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Abstract—Software rejuvenation is a proactive maintenance
technique that counteracts software aging by restarting a system
or some of its components. We present a non-Markovian model
of software rejuvenation where the underlying stochastic process
is a Markov Regenerative Process (MRGP) beyond the enabling
restriction, i.e., beyond the restriction of having at most one
general (GEN, i.e., non-exponential) timer enabled in each state.
The use of multiple concurrent GEN timers allows more accurate
fitting of duration distributions from observed statistics (e.g.,
mean and variance), as well as better model expressiveness,
enabling the formulation of mixed rejuvenation strategies that
combine time-triggered and event-triggered rejuvenation. We
leverage the functions for regenerative analysis based on stochas-
tic state classes of the ORIS tool (through its SIRIO library) to
evaluate this class of models and to select the rejuvenation period
achieving an optimal tradeoff between two steady-state metrics,
availability and undetected failure probability. We also show that,
when GEN timers are replaced by exponential timers with the
same mean (to satisfy enabling restriction), transient and steady-
state are affected, resulting in inaccurate rejuvenation policies.

Index Terms—Software rejuvenation, Markov regenerative
processes, enabling restriction, bounded regeneration restriction,
stochastic state classes, stochastic time Petri nets.

I. INTRODUCTION

Software aging increases the failure rate and reduces the
performance of software systems [1]–[7] due to Aging-Related
Bugs (ARBs). This class of software faults manifests its
effects over time, affecting different types of software systems
including cloud infrastructures, operating systems, database
management systems, web servers, and web applications [1],
[2], [5], [8], [9]. As time passes and service requests are
completed, ARBs can be activated and propagate, resulting
in a chain of threats [10] that lead the system towards error
states with increasing failure probability, until an aging-related
failure occurs (e.g., a process crash due to memory allocation
failure caused by a memory leak that progressively reduced
available resources).

ARBs often manifest themselves as Mandelbugs [11], which
are hard to remove before deployment and operation due to
the limited increase of detection probability with respect to
testing efforts, and which are often hidden in interactions
with the execution environment or with third-party integrated
libraries [2], [12]–[14]. To avoid or mitigate disruptive failures,
unnecessary resource consumption, and other aging effects, a
viable alternative to fault removal is represented by a pre-
ventive and proactive maintenance technique termed software
rejuvenation, which, in its basic form, consists in repeatedly
stopping the system or some selected system component,
cleaning its internal state, and restarting it [15]. This approach
improves system reliability by mitigating error accumulation
and propagation, but it normally reduces availability due to
downtimes for cleaning the system state. The selection of re-
juvenation times thus subtends a crucial trade-off between soft-
ware qualities of reliability and performance efficiency [16].

A large variety of quantitative models of Software Aging
and Rejuvenation (SAR) have been proposed to derive an
optimal rejuvenation schedule, for different types of software
systems and rejuvenation strategies, resulting in different
classes of underlying stochastic process [17].

In several SAR models, the system behavior is abstracted as
a Continuous Time Markov Chain (CTMC), either defined by
direct identification of states [15], [18] or specified through
a high level modeling formalism [19], often in the class of
Stochastic Petri Nets.

Models in the class of Semi Markov Processes (SMPs)
[20] have been proposed to improve validity by representing
behaviors where the future evolution depends not only on the
current logical state (as in a CTMC) but also on the time spent
in the state. These models are usually expressed by direct iden-
tification of a set of states, with sojourn durations associated
with general (GEN, i.e., non-exponential) distributions fitting
experimental data [21]–[25].

Expressive power is further improved by models identifying
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an underlying Markov Regenerative Process (MRGP, often
abbreviated as MRP) [20]. While SMPs impose that the
model satisfies the Markov condition (clearing memory of
the past history) at each transition, MRGPs only require the
Markov condition to be eventually satisfied with probability 1
at some time called regeneration point. The evolution of
the process can be represented through behaviors where the
system depends only on the history accumulated since the
last regeneration point. In models of SAR, this expressiveness
becomes crucial to represent aging phases during the interval
between subsequent rejuvenations, as in the seminal model
of [26] specified as a Markov Regenerative Stochastic Petri
Net (MRSPN), and in various subsequent works addressing
virtualized [12], [13] and clustered systems [27], [28]. As a
common trait, in all these models, the expressive power of
MRGPs is limited by the so-called enabling restriction, which
requires at most one GEN timer to be present in the model
(or in each state). Specifically, a deterministic (DET) transition
is used to represent the rejuvenation period, and exponential
(EXP) timers are used for all the remaining durations.

In this paper, we explore the potential of SAR models
that break the limit of the enabling restriction and permit
representation of concurrent timers with GEN distributions.
In this case, numerical solution can be performed using the
method of stochastic state classes [29] implemented in the
SIRIO library [30] of the ORIS tool [31]. This method
supports transient and steady-state analysis of models that
satisfy a so-called bounded regeneration restriction [32], re-
quiring that a regeneration is always reached within a bounded
number of discrete events, and that GEN durations are either
DET or expressed as Exponomial (often called Expolynomial)
distributions, with a possibly bounded support.

To this end, we extend the SAR model of [26] by using
exponomial GEN distributions with bounded support to fit the
mean values of repair and rejuvenation activities reported in
[26]. We show how the representation of durations with GEN
distributions impacts the evaluation of the optimal rejuvenation
period. We then show how the extended expressive power al-
lows us to analyze a model of rejuvenation policies combining
time-triggered and event-based strategies.

The rest of the paper is organized as follows. In Section II,
we present an MRGP model of software rejuvenation beyond
the enabling restriction, and we perform its analysis to de-
rive the optimal rejuvenation period. In Section III, analysis
results are compared with those obtained for a model variant
satisfying the enabling restriction. In Section IV, the expres-
sive power of models beyond enabling restriction is put to
work to combine time-triggered and event-based rejuvenation
strategies. Finally, we draw our conclusions in Section V.

II. OPTIMAL PERIODIC REJUVENATION
BEYOND ENABLING RESTRICTION

In this section, we extend a rejuvenation model from the
literature by using multiple concurrent GEN timers, which
result in an underlying stochastic process from a more general

Transition Expected Value (hours)

rejFromErr 0.1666
rejFromUp 0.1666
error 240
fail 2160
detect + repair 0.5

TABLE I: Expected values of timers used in the MRGP under
enabling restriction of [26]. Stochastic parameters of timers in
Fig. 1b are selected to obtain the same expected values.

class of MRGPs (Section II-A). Then, we show how the
ORIS tool can be used during system design to identify
the rejuvenation period that optimizes the trade-off between
metrics of reliability, which are evaluated as model rewards
(Section II-B).

A. Software aging and rejuvenation models

A well-known model of software aging and rejuvenation
was defined in [26]. In this work, we extend the structure of
such model to introduce a state where a failure has occurred
but has not been detected; the resulting model is presented
in Fig. 1a. The model is defined as an STPN describing the
system aging, failure, and repair process (blue section), and the
related rejuvenation process (green section). Initially, the sys-
tem is in a safe state (Up); due to ARBs, the system transitions
to an error state (Err), which eventually leads to a state of
failure (Down); then, the failure is detected (Detected) and
the system is repaired, returning to the safe state. Concurrently,
the rejuvenation process waits in the initial state (Clock)
for an amount of time equal to the rejuvenation period; after
this time, rejuvenation is ready to start (Rej): error or failure
events are inhibited, and rejuvenation is initiated in safe or er-
ror states of the system (through transitions rejFromUp and
rejFromErr, respectively). After rejuvenation, the system
goes back to a safe state and the rejuvenation process restarts.

In Fig. 1a, similarly to [26], the rejuvenation period is
modeled with a DET timer (gray bar) while all other activities
are modeled with EXP timers (white bars), so that the model
is under the enabling restriction. In this case, the transient
behavior of the system can be evaluated in closed form,
by inversion of the matrix form of the generalized Markov
renewal equations, where global and local kernels are derived
in the Laplace-Stieltjes domain. Transient probabilities of this
model can also be computed through regenerative transient
analysis based on the method of stochastic state classes [29],
[33]. This method removes the enabling restriction, allowing
the analysis of the model in Fig. 1b, where multiple GEN
timers (thick black bars) can be enabled concurrently. We
assign the following GEN distributions in Fig. 1b:

• error and fail are modeled with 4-phase Erlang
distributions fitting the expected values in Table I;

• detect is modeled with a uniform distribution over
[0, 0.3], with mean value 0.15;
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(a)

(b)

(c)

Fig. 1: Software aging and rejuvenation models: (a) extends
[26] to distinguish undetected failures and has an underlying
MRGP under the enabling restriction; (b) and (c) use multiple
GEN timers and have underlying MRGPs beyond the enabling
restriction; (b) has a periodic rejuvenation schedule, while
(c) introduces a diagnostic event-driven rejuvenation policy
discussed in Section IV.

• The other timers are modeled with truncated exponential
distributions, with density f(x) = 2.04 exp(−1.51x)
over [0, 0.90] for repair and f(x) = 4.28 exp(−3.17x)
over [0, 0.43] for rejFromErr and rejFromUp. The
upper bounds and rates of these distributions were se-
lected to fit the expected values in Table I and a coeffi-
cient of variation equal to 1/

√
2 [34]; repair has mean

value 0.35 to match the mean value of 0.5 used in Table I
for the sum of the duration of repair and detect.
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Fig. 2: Steady-state unavailability, undetected failure probabil-
ity, and their average as a function of the rejuvenation period
for the model in Fig. 1b (multiple GEN timers).

B. Optimal rejuvenation period

In the context of software aging and rejuvenation, steady-
state unavailability is a metric of interest quantifying the
occurrence of states in which the system is not able to provide
service. We consider an additional metric, the steady-state
probability of an undetected failure, which can be of particular
concern for system designers. Both metrics can be evaluated
using the ORIS GUI and the SIRIO library using the rewards
“If(Down+Detected>0||Rej>0,1,0)” and “Down”,
respectively. We are interested in selecting the rejuvenation
period p∗ that results in the best trade-off between steady-state
unavailability ā(p) and probability of undetected failure r̄(p).
Specifically, we minimize the average of the two metrics:

p∗ = argmin
p

[
ā(p) + r̄(p)

2

]
. (1)

The ORIS tool and the SIRIO library provide manual and
automated modeling capabilities, respectively; we use the
SIRIO library to evaluate [ā(p) + r̄(p)]/2 for 100 variants of
the model in Fig. 1b, with rejuvenation period p ranging from
500 to 10400 hours, with increments of 100 hours.

The results, presented in Fig. 2, show that, as expected, the
steady-state probability of an undetected failure r̄(p) increases
with the rejuvenation period p, converging to 0.000061. On
the other hand, the steady-state unavailability ā(p) initially
decreases with respect to the rejuvenation period p, reaching
the minimum value of 0.000163 for a period of 1600 hours,
and then increases, converging to the value 0.000205. The
rejuvenation period minimizing the average of these metrics
in Eq. (1) is p∗ = 1300, achieving the objective 0.000091.

C. Transient reliability metrics

After identifying the optimal rejuvenation period, we use
the ORIS tool to evaluate three transient metrics: unreliability,
unavailability, and cumulative unavailability. We evaluate
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Fig. 3: Transient evaluation of (a) unreliability, (b) unavailabil-
ity, and (c) cumulative unavailability for the model in Fig. 1b.

the expected steady-state unreliability by using the reward
“Down” and the stop condition “Down==1” (i.e., the sys-
tem has encountered at least one failure); unavailability is
evaluated using the same reward used in the previous sec-
tion, “If(Down+Detected>0||Rej>0,1,0)”; cumula-
tive unavailability at time t is obtained in ORIS by integrating
the instantaneous unavailability in [0, t]. The results show that
system unreliability (Fig. 3a) converges to 1 after t = 50000
hours; at multiples of the rejuvenation period p = 1300, the in-
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Fig. 4: Steady-state unavailability, undetected failure probabil-
ity, and their average as a function of the rejuvenation period
for the model in Fig. 1a (under enabling restriction).

crease in unreliability is reduced, confirming the importance of
the rejuvenation processes. In contrast, unavailability (Fig. 3b)
shows sharp peaks near multiples of the rejuvenation period,
since the system is not available during rejuvenation; as time
advances, due to the randomness of repair times (after which
the rejuvenation clock is restarted), the unavailability peaks
are in fact distributed over longer periods of time, with lower
maximum probability values. Correspondingly, we observe
a sharp increase in the expected cumulative unavailability
(Fig. 3c) near multiples of the rejuvenation period; as time
advances, cumulative unavailability becomes smoother.

III. COMPARING ENABLING RESTRICTION WITH
BOUNDED REGENERATION RESTRICTION

In this section, we repeat the selection of an optimal
rejuvenation period presented in Section II-B for a model
under the enabling restriction (Section III-A). Then, we eval-
uate the impact of the enabling restriction on the transient
metrics presented in Section II-C, illustrating that transition
distributions greatly impact the choice of the rejuvenation
period, despite having the same mean values (Section III-B).

A. Optimal rejuvenation period

We repeat the analysis of Section II-B for the model pre-
sented in Fig. 1a, which includes a DET timer (waitClock)
for the rejuvenation period and only EXP timers (instead of
GEN timers) for the other activities, with rates that result in
the same expected values. The underlying stochastic process
is an MRGP under enabling restriction, since at most one non-
exponential timer can be enabled in each state.

The results, presented in Fig. 4, illustrate that the steady-
state values of both rewards have a monotonic trend, which is
decreasing for unavailability and increasing for the probability
of undetected failure. In this case, by applying again the
criterion of Eq. (1) to find the optimal rejuvenation period,
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the largest rejuvenation period is selected; similarly, after
extending the range used for the rejuvenation period, the
best strategy is to perform rejuvenation as rarely as possible,
suggesting that rejuvenation is not beneficial for the metrics
in Eq. (1). However, this is in contrast with the literature on
software aging and rejuvenation: in fact, the considered MRGP
model under enabling restriction is characterized by stochastic
parameters that, despite having the same mean values, are
not sufficiently accurate to identify an optimal rejuvenation
period. Since the model does not allow us to select an optimal
rejuvenation period, we select p∗ = 2200 in order to anticipate
the mean time of error detection (2300 hours) by a few hours.

B. Transient reliability metrics

We also investigate the impact on transient behavior when
GEN transitions are replaced in the model of Fig. 1b with EXP
transitions with the same mean values (model of Fig. 1a). To
this end, we analyze the two models for rejuvenation periods
equal to either p = 1300 or p = 2200, respectively, and we
evaluate cumulative unavailability over t = 6000 hours and
unreliability over t = 50000 hours.

The cumulative unavailability graphs (Fig. 5) show that the
model under enabling restriction converges to the steady-state
more rapidly than the model with bounded regeneration (i.e.,
beyond enabling restriction), a consequence of replacing GEN
transitions (with bounded supports) with EXP transitions (with
unbounded supports). Moreover, for the optimal rejuvenation
period p = 1300 (Fig. 5a), unavailability of the model under
enabling restriction is always greater than that of the model
with bounded regeneration. This suggests that, although the
two models have transitions characterized by distributions with
the same expected value, the different nature of their analyti-
cal forms produces significantly different transient behaviors.
Notably, the transient metrics of the model under enabling
restriction are closer to those of the model with bounded
regeneration for the larger rejuvenation period p = 2200.

Fig. 6 illustrates that the model with bounded regenerations
(beyond enabling restriction) achieves lower unreliability, i.e.,
the system is less likely to fail during the same time interval.
This behavior is more pronounced when the optimal rejuve-
nation period p = 1300 is considered: for the model with
bounded regenerations, unreliability converges to 1 only after
t = 50000 hours of operation, while t = 20000 hours are
sufficient for the model under enabling restriction.

This comparison explains the difficulty of optimizing system
parameters using a model under enabling restriction, where
only mean values of observed activity durations can be accu-
rately represented, resulting in notably different performance
metrics. In contrast, models with bounded regeneration can
include GEN timers to fit multiple statistics (e.g., mean and
variance) of collected data, as well as multiple DET timers; the
increased expressive power allows modeling of more advanced
rejuvenation strategies, such as those presented in the next
section.

IV. EVENT-DRIVEN REJUVENATION POLICY

In this section, we illustrate how the expressive power
of models beyond enabling restriction allows the study of
new rejuvenation strategies combining periodic rejuvenation
with event-driven rejuvenation based on system diagnostics
(Section IV-A). Then, we compare steady-state and transient
metrics of this model with those of the model using only pe-
riodic rejuvenation and analyzed in Section II (Section IV-B).

A. Modeling event-driven rejuvenation policies

The model illustrated in Fig. 1b describes a system where
rejuvenation is triggered periodically. In many concrete cases,
the rejuvenation process can be guided by system diagnostics,
which provide statistical insight into the safety status of the
system. System diagnostics can be used to estimate the proba-
bility that the system is in an error state, determining whether
to start rejuvenation. Combining the periodic rejuvenation
approach with an event-based approach can result in improved
management of an aging system, since rejuvenation can be
anticipated when system diagnostics indicate high probability
of an error state, while periodic rejuvenation can improve
reliability when systems diagnostics are inaccurate.

In Fig. 1c, we propose a model combining the two ap-
proaches. The process consists of three steps (deterministic
transitions in the green section): after the first two steps
(waitClock1 and waitClock2) diagnostic tests (red sec-
tion) are started to determine whether to start rejuvenation
immediately; if none of the diagnostic tests report a failure,
then rejuvenation is started according to a time-triggered pol-
icy (waitClock). In the STPN model, when the diagnostic
tests start, a token is put in place Sample, which is the initial
state of the tests. If the diagnostic tests report a safe state, a
token is put in place Green. Otherwise, an error or failure are
likely to be present in the system; in this case, a token is put
in place Red, vacant tokens are removed from rejuvenation
and diagnostic processes (i.e., from places Clock1, Clock2
and Green), and a token is put in place Rej. The diagnostic
process can correctly or incorrectly predict whether the system
state is safe. This requires modeling four different situations:
the system is safe and no error is detected, the system is safe
but an error is detected, the system is unsafe and an error is
detected, the system is unsafe but no error is detected. The first
case is modeled through transition t2, which is enabled when
at least one token is in place Up. The undetected error state
is modeled through transition t3: in this case, the transition
is enabled when there is no token in place Up. Valid error
or failure detection are modeled through transition t4, which
is enabled when no tokens are in place Up. Invalid error or
failure detection are modeled through transition t5, which is
enabled when at least one token is in place Up. The probability
of predicting a correct state is 0.9, both in the case of fault
detection and in the case of safe state detection. The rest of
the rejuvenation process (green section) and the aging and
repairing process (blue section) are modeled and operate as
described in Section II-A.
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Fig. 5: Cumulative transient unavailability of models in Figs. 1a and 1b with rejuvenation periods 1300 (a) and 2200 (b).
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Fig. 6: Transient unreliability of models in Figs. 1a and 1b with rejuvenation period equal to 1300 (a) and 2200 (b).

We also consider a variant of this model that triggers the re-
juvenation (i.e., puts a token in place Rej before waitClock
eventually triggers) only when system safety verification has
produced two warnings in a row. To model this case using
STPNs, it is sufficient to add the enabling function “Red==2”
to transition t6, which will be enabled only when two tokens
are present in place Red.

This model could be extended in multiple ways, for example
by varying the number of diagnostic stations, or by using a
different sub-model for each station. Although not possible in
STPN models, the system aging process could be emulated
in SIRIO by varying the probabilities for the execution of
transitions t1, t2, t3, and t4 based on the current system
state; moreover, different probabilities of correct prediction
could be used for fault detection and safe state detection.

B. Steady-state and transient metrics comparison

We consider the model of Section II-A (periodic rejuvena-
tion) and the models defined in Section IV-A (rejuvenating

periodically, or after 1 or 2 warnings), and we compare their
steady-state unavailability and undetected failure probability,
as well as transient unreliability and transient cumulative
unavailability.

Steady-state metrics, presented in Table II, show that the
probability of undetected failures can be reduced by an or-
der of magnitude (from 0.0000157 to 0.0000017) by using
diagnostics information to trigger rejuvenation on demand;
the model that requires two consecutive diagnostic warnings
results in greater steady-state probability of undetected failure
(0.0000021). In contrast, additional rejuvenation processes
triggered by diagnostics can result in worse steady-state avail-
ability, since the system is unavailable during rejuvenation.
We observe that unavailability is lower (0.0001670) in the
model with periodic rejuvenation; in the models with diag-
nostic stations and event-based rejuvenation, unavailability is
lower (0.0003255) when two warnings are necessary to trigger
rejuvenation instead of one (0.0003324).
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Rejuvenation Model (Bounded Regeneration)

Metric Periodic Periodic and 1-Warning Periodic and 2-Warning

P(Undetected Failure) 0.0000157 0.0000017 0.0000021
P(System Unavailable) 0.0001670 0.0003324 0.0003255

TABLE II: Steady-state metrics for the periodic model of Fig. 1b, and for variants of Fig. 1c using 1 or 2 warnings.

Fig. 7 illustrates the results obtained for transient metrics.
The transient cumulative unavailability confirms our observa-
tions regarding steady-state metrics. The classical rejuvenation
model presents lower values of unavailability, because it re-
duces the amount of time in which the system is under rejuve-
nation; between the two event-driven rejuvenation models, the
model requiring two consecutive failure warnings has lower
unavailability than the model requiring only one warning. On
the other hand, transient unreliability shows that models with
event-driven rejuvenation policies obtain higher reliability. In
fact, while at t = 50000 hours the model with periodic
rejuvenation policy is unreliable with probability close to 1,
the event-driven models are unreliable with probability lower
than 0.5. In addition, the unreliability of the model requiring
two consecutive fault warnings is higher than the unreliability
of the model requiring only one warning; this is expected,
since system diagnostics are highly accurate in our model (the
state of the system is correctly diagnosed with probability 0.9).

V. CONCLUSIONS

We addressed the problem of modeling and evaluating
software rejuvenation approaches aimed at counteracting the
software aging phenomenon. To this end, we presented a
non-Markovian model with an underlying stochastic process
from the class of MRGPs beyond the limit of the enabling
restriction, i.e., with multiple concurrent GEN timers enabled
in each state. The expressive power of this class of models
enables the derivation of stochastic parameters that fit multiple
statistics of observed, for example to preserve not only the
sample mean value but also the sample variance. We evaluated
reliability metrics for the proposed model and for a variant
obtained by replacing GEN distribution with EXP distributions
that fit only the mean value, in order to restrict the underlying
MRGP with the enabling restriction. Experimental results
show significant differences both in transient and steady-state
behavior, with non-negligible impact on the selection of a
rejuvenation period that achieves a trade-off between system
availability and probability of undetected failures.

The increased expressive power of MRGPs beyond enabling
restriction also allowed us to formulate and evaluate software
rejuvenation models that combine the usual time-triggered
rejuvenation policy with an event-triggered policy where warn-
ings emitted by a diagnostic mechanism are used to trigger
early rejuvenation. Experimental results show that the two
event-triggered policies under consideration improve system
reliability, at the cost of reducing its availability. Nevertheless,
this comprises an acceptable cost, given that repairing a system

0 1000 2000 3000 4000 5000 6000

Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
u

m
u

la
ti

ve
U

n
av

ai
la

b
ili

ty
(H

ou
rs

)

Bounded R. (Periodic)

Bounded R. (Periodic and 1-Warning)

Bounded R. (Periodic and 2-Warning)

(a)

0 100000 200000 300000 400000

Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
n

re
lia

b
ili

ty

Bounded Regeneration (Periodic)

Bounded Regeneration (Periodic and 1-Warning)

Bounded Regeneration (Periodic and 2-Warning)

(b)

Fig. 7: Cumulative transient unavailability (a) and transient
unreliability (b) of models in Figs. 1b and 1c.

after a failure is typically more expensive than performing a
rejuvenation.

The results also show that the ORIS tool and the SIRIO
library can be effectively used to design and evaluate quanti-
tative models with underlying MRGPs beyond the enabling
restriction, supporting parametric studies to select optimal
stochastic parameters. More importantly, our analysis suggests
that software aging and rejuvenation models beyond enabling
restriction allow the evaluation of dynamic policies that im-
prove system reliability, motivating the adoption of this class
of models in the context of SAR.
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