each training step with
a Ring AllReduce operation. To predict throughput of this
architecture, we modify our fine-grained simulation of Sec-
tion 2.2: in addition to the synchronization barrier at Line 36,
we skip all downlink operations (using op.remaining equal
to 0) and replace the duration of each uplink operation with
that of an AllReduce operation with

op.remaining =
2(K − 1)

K
· op.size

B

where K is the number of workers and B is the network
bandwidth, which is entirely available to the worker (Line 8)
due to the ring topology.

4 RESULTS

In this section, we validate the accuracy of the Async-
SGD and Sync-SGD models described in Sections 2 and 3,
respectively, using our implementation of distributed SGD
based on PyTorch 1.7.

4.1 Experimental Setup
Table 4 summarizes our experimental setup: (1) CPU clus-
ter with CloudLab d430 instances, (2) GPU cluster with
AWS p3.2xlarge instances, (3) GPU cluster with AWS
g4dn.4xlarge instances, and (4) GPU cluster with AWS
p3.16xlarge instances. To validate our methods across
a variety of DNNs, we select neural networks from a set
of model families, including Inception networks [33], [32],
ResNets [10], DenseNets [12] and EfficientNets [34]. Fig. 11

3. Bandwidth for single-flow traffic is limited to 10Gbps.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Type CPU-only single GPU single GPU multi-GPU

Node CloudLab
d430

AWS
p3.2xlarge

AWS
g4dn.4xlarge

AWS
p3.16xlarge

CPU
Intel Xeon
E5-2630 v3

(8-core)

Intel Xeon
E5-2686 v4
(8 vCPUs)

custom Intel
Cascade Lake

(16 vCPUs)

Intel Xeon
E5-2686 v4
(64 vCPUs)

GPU — NVIDIA
Tesla V100

NVIDIA Tesla
T4

8x NVIDIA
Tesla V100

Network 1 Gbps 10 Gbps 10 Gbps 25Gbps3

Table 4: Experimental Setup

0 50 100 150 200 250
Size (MB)

0

50

100

150

200

250

300

C
om

pu
ta

tio
n

Ti
m

e
(m

s)

 GoogleNet

 Inception-v3

 ResNet-50

 ResNet-101

 ResNet-152 EfficientNet-B5
 DenseNet-161

Figure 11: Performance Benchmark of Neural Network
Models with Batch Size 32 on Nvidia Tesla V100 GPUs

reports the model sizes and computation times (in a SGD
step with batch size 32 on an Nvidia V100 GPU) of the neural
networks in our experiments. For each scenario of distributed
SGD, we train these neural network models using different
batch sizes (indicated as L in Figs. 12 to 22) for 100 steps, and
we measure job throughput as the total number of examples
per second across all workers assigned to the training job.

For the fine-grained model, we collect layer-level traces
from 100 single-worker steps for each scenario (DNN model,
batch size, node instance), inserting timestamps before and
after the computation and transmission of every layer to
denote its operation and to track dependencies between
operations. In addition, we record the size of the parameters
in each neural network layer in order to evaluate the
communication time in the simulation (Section 2.2.1). For the
coarse-grained model, we measure the time of feedforward
and backpropagation stages, and the size of entire neural
network models (Section 2.1.2).

4.2 Async-SGD
We now evaluate the prediction errors of our fine-grained
and coarse-grained models of Async-SGD in three scenarios:
homogeneous nodes without and with overlaps between
communication and computation operations, as well as
heterogeneous nodes.

4.2.1 Basic Model
First, we evaluate fine-grained and coarse-grained models
of Async-SGD without overlapping communication and
computation. Here, we set the threshold ρT of our coarse-
grained model to 0.5 for the CloudLab CPU cluster and 0.6
for the AWS GPU clusters. The selection of ρT was carried out
through a one-time preliminary profiling. For each platform

Z. LI, M. PAOLIERI, L. GOLUBCHIK, S.-H. LIN, AND W. YAN: THROUGHPUT PREDICTION OF DISTRIBUTED SGD 9

1 2 3 4 5 6 7
Workers

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(a) Inception-v3, L=16

1 2 3 4 5 6 7
Workers

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(b) ResNet-50, L=16

1 2 3 4 5 6 7
Workers

0

2

4

6

8

10

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(c) ResNet-101, L=16

1 2 3 4 5 6 7
Workers

0

1

2

3

4

5

6

7

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(d) ResNet-152, L=16

1 2 3 4 5 6 7
Workers

0

5

10

15

20

25

30

35

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(e) GoogleNet, L=8

1 2 3 4 5 6 7
Workers

0

2

4

6

8

10

12

14

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(f) EfficientNetB5, L=16

1 2 3 4 5 6 7
Workers

0

2

4

6

8

10

12

14

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(g) DenseNet-161, L=16

Figure 12: Async-SGD without Overlapping Communication and Computation on Homogeneous CPUs

1 2 3 4 5 6 7
Workers

0

25

50

75

100

125

150

175

200

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(a) Inception-v3, L=16

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

350

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(b) ResNet-50, L=32

1 2 3 4 5 6 7
Workers

0

50

100

150

200

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(c) ResNet-101, L=32

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

120

140

160

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(d) ResNet-152, L=32

1 2 3 4 5 6 7
Workers

0

100

200

300

400

500

600

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(e) GoogleNet, L=16

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

120

140

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(f) EfficientNetB5, L=16

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

120

140

160

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(g) DenseNet-161, L=16

Figure 13: Async-SGD without Overlapping Communication and Computation on Homogeneous GPUs

1 2 3 4 5 6 7
Workers

0

10

20

30

40

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(a) Inception-v3, L=32

1 2 3 4 5 6 7
Workers

0

5

10

15

20

25

30

35

40

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(b) ResNet-50, L=32

1 2 3 4 5 6 7
Workers

0

5

10

15

20

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(c) ResNet-101, L=32

1 2 3 4 5 6 7
Workers

0

2

4

6

8

10

12

14

16

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(d) ResNet-152, L=32

1 2 3 4 5 6 7
Workers

0

20

40

60

80

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(e) GoogleNet, L=16

1 2 3 4 5 6 7
Workers

0

5

10

15

20

25

30

35

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(f) EfficientNetB5, L=32

1 2 3 4 5 6 7
Workers

0

5

10

15

20

25

30

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(g) DenseNet-161, L=32

Figure 14: Async-SGD with Overlapping Communication and Computation on Homogeneous CPUs

1 2 3 4 5 6 7
Workers

0

100

200

300

400

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(a) Inception-v3, L=32

1 2 3 4 5 6 7
Workers

0

100

200

300

400

500

600

700

800

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(b) ResNet-50, L=64

1 2 3 4 5 6 7
Workers

0

100

200

300

400

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(c) ResNet-101, L=64

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(d) ResNet-152, L=64

1 2 3 4 5 6 7
Workers

0

200

400

600

800

1000

1200

1400

1600

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(e) GoogleNet, L=32

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

350

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(f) EfficientNetB5, L=32

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

350

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(g) DenseNet-161, L=32

Figure 15: Async-SGD with Overlapping Communication and Computation on Homogeneous GPUs

1 2 3 4 5 6 7
Workers

0

25

50

75

100

125

150

175

200

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(a) Inception-v3, L=16

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

350

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(b) ResNet-50, L=32

1 2 3 4 5 6 7
Workers

0

25

50

75

100

125

150

175

200

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(c) ResNet-101, L=32

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

120

140

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(d) ResNet-152, L=32

1 2 3 4 5 6 7
Workers

0

100

200

300

400

500

600

700

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (FCFS)
Coarse (hybrid)

(e) GoogleNet, L=16

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

120

140

160

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s
Measurement
Fine
Coarse (hybrid)

(f) EfficientNetB5, L=16

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

120

140

160

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(g) DenseNet-161, L=16

Figure 16: Async-SGD without Overlapping Communication and Computation on Heterogeneous GPUs

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

350

400

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(a) Inception-v3, L=32

1 2 3 4 5 6 7
Workers

0

100

200

300

400

500

600

700

800

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(b) ResNet-50, L=64

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

350

400

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(c) ResNet-101, L=64

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(d) ResNet-152, L=64

1 2 3 4 5 6 7
Workers

0

200

400

600

800

1000

1200

1400

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(e) GoogleNet, L=32

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

350

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(f) EfficientNetB5, L=32

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

350

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s
Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(g) DenseNet-161, L=32

Figure 17: Async-SGD with Overlapping Communication and Computation on Heterogeneous GPUs

(AWS and CloudLab), we ran a job with 1 to 7 workers
to select the value of ρT from {0.1, 0.2, ..., 1.0} with best
prediction accuracy on the preliminary profiling. Intuitively,
we use a larger ρT for the GPU clusters on AWS because their
background traffic can prevent the equal share of network
bandwidth (modeled by the PS discipline), while we find
networking to be more stable on CloudLab.

Fig. 12 depicts our predictions for Async-SGD on a
CPU cluster (i.e., CloudLab d430 instances), where the fine-
grained model achieves an average (maximum) error of
5.2% (10.8%), and the coarse-grained model achieves an
average (maximum) error of 3.9% (11.8%). In addition, Fig. 13
shows the corresponding results on a GPU cluster (i.e., AWS
p3.2xlarge), where the average (maximum) error is 5.4%
(15.0%) for the fine-grained model and 4.7% (11.1%) for the
coarse-grained model.

In this scenario, both coarse-grained and fine-grained

models achieve similarly accurate predictions across all
neural networks and batch sizes on CPU and GPU platforms.
The worst case for the fine-grained model is in Fig. 13e for
6 and 7 workers, where we observe that data transmissions
interleave with each other, while they overlap in our simula-
tions, increasing the contention for network bandwidth and
resulting in lower predicted throughput. This discrepancy
is due to small model size of GoogleNet, which can be
transmitted in just 17 ms using the AWS 10 Gbps network,
a time interval too short for TCP/IP congestion control to
adjust bandwidth sharing among workers.

4.2.2 Overlapping Communication and Computation
Next, we validate fine-grained and coarse-grained mod-
els of Async-SGD with overlapping communication and
computation, and highlight the importance of applying the
proposed heuristic in the case of the coarse-grained model.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

In the CPU cluster experiment depicted in Fig. 14, the
average (maximum) error is 4.3% (11.9%) for the fine-grained
model and 4.0% (13.7%) for the coarse-grained model. In
the GPU cluster experiment depicted in Fig. 15, the average
(maximum) error is 4.4% (11.4%) for the fine-grained model
and 4.7% (15.2%) for the coarse-grained model.

Note that, when using the coarse-grained model without
the proposed heuristic (curve “Coarse (hybrid)” in Figs. 14
and 15), the average (maximum) error increases to 9.5%
(24.6%) in the CPU-based experiments and to 11.6% (21.4%)
in the GPU-based experiments. For most mispredictions, the
model underestimates throughput because, when the number
of workers increases, communication operations are longer
and overlap with a more significant portion of computations;
since the model assumes a sequential execution of these
operations, predicted throughput is lower than our measures
in the real system. After applying Eq. (6), the coarse-grained
model achieves similar accuracy to the fine-grained model.

In contrast, the coarse-grained model shows lower accu-
racy in Fig. 15c for 2 workers: in this case, the estimated
network utilization ρFCFS in our model is 0.53, which is
lower than the threshold ρT = 0.6 for the AWS GPU
cluster, so a FCFS model is adopted. However, measurements
show that data transmissions partially overlap rather than
interleave, and thus the network behaves more similarly to a
PS discipline in the real system.

4.2.3 Heterogeneous Nodes

We validate our models of Async-SGD on heterogeneous
compute nodes with AWS p3.2xlarge (V100 GPUs) and
g4dn.4xlarge (T4 GPUs) instances, where V100 achieves
approximately twice the performance (in FLOPS) of T4
[15], [14]. As shown in Fig. 16, without overlap between
communication and computation, the average (maximum)
error of the fine-grained model is 3.5% (11.1%) and that of the
coarse-grained model is 4.8% (16.0%). Also, as depicted in
Fig. 17, in the scenario with overlapping communication and
computation, the average (maximum) error is 3.0% (9.6%)
for the fine-grained model and 3.8% (11.4%) for the coarse-
grained model. As before, the coarse-grained model not
accounting for the overlap underestimates throughput, result-
ing in an average (maximum) error of 10.5% (23.0%). These
results indicate that our coarse-grained and fine-grained
models are both extendable to heterogeneous computing
environments and achieve similarly accurate predictions
across different neural network models.

In Fig. 16e, the coarse-grained model shows lower
accuracy for 6 and 7 heterogeneous workers (11.0% and
16.1% error). Similarly to the case of homogeneous workers
(Fig. 13e, 15.0% and 13.8% error for 6 and 7 workers,
respectively), we observed that data transmissions interleave
in the measurements, while our models incorrectly adopt
the PS model. We attribute these mispredictions to the short
transmission time of GoogleNet, which is not sufficient for
the TCP/IP congestion control to adjust bandwidth sharing
among workers. To motivate our interpretation, Fig. 16e
includes predictions of the coarse-grained model with FCFS
discipline (yellow), which achieves better accuracy.

4.3 Sync-SGD
We next evaluate the prediction errors of our fine-grained
and coarse-grained models of Sync-SGD on both centralized
and decentralized settings.

4.3.1 Centralized Setting
Figs. 18 and 19 depict predictions for centralized Sync-
SGD on AWS p3.2xlarge instances. Both models achieve
similarly accurate predictions: without overlapping commu-
nication and computation, the average (maximum) error is
5.2% (11.9%) for the fine-grained model and 3.2% (10.0%)
for the coarse-grained model. In the case of overlapping
communication and computation, the average (maximum)
error is 4.7% (10.2%) for the fine-grained model and 4.1%
(10.5%) for the coarse-grained model. Moreover, our heuristic
significantly improve predictions in the case of overlaps, from
an average (maximum) error of 18.3% (28.2%) as depicted by
the curve “Coarse (hybrid)” in Fig. 19.

4.3.2 Decentralized Setting
For the setting of decentralized Sync-SGD, we first evaluate
our implementation using the Gloo backend on the CPU
cluster, as shown in Fig. 20. Compared to the centralized
setting where a network bottleneck can occur at the pa-
rameter server, the decentralized setting balances network
traffic due to the AllReduce collective operations. Thus, the
throughput of decentralized Sync-SGD grows almost linearly
as the number of worker increases. In this case, the average
(maximum) error of the fine-grained model is 2.3% (8.8%)
and that of the coarse-grained model is 2.7% (12.8%).

Next, we evaluate the performance of the DistributedData-
Parallel [18] library of PyTorch v1.7 with the NCCL backend
on the GPU cluster, without overlapping communication and
computation. Results in Fig. 21 illustrate that the average
(maximum) prediction error of the fine-grained model is 2.5%
(9.3%) and that of the coarse-grained model is 5.0% (11.6%).
Both models achieve accurate throughput predictions across
all neural networks on the CPU and the GPU platforms.

4.4 Multi-GPU Experiments
We also evaluate the prediction error of our models on AWS
p3.16xlarge multi-GPU instances, which are configured
with 8 Nvidia Tesla V100 GPUs and 25 Gbps network.
Following [8], after all GPUs on a machine complete a
training step, we first perform an AllReduce operation to
aggregate gradients across all GPUs on the machine; then
one GPU on the machine either pushes the aggregated
gradients to the parameter server (centralized setting) or
performs another AllReduce operation with other machines
(decentralized setting); later, the GPU receiving the updated
model broadcasts it to other GPUs on the same machine.

For the Parameter Server architecture, since AWS limits
the bandwidth of each flow to 10 Gbps on p3.16xlarge
instances, we observe that the downlink times of one and
two workers in Sync-SGD remain the same, because network
bandwidth is not fully utilized (Fig. 23); as we deploy
more than three workers, the downlink time increases
because multiple transmissions overlap, sharing the available
bandwidth of 25 Gbps. In Figs. 22a to 22d, our coarse-grained
models overestimate throughput by assuming that the entire

Z. LI, M. PAOLIERI, L. GOLUBCHIK, S.-H. LIN, AND W. YAN: THROUGHPUT PREDICTION OF DISTRIBUTED SGD 11

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

120

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(a) Inception-v3, L=16

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(b) ResNet-50, L=32

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

120

140

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(c) ResNet-101, L=32

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(d) ResNet-152, L=32

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

350

400

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(e) GoogleNet, L=16

1 2 3 4 5 6 7
Workers

0

20

40

60

80

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(f) EfficientNetB5, L=16

1 2 3 4 5 6 7
Workers

0

20

40

60

80

100

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(g) DenseNet-161, L=16

Figure 18: Centralized Sync-SGD without Overlapping Communication and Computation on GPUs

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(a) Inception-v3, L=32

1 2 3 4 5 6 7
Workers

0

100

200

300

400

500

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(b) ResNet-50, L=64

1 2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(c) ResNet-101, L=64

1 2 3 4 5 6 7
Workers

0

25

50

75

100

125

150

175

200

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(d) ResNet-152, L=64

1 2 3 4 5 6 7
Workers

0

200

400

600

800

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(e) GoogleNet, L=32

1 2 3 4 5 6 7
Workers

0

25

50

75

100

125

150

175

200

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(f) EfficientNetB5, L=32

1 2 3 4 5 6 7
Workers

0

50

100

150

200

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid w/ heuristic)
Coarse (hybrid)

(g) DenseNet-161, L=32

Figure 19: Centralized Sync-SGD with Overlapping Communication and Computation on GPUs

2 3 4 5 6 7
Workers

0

5

10

15

20

25

30

35

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(a) Inception-v3, L=16

2 3 4 5 6 7
Workers

0

5

10

15

20

25

30

35

40

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(b) ResNet-50, L=16

2 3 4 5 6 7
Workers

0

5

10

15

20

25

30

35

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(c) ResNet-101, L=32

2 3 4 5 6 7
Workers

0

5

10

15

20

25

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(d) ResNet-152, L=32

2 3 4 5 6 7
Workers

0

10

20

30

40

50

60

70

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(e) GoogleNet, L=8

2 3 4 5 6 7
Workers

0

5

10

15

20

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(f) EfficientNetB5, L=16

2 3 4 5 6 7
Workers

0

5

10

15

20

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(g) DenseNet-161, L=16

Figure 20: Decentralized Sync-SGD with Gloo AllReduce Operations on CPUs

2 3 4 5 6 7
Workers

0

100

200

300

400

500

600

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(a) Inception-v3, L=16

2 3 4 5 6 7
Workers

0

100

200

300

400

500

600

700

800

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(b) ResNet-50, L=32

2 3 4 5 6 7
Workers

0

100

200

300

400

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(c) ResNet-101, L=32

2 3 4 5 6 7
Workers

0

50

100

150

200

250

300

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(d) ResNet-152, L=32

2 3 4 5 6 7
Workers

0

200

400

600

800

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(e) GoogleNet, L=16

2 3 4 5 6 7
Workers

0

100

200

300

400

500

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(f) EfficientNetB5, L=32

2 3 4 5 6 7
Workers

0

100

200

300

400

500

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(g) DenseNet-161, L=32

Figure 21: Decentralized Sync-SGD with PyTorch DistributedDataParallel on GPUs

8 24 40 56 72 88
GPUs

0

500

1000

1500

2000

2500

3000

3500

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(a) Inception-v3, L=128,
Centralized Async-SGD

8 24 40 56 72 88
GPUs

0

500

1000

1500

2000

2500

3000

3500

4000

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(b) VGG-11, L=128,
Centralized Async-SGD

8 24 40 56 72 88
GPUs

0

250

500

750

1000

1250

1500

1750

2000

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(c) Inception-v3, L=128,
Centralized Sync-SGD

8 24 40 56 72 88
GPUs

0

500

1000

1500

2000

2500

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(d) VGG-11, L=128,
Centralized Sync-SGD

16 32 48 64 80 96
GPUs

0

500

1000

1500

2000

2500

3000

3500
Tr

ai
ni

ng
 E

xa
m

pl
es

 /
s

Measurement
Fine
Coarse (hybrid)

(e) ResNet152, L=128,
Decentralized Sync-SGD

16 32 48 64 80 96
GPUs

0

1000

2000

3000

4000

5000

6000

7000

8000

Tr
ai

ni
ng

 E
xa

m
pl

es
 /

s

Measurement
Fine
Coarse (hybrid)

(f) VGG-19, L=128,
Decentralized Sync-SGD

Figure 22: Multi-GPU Experiments on AWS p3.16xlarge

bandwidth of 25 Gbps is available to individual flows (under
either a PS or FCFS model); as a result, prediction errors
can be significant, with average (maximum) 19.3% (65.7%)
for Async-SGD and 13.6% (27.8%) for Sync-SGD. However,
inaccurate predictions in Fig. 22b occur only with a small
number of workers; in these cases, our traces show that
data transmissions almost interleave, but each transmission
uses only 10 Gbps (instead of the entire 25 Gbps assumed
by our model) due to the bandwidth limitation of single
flows on AWS. As the number of workers grows, prediction
accuracy improves. In the case of fine-grained models, after
we modify the SHARE procedure of Algorithm 2.1 to limit the
bandwidth of individual transmission flows to 10 Gbps, we
achieve accurate predictions, with average (maximum) errors
1.8% (4.8%) for Async-SGD and 3.0% (7.4%) for Sync-SGD.
The results highlight that fine-grained models can be adapted
more easily to new networking platforms, by adjusting the
bandwidth assignment used in the simulation.

For decentralized Sync-SGD, since the NCCL backend can
open a number of sockets to fully utilize the network capacity,
both coarse-grained and fine-grained models obtain good
predictions in Figs. 22e and 22f, with average (maximum)
errors of 1.9% (7.9%) and 1.7% (4.3%), respectively.

1 3 5 7 9 11
Workers

0

10

20

30

40

M
ea

su
re

d
Av

ai
la

bl
e

B
an

dw
id

th
 (G

bp
s)

0

50

100

150

200

250

300

350
D

ow
nl

in
k

Ti
m

e
(m

s)
Bandwidth
Downlink Time

Figure 23: Available Bandwidth and Downlink Time on AWS
25Gbps Network of the Experiment in Fig. 22c

5 RELATED WORK

Several performance models of ML jobs exist in the literature.
Learning-based models like Optimus [26] and Ernest [36]
propose blackbox models for performance prediction of large-
scale ML jobs. Their blackbox models substantially rely on
historical information of ML jobs to learn model parameters,
and thus their performance is significantly affected when
training data is limited. In contrast, our approach only uses
profiling information from a single worker, and produces

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

predictions for an arbitrary number of workers. Moreover,
learning-based models mainly focus on a specific scenario
(where their training data was collected), without providing
insights on how to adapt the model when the system
or coordination mechanism change (e.g., in the case of
overlapping communication and computation).

In addition to learning-based models, analytical models
for Sync-SGD have been proposed in the literature with dif-
ferent levels of granularity. Coarse-grained analytical models
of Sync-SGD in Paleo [27] and [25] predict computation time
based on FLOP counts or instruction cycles of neural network
layers, respectively. Even when these analytical models
accurately describe specific algorithms for convolutional
layers (e.g., GEMM, FFT), they may not be applicable to
new distributed SGD algorithms of the constantly evolving
ML frameworks. On the other hand, an accurate analytical
model of the computation time can be easily integrated into
our coarse-grained and fine-grained models, by replacing
the profiled computation time with the analytical estimate.
In addition, these coarse-grained models omit layer-level
behavior, resulting in less accurate predictions in the case of
overlapping communication and computation.

[30] adopts comprehensive measurements on every com-
ponent of a Sync-SGD step, with the purpose of identifying
bottlenecks in an SGD step under various settings, such
as multiple ML frameworks and inter-node connections
(e.g., TCP over InfiniBand or NCCL on GPUDirect). Sim-
ilarly to our fine-grained model, the authors compare the
communication time of every layer with the backward
computation time of the previous layer, to estimate the
overlap of communication and computation; however, they
measure the duration of every activity of the model, instead
of predicting job throughput with respect to the number of
workers, which is the focus of our work.

While the majority of analytical approaches focus on Sync-
SGD, modeling Async-SGD is more difficult because com-
munication patterns between parameter servers and workers
are more complex and can change over time. Cynthia [37],
the closest work to our paper, discusses both Sync-SGD with
overlaps between communication and computation, and
Async-SGD without overlaps. However, for the estimation of
communication time, it assumes a PS model for Sync-SGD,
while we illustrate the necessity of combining FCFS and
PS disciplines in the case of unequal network bandwidth
shares in Section 3.1; furthermore, the assumption of constant
communication time for Async-SGD only works for lower
network utilization, where transmissions by multiple work-
ers tend to completely interleave with each other (Section 2.1).
Fig. 4b compares Cynthia with our models for a training job
of ResNet-50 on AWS p3.2xlarge instances, where Cynthia
mispredicts throughput after network saturation.

Some works propose performance models for other
communication mechanisms; for example, [35] studies the
scalability of machine learning algorithms based on MapRe-
duce framework Apache Spark. The authors present a coarse-
grained model for Sync-SGD with two communication
protocols for gradient distribution and aggregation in Spark.
Gradient distribution uses a tree topology, where communi-
cation time is estimated from the logarithm of the number of
workers; gradient aggregation is performed on a square root
number of nodes at first, and then extended to the remaining

nodes. However, the proposed models are restricted to
MapReduce, which is rarely used for DNN training. Notably,
our models can be extended to MapReduce computations by
using a modified estimate of communication time.

6 CONCLUSIONS

We proposed both coarse-grained and fine-grained models
to predict the scaling characteristics of distributed SGD. Fine-
grained models can be adapted more easily to variants of
communication mechanisms used by workers to exchange
model updates, but they require ML framework profilers
and may incur profiling overhead when measuring low-level
GPU information. In contrast, parameters of coarse-grained
models can be obtained more easily through simple profiling,
but these models are less accurate in some scenarios due to
missing layer-level information.

We thoroughly validated our models in various sce-
narios of distributed SGD, including synchronous and
asynchronous strategies, centralized and decentralized ar-
chitectures, overlapping communication and computation,
unequal network bandwidth distribution and heterogeneous
platforms. Experimental results highlight that our heuristics
effectively improve the accuracy of coarse-grained models
in the case of overlapping communication and computation,
and that both fine-grained and coarse-grained models can
achieve accurate predictions in all distributed SGD scenarios.

As future directions, we plan to extend our models to
other implementations of distributed SGD, using dedicated
interconnect technologies such as GPUDirect and NVLink, as
well as other communication backends such as MPI. We also
plan to explore multi-NIC configurations to increase band-
width and improve scalability of centralized approaches.

ACKNOWLEDGEMENTS

This work was supported in part by the NSF CCF-1763747
and the NSF CNS-1816887 awards.

REFERENCES

[1] M. Abadi et al. TensorFlow: A system for large-scale machine
learning. In OSDI’16, pages 265–283, 2016.

[2] T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis. ACM Computing
Surveys (CSUR), 52(4):1–43, 2019.

[3] J. Chen, R. Monga, S. Bengio, and R. Józefowicz. Revisiting
distributed synchronous SGD. CoRR, abs/1604.00981, 2016.

[4] M. Cho, U. Finkler, S. Kumar, D. Kung, V. Saxena, and D. Sreedhar.
Powerai ddl. arXiv preprint arXiv:1708.02188, 2017.

[5] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 56(2):74–80, 2013.

[6] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, et al. The design and
operation of CloudLab. In 2019 USENIX, pages 1–14, 2019.

[7] Gloo. Collective communications library. https://github.com/
facebookincubator/gloo, 2017.

[8] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv:1706.02677, 2017.

[9] S. Hadjis, C. Zhang, I. Mitliagkas, and C. Ré. Omnivore: An
optimizer for multi-device deep learning on cpus and gpus. CoRR,
abs/1606.04487, 2016.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In CVPR’16, pages 770–778, 2016.

https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo

Z. LI, M. PAOLIERI, L. GOLUBCHIK, S.-H. LIN, AND W. YAN: THROUGHPUT PREDICTION OF DISTRIBUTED SGD 13

[11] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. Ganger, and E. P. Xing. More effective distributed ML via a
stale synchronous parallel parameter server. Advances in neural
information processing systems, 26:1223–1231, 2013.

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In IEEE CVPR, pages
4700–4708, 2017.

[13] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu, et al. Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes. arXiv
preprint arXiv:1807.11205, 2018.

[14] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza. Dissecting the
NVidia Turing T4 GPU via microbenchmarking. arXiv preprint
arXiv:1903.07486, 2019.

[15] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza. Dissecting the
NVIDIA Volta GPU architecture via microbenchmarking. arXiv
preprint arXiv:1804.06826, 2018.

[16] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter
performance analysis of a tensor processing unit. In ISCA’17, pages
1–12, 2017.

[17] Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature,
521(7553):436–444, 2015.

[18] S. Li et al. PyTorch distributed: Experiences on accelerating data
parallel training. arXiv preprint arXiv:2006.15704, 2020.

[19] Z. Li, W. Yan, M. Paolieri, and L. Golubchik. Throughput prediction
of asynchronous SGD in TensorFlow. In ICPE’20, pages 76–87.
ACM, 2020.

[20] X. Lian, W. Zhang, C. Zhang, and J. Liu. Asynchronous decentral-
ized parallel stochastic gradient descent. In International Conference
on Machine Learning, pages 3043–3052. PMLR, 2018.

[21] S.-H. Lin, M. Paolieri, C.-F. Chou, and L. Golubchik. A model-based
approach to streamlining distributed training for asynchronous
SGD. In MASCOTS’18, pages 306–318, 2018.

[22] NCCL. Nvidia collective communication library. https://developer.
nvidia.com/nccl, 2016.

[23] A. Paszke et al. PyTorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[24] P. Patarasuk and X. Yuan. Bandwidth optimal all-reduce algorithms
for clusters of workstations. Journal of Parallel and Distributed
Computing, 69(2):117–124, 2009.

[25] Z. Pei, C. Li, X. Qin, X. Chen, and G. Wei. Iteration time prediction
for CNN in multi-GPU platform: Modeling and analysis. IEEE
Access, 7:64788–64797, 2019.

[26] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Optimus: an
efficient dynamic resource scheduler for deep learning clusters.
In EuroSys’18, pages 3:1–3:14, 2018.

[27] H. Qi, E. R. Sparks, and A. Talwalkar. Paleo: A performance model
for deep neural networks. In ICLR’2017, 2017.

[28] M. Reiser. A queueing network analysis of computer communi-
cation networks with window flow control. IEEE transactions on
Communications, 27(8):1199–1209, 1979.

[29] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed
multichain queuing networks. JACM, 27(2):313–322, 1980.

[30] S. Shi, Q. Wang, and X. Chu. Performance modeling and eval-
uation of distributed deep learning frameworks on gpus. In
DASC/PiCom/DataCom/CyberSciTech’18, pages 949–957, 2018.

[31] M. Snir, W. Gropp, S. Otto, S. Huss-Lederman, J. Dongarra, and
D. Walker. MPI–the Complete Reference, volume 1. MIT press, 1998.

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. In CVPR’15, pages 1–9, 2015.

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
CVPR’16, pages 2818–2826, 2016.

[34] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International Conference on
Machine Learning, pages 6105–6114. PMLR, 2019.

[35] A. Ulanov, A. Simanovsky, and M. Marwah. Modeling scalability of
distributed machine learning. In ICDE’17, pages 1249–1254, 2017.

[36] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica.
Ernest: Efficient performance prediction for large-scale advanced
analytics. In NSDI’16, pages 363–378, 2016.

[37] H. Zheng, F. Xu, L. Chen, Z. Zhou, and F. Liu. Cynthia: Cost-
efficient cloud resource provisioning for predictable distributed
deep neural network training. In ICPP’19, pages 86:1–86:11, 2019.

Zhuojin Li is a PhD student at the University
of Southern California, Los Angeles, USA. He
received his M.S. in Computer Engineering from
the University of Southern California (2020) and
his B.S. in Computer Science from Peking Univer-
sity, China (2018). His research interests focus
on performance evaluation and modeling of large-
scale machine learning systems.

Marco Paolieri is a Senior Research Associate
at the University of Southern California, Los Ange-
les, USA. He received his Ph.D. in Computer Sci-
ence, Systems, and Telecommunications (2015)
and his M.S. in Computer Engineering (2011)
from the University of Florence, Italy. His research
interests focus on stochastic modeling and quan-
titative evaluation of performance and reliability
in concurrent and distributed systems.

Leana Golubchik is a Stephen and Etta Varra
professor of computer science and ECE systems
with the University of Southern California, Los
Angeles, CA. Prior to that, she was with the
University of Maryland and Columbia University.
Her research interests are broadly in the design
and evaluation of large scale distributed systems
including hybrid clouds and their applications in
data analytics, QoS-based design of P2P and
multimedia systems, and reliability of software
architectures. She is a past chair of ACM SIG-

METRICS and a member of the IFIP WG 7.3.

Sun-Han Li received his Ph.D. degree from the
University of Southern California (USC), Los An-
geles, CA, in 2017. He has been a performance
analyst at NetApp, USA, from October 2017 to
January 2021; he is now a Performance and Ca-
pacity Engineer at Facebook. His main research
interests include the performance modeling, anal-
ysis, and design of large-scale distributed sys-
tems, including cloud computing systems, peer-
to-peer networking, and multimedia systems. He
is a member of the IEEE and ACM.

Wumo Yan received his B.S. in Electrical Engi-
neering and Computer Science from National Ts-
ing Hua University in 2017. He is a PhD student in
Computer Science at the University of Southern
California, Los Angeles, CA. His current research
focuses on distributed machine learning systems.

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

	Introduction
	Asynchronous SGD
	Coarse-grained Model
	Fine-grained Model

	Synchronous SGD
	Coarse-grained Model
	Fine-grained Model

	Results
	Experimental Setup
	Async-SGD
	Sync-SGD
	Multi-GPU Experiments

	Related Work
	Conclusions
	References
	Biographies
	Zhuojin Li
	Marco Paolieri
	Leana Golubchik
	Sun-Han Li
	Wumo Yan

