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Abstract. We present a solution to compute equilibrium probability
density functions (PDFs) for the continuous component of the state
in Markov regenerative processes, a class of non-Markovian processes.
Equilibrium PDFs are derived as closed-form analytical expressions by
applying the Key Renewal Theorem to stochastic state classes computed
between regenerations. The solution, evaluated experimentally through
the development of an analysis tool, provides the basis to analyze system
properties from the equilibrium.

1 Introduction

Stochastic models of discrete-event systems provide a powerful tool for the
evaluation of system designs: concurrent activities with stochastic duration
can represent service times, arrivals, server breakdowns, or repair actions, for
example. Several high-level modeling formalisms are available, including queueing
networks [11], stochastic Petri nets [9], stochastic process algebras [5]. Performance
and reliability metrics can be evaluated in these models from the transient or
steady-state probabilities of their underlying stochastic processes [4].

Steady-state probabilities are computed for the discrete component of the sys-
tem state, such as the number of customers in each queue, or the number of failed
servers. These probabilities provide a complete characterization at equilibrium
for continuous-time Markov chains (CTMCs), but not for non-Markovian pro-
cesses, where future evolution also depends on the distribution of the continuous
component of the state (e.g., remaining time to a failure or service completion).

In fact, CTMCs are memoryless [12]: at any time instant, the future evo-
lution of the process is completely characterized by the current discrete state,
independently of previous states or sojourn times. For example, in an M/M/1
queue with arrival rate λ and service rate µ, the discrete state is the number n
of customers and times to the next arrival and to the next service (if n > 0)
are always independent, exponential random variables with rates λ and µ, re-
spectively. Non-Markovian processes do not enjoy such properties: the process
evolution after time t depends not only on the discrete state, but also on the
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distribution of timers at time t [12]. Timers with general (i.e., non-exponential)
distributions can “accumulate memory” of previous events and sojourn times: in
an M/G/1 queue, the distribution of the remaining service time is not known
given the number n of customers, but depends on the time since the last service.
Multiple general timers that are concurrently enabled become dependent random
variables with a joint distribution [16].

In this paper, we propose a solution to evaluate, in addition to the steady-state
probability of discrete states, also the equilibrium distribution of the continuous
component of each state, the active timers. Our solution is analytical: using the
calculus of stochastic state classes [16,10], we compute closed-form expressions for
the joint probability density function (PDF) of active timers immediately after
each discrete event of a stochastic model; from these, we derive equilibrium PDFs
through the construction of a renewal process and application of the Key Renewal
Theorem [12]. Our analysis targets Markov regenerative processes (MRGPs): this
class of non-Markovian processes satisfies the Markov property at regeneration
points, which correspond to time instants where the discrete component of the
state provides sufficient information to characterize the PDF of active timers,
and thus future evolution [12]. Regeneration points occur when all general timers
are reset: in the M/G/1 queue example, each service completion corresponds to
a regeneration point of the underlying stochastic process, which is an MRGP.

We restrict our analysis to irreducible MRGPs with finite state space and
“bounded memory,” i.e., such that a new regeneration point is reached w.p.1 after
a bounded number of discrete events (in general, MRGPs can produce trajec-
tories without regenerations, if their measure is zero). Semi-Markov processes
(SMPs) are a special case of MRGPs where regeneration points are reached after
each discrete event. In contrast with MRGPs under enabling restriction [7], we
allow multiple general timers to be concurrently enabled [10,13]. We develop an
implementation based on the freely available tool ORIS [14]. Our implementation
can automatically compute steady-state probabilities and equilibrium PDFs for
each stochastic state class of models where timers are deterministic or sampled
according to expolynomial PDFs (products of exponentials and polynomials),
which include exponential, uniform, triangular, and Erlang distributions.

The equilibrium analysis of MRGPs is an important result, as it characterizes
the stochastic process at the time of a random inspection in the long-run. It
generalizes the well-known result for the remaining life of a renewal process, which
has PDF fY (y) = [1− FX(y)]/E[X] after a random inspection if FX(x) is the
cumulative distribution function (CDF) of inter-event times [12, Eq. (8.40)]. When
the inspection represents a catastrophic failure, equilibrium PDFs can be modified
to reflect its effects and used in transient analysis to compute survivability metrics,
similarly to solutions for CTMCs [15,8,6]. Once the equilibrium PDFs are known
for each state, the approach also enables the generation of samples from the
equilibrium distribution of the MRGP process without the need to monitor
convergence and mixing during a simulation, similarly to perfect sampling [1,2,3]
methods for DTMCs and CTMCs.
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2 Markov Regenerative Processes

2.1 Stochastic Time Petri Nets

We adopt stochastic time Petri nets (STPNs) to specify discrete-event systems
governed by stochastic timers. We refer to Appendix A for a complete definition
of STPNs and present only their essential elements. An STPN includes a set P of
places (graphically drawn as circles) and a set T of transitions (drawn as vertical
bars): transitions represent concurrent activities that move tokens between places.
State. The state s = (m, τ⃗) of an STPN includes two components: (1) a marking
m : P → N that assigns a token count to each place and controls the enabling
of transitions, and (2) a time-to-fire vector τ⃗ = (τ1, . . . , τn) that specifies the
remaining time τi ∈ R⩾0 to the firing of each transition enabled by m (given a
total order on T ).
State Update. A transition is enabled by marking m if all input places (connected
with incoming arcs) contain at least one token. The enabled transition t∗ with
minimum remaining time in τ⃗ fires and produces a new state s′ = (m′, τ⃗ ′) where:
m′ is obtained from m by removing one token from each input place of t∗ and
adding one token to each output place of t∗ (connected with outgoing arcs).
Transitions enabled before and after each step, but distinct from t∗, are called
persistent : after the firing, their remaining times to the fire are reduced by that
of t∗, i.e., τi′ = τi− τt∗ . Other transitions enabled by m′ are called newly-enabled :
their remaining times τi

′ are sampled independently according to CDFs Ft(x)
specified by the STPN for each transition t.

We assume that each CDF Ft admits the representation Ft(x) =
∫ x

0
ft(u) du.

We represent the PDF of a transition t with deterministic duration x using the
Dirac delta function ft(x) = δ(x − x). As usual in stochastic Petri nets, the
PDF family of a transition is represented graphically using white rectangles for
exponential transitions, gray rectangles for deterministic ones, black rectangles
for other distributions.

Example 1 (Parallel Producer-Consumer). Fig. 1a presents the STPN model of
two producers working in parallel to produce parts that are consumed together
by a single consumer; consumption begins only when both parts are available,
and production of new parts starts when the previous ones have been consumed.
Tokens in places pIn1 and pIn2 activate the two producers represented by tran-
sitions {prod11, prod12} and prod2, respectively. The first producer uses two
processing units to increase performance: the first among prod11 and prod12 to
complete (respectively, with time to fire PDF f(x) = 2x− 2 on [1, 2] and uniform
on [1, 2]) ends the production of the first part. The second producer is modeled
by transition prod2 with PDF f(x) = 1− x/2 on [0, 2]. The consumer, modeled
by transition consume with deterministic firing time equal to 1, is enabled when
both tokens are moved to places pOut1 and pOut2; after its completion, tokens are
moved back to places pIn1 and pIn2, and production restarts. Fig. 1b presents the
state class graph [16] for this model, where edges represent possible transitions
firings and each node Si represents the marking mi and the set Di of possible
values for the time-to-fire vector τ⃗ immediately after a firing.
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pIn1 pOut1

pIn2 pOut2pOut2

prod11
f(x) = 2x− 2 on [1, 2]

prod12
unif([1, 2])

prod2
f(x) = 1− x/2 on [0, 2]

consume

det(1)

(a) STPN Model

m0 = {pIn1 → 1, pIn2 → 1,
pOut1 → 0, pOut2 → 0}

D0 = {(prod11 , prod12 , prod2 )
∈ [1, 2]× [1, 2]× [0, 2]}

S0

m1 = {pIn1 → 0, pIn2 → 1,
pOut1 → 1, pOut2 → 0}

D1 = {prod2 ∈ [0, 1]}

S1

m2 = {pIn1 → 1, pIn2 → 0,
pOut1 → 0, pOut2 → 1}

D2 = {(prod11 , prod12 ) ∈ [0, 2]× [0, 2] :
− 1 ⩽ prod11 − prod12 ⩽ 1}

S2

m3 = {pIn1 → 0, pIn2 → 0,
pOut1 → 1, pOut2 → 1}

D3 = {consume ∈ [1, 1]}

S3

prod11 prod12 prod2

prod2
prod11 prod12

consume

(b) State Class Graph

Fig. 1: Parallel Producer-Consumer Example
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⟨m0, D00, f00⟩

Σ0

⟨m1, D11, f11⟩

Σ11

⟨m1, D12, f12⟩

Σ12

⟨m2, D22, f22⟩

Σ2

⟨m3, D311, f311⟩

Σ311

⟨m3, D312, f312⟩

Σ312

⟨m3, D321, f321⟩

Σ321

⟨m3, D322, f322⟩

Σ322

⟨m3, D30, f30⟩

Σ30

⟨m0, D03, f03⟩

Σ03

prod11, µ = 1
40

prod12, µ = 3
40

prod2, µ = 9
10

prod2, µ = 1 prod2, µ = 1 prod11, µ = 37
108

prod12, µ = 71
108

consume, µ = 1

Fig. 2: Trees of Stochastic State Classes from Σ0 and Σ00

2.2 Markov Regenerative Processes

Given an initial marking m0 and a joint PDF f0(x⃗) of initial times to fire τ⃗0,
each execution of the STPN produces a sequence of state changes s0

t1−→ s1
t2−→

s2
t3−→ · · · where s0 = (m0, τ⃗0) is the initial state, ti ∈ T is the ith fired

transition, and si = (mi, τ⃗i) is the state reached after the firing of ti. Firing of a
transition is a regeneration point if all general (i.e., non-exponential) transitions
that are enabled after the firing are resampled (newly-enabled) which means
that the marking reached due to the firing provides sufficient information to
reconstruct the PDF of the time-to-fire vector (which is simply the product of
PDFs of enabled transitions). On the other hand, firing of a transition is not
a regeneration point if one or more general transitions remain enabled. The
marking process {Z(t), t ⩾ 0 } records the marking of the STPN as it evolves
over time. It is a continuous-time process with a countable state space, the set
of markings M ⊆ NP (for a formal definition, see [9, Sect. 3.1]). The family of
the marking process depends on the type of time-to-fire distributions and on
the overlap of time intervals during which general transitions are enabled [4].
We focus on the class of MRGPs that allows multiple general transitions to be
enabled at the same time but requires that, in a bounded number of transition
firings, the model reaches a regeneration point; we denote the set of markings
reached at regeneration points as R ⊆ M .

Example 2 (Parallel Producer-Consumer). Regeneration points for the marking
process of the STPN in Fig. 1a are highlighted in the state class graph of Fig. 1b
by darker backgrounds; they correspond to the firings that lead to marking m3

(i.e., when production ends) or to marking m0 (i.e., when consume fires and
production restarts), i.e., R = {m3,m0}.

MRGPs provide a good trade-off between modeling power and complexity
of the analysis: concurrent general timers can persist to discrete events, while
transient and steady-state probabilities can be computed numerically [10,13].
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f00(age, prod11 , prod12 , prod2 ) = (2prod11 − prod11 prod2 + prod2 − 2) δ(age)

D00 = {(age, prod11 , prod12 , prod2 ) ∈ [0, 0]× [1, 2]× [1, 2]× [0, 2]}

f11(age, prod2 ) = −200age2 − 320age + 40age2 prod2 +

120age prod2 − 40age3 − 160 + 80prod2

D11 = {(age, prod2 ) ∈ [−2,−1]× [0, 1] : −2 ⩽ age − prod2 ⩽ −1}

f12(age, prod2 ) = −80

3
age2 − 80

3
age +

20

3
age2prod2 +

40

3
age prod2 − 20

3
age3

D12 = {(age, prod2 ) ∈ [−2,−1]× [0, 1] : −2 ⩽ age − prod2 ⩽ −1}

f311(age, consume) =

(
200

3
+

580

3
age + 200age2 +

260

3
age3 +

40

3
age4

)
δ(consume − 1)

D311 = {(age, consume) ∈ [−2,−1]× [1, 1]}

f312(age, consume) =

(
−80

9
− 40

9
age +

40

3
age2 +

100

9
age3 +

20

9
age4

)
δ(consume − 1)

D312 = {(age, consume) ∈ [−2,−1]× [1, 1]}

Fig. 3: PDFs and supports for paths Σ0 → Σ11 → Σ311 and Σ0 → Σ12 → Σ312

Transient probabilities Pij(t) := P (Z(t) = j | X0 = i) from all initial
regenerations i ∈ R and for all j ∈ M , t ⩾ 0 can be computed from the system
of Markov renewal equations [12]

P(t) = L(t) +

∫ t

0

dG(u)P(t− u) (1)

where
Gik(t) := P (X1 = k, T1 ⩽ t | X0 = i)

for i, k ∈ R is the global kernel of the MRGP, specifying the joint distribu-
tion of the next regeneration X1 and regeneration point T1 given that the last
regeneration was X0 = i at time 0, while

Lij(t) := P (Z(t) = j, T1 > t | X0 = i)

is the local kernel of the MRGP, defined as the probability that, given the initial
regeneration i ∈ R at time 0, no further regeneration has been reached and the
marking is j ∈ M at time t. Informally, the global kernel describes the process of
the regeneration points while the local kernel provides the necessary information
between two consecutive regeneration points. The system of Eq. (1) is a set of
Volterra integral equations that can be solved numerically in the time domain.

The global and local kernels also provide the steady-state probabilities pj of
each marking j ∈ M . If π⃗ is the vector of steady-state probabilities of the discrete-
time Markov chain (DTMC) embedded at regeneration points, i.e.,

∑
k∈R πk = 1

and π⃗ = G(∞)π⃗, then

pj =

∑
i∈R πiαij∑

i∈R,j′∈M πiαij′
(2)

where αij :=
∫∞
0

Lij(t) dt is the expected time spent in j after a regeneration in
i ∈ R and before the next one [13].
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2.3 Analysis with Stochastic State Classes

Although Eqs. (1) and (2) provide an elegant solution to compute transient
and steady-state probabilities, a major difficulty lies in the evaluation of the
global and local kernels for a given model. One approach is to compute the joint
PDF of the time-to-fire vector and firing time after each transition firing until a
regeneration. This can be accomplished through the calculus of stochastic state
classes [16,10].

Definition 1 (Stochastic State Class). A stochastic state class Σ is a tuple
⟨m,D, f⟩ where: m ∈ M is a marking; f is the PDF (immediately after a firing)
of the random vector ⟨τage , τ⃗⟩ including the time-to-fire vector τ⃗ of transitions
enabled by m and the age variable τage accumulating previous sojourn times;
D ⊆ Rn+1 is the support of f .

The initial stochastic state class has marking m0 (the initial marking of the STPN)
and PDF f(xage , x⃗) = δ(xage)f0(x⃗), where f0 is the PDF of the initial time-to-fire
vector τ⃗0 of the STPN and δ is the Dirac delta. Given a class Σ = ⟨m,D, f⟩ and a
transition t enabled by m, the calculus of [16] computes (1) the probability µ that
t is the transition that fires in Σ, and (2) the successor class Σ′, which includes
the marking and time-to-fire PDF after the firing of t in Σ. In the calculus,
the age variable τage is decreased by the sojourn time, to treat it similarly to
persistent times to fire [10]; the time of the last firing is thus given by −τage .

To analyze MRGPs, regeneration points are detected during the computa-
tion of successors and new regeneration states are included in the set R. Each
regeneration state i ∈ R uniquely identifies an initial marking and PDF of the
time-to-fire vector, which can be used to construct an initial stochastic state
class. By computing trees of stochastic state classes from each i ∈ R to other
regeneration points, the MRGP is encoded as a set of trees of stochastic state
classes.

If Inner(i) and Leaves(i) are, respectively, the stochastic state classes of
inner nodes and leaf nodes in the transient tree enumerated from regeneration
i ∈ R, then

Lij(t) =
∑

Σ∈Inner(i) s.t.
Σ has marking j

pin(Σ, t) and Gik(t) =
∑

Σ∈Leaves(i) s.t.
Σ has regeneration k

preach(Σ, t)

for all i, k ∈ R, j ∈ M , and t ⩾ 0, where for a class Σ = ⟨m,D, f⟩ reached
through firings with probability ρ(Σ),

preach(Σ, t) = ρ(Σ)

∫
{(xage ,x⃗)∈D|−xage⩽t}

f(xage , x⃗) dxage dx⃗

is the probability that Σ is reached from i within time t and

pin(Σ, t) =ρ(Σ)

∫
{(xage ,x⃗)∈D|−xage⩽t and xk − xage > t ∀k}

f(xage , x⃗) dxage dx⃗
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is the probability that all and only the transitions leading from i to Σ have fired
by time t [10]. When timers are deterministic or with expolynomial PDFs, the
integrals in the two equations above (and similar integrals in the rest of the
paper) can be evaluated exactly in ORIS by symbolic integration over zones.

Example 3 (Parallel Producer-Consumer). Fig. 2 presents the trees of stochastic
state classes for the example of Fig. 1a. Regenerations are identified by markings
R = {m0,m3}: Inner(m0) = {Σ0, Σ11, Σ12, Σ2}, Inner(m3) = {Σ30}, while
Leaves(m0) = {Σ311, Σ312, Σ321, Σ322}, and Leaves(m3) = {Σ03}. Edges are
labeled with firing probabilities, e.g., the probability ρ(Σ321) of firing prod2 and
then prod11 is 9

10 · 37
108 .

3 Equilibrium Analysis

3.1 Steady-state Probabilities

To compute the probability of observing each stochastic state class in steady
state, we follow the strategy of Eq. (2) but consider each class (instead of each
marking) as a distinct state j. First, we compute the limit of the global kernel
G(t) as t → ∞. Each entry Gik(∞) for i, k ∈ R can be obtained as the product
of firing probabilities from regeneration i to all classes in Leaves(i) that reach
regeneration k ∈ R:

Gik(∞) := P (X1 = k | X0 = i) =
∑

Σ∈Leaves(i) s.t.
Σ has regeneration k

ρ(Σ)

where ρ(Σ) is the product of firing probabilities µ for the sequence of firings that
leads from i ∈ R to Σ.

Next, for each regeneration i ∈ R and class j ∈ Inner(i), we compute the
expected time αj spent in j after reaching i and before the next regeneration.

Lemma 1. Let j = ⟨m,D, f⟩ be an inner node in the tree enumerated from
regeneration i ∈ R, i.e., j ∈ Inner(i). Then, the expected sojourn time of the
MRGP in j before the next regeneration is

αj = ρ(j)
∑

t∈E(j)

µ(t)

∫
D(t)

xkt
f (t)(xage , x⃗) dxage dx⃗, (3)

where: ρ(j) is the product of firing probabilities of transitions that lead from
regeneration i to class j; E(j) ⊆ T is the set of transitions enabled in j; µ(t) is
the probability that t ∈ E(j) fires in j; D(t) = {(xage , x⃗) ∈ D | xk ⩾ xkt

∀k} is
the subset of the support D where τkt

, the time to fire of t, is minimum (kt is
the index of t in τ⃗); and

f (t)(xage , x⃗) := f(xage , x⃗)

(∫
D(t)

f(xage , x⃗) dxage dx⃗

)−1

(4)

is the PDF of ⟨τage , τ⃗⟩ conditioned on {τkt
is minimum}.
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Proof. Eq. (3) follows from the definition of stochastic state class and from the
law of total expectation. The events of the firing in j of transitions in E(j)
are mutually exclusive and exhaustive, and thus, if Sj is the sojourn time in j,
αj := ρ(j)E[Sj ] = ρ(j)

∑
t∈E(j) µ

(t) E[Sj | t fires in j].

Similarly to Eq. (2), the steady-state probability of class j ∈ Inner(i) is

pj =
πiαj∑

i′∈R,j′∈Inner(i′) πi′αj′
(5)

where π⃗ is such that
∑

k∈R πk = 1 and π⃗ = G(∞)π⃗.

Example 4 (Parallel Producer-Consumer). The MRGP of Fig. 2 has a simple
DTMC embedded at regeneration points: the process alternates between regener-
ations R = {m0,m3}, and thus G(∞) = ( 0 1

1 0 ) and π⃗ = (0.5, 0.5). The sojourn
times αj of inner nodes are: ( 1

40
4
3 + 3

40
11
9 + 9

10
31
54 ) =

77
120 for j = Σ0, 1

40 (
2
9 ) =

1
180

for j = Σ11, 3
40 (

7
27 ) =

7
360 for j = Σ12, 9

10 (
37
108

34
37 + 71

108
59
71 ) =

31
40 for j = Σ2, 1 for

j = Σ30. These give steady-state probabilities pj equal to 77
293 , 2

879 , 7
879 , 93

293 , 120
293

for j = Σ0, Σ11, Σ12, Σ2, Σ30, respectively.

3.2 Equilibrium PDFs

Marginal PDF of τ⃗ in Σ given the firing of t1. Without loss of generality, we
assume that n transitions t1, . . . , tn are enabled in Σ and consider the case where
t1 is the one that fires. Conditioned on this event, the PDF of τ⃗ in Σ is

f (t1)(x⃗) =

∫
D(t1)

f(xage , x⃗) dxage

(∫
D(t1)

f(xage , x⃗) dxage dx⃗

)−1

(6)

where D(t1) = {(xage , x⃗) ∈ D | xk ⩾ x1 ∀k} is the subset of the support D where
τ1 is minimum. Eq. (6) follows by restricting the support to the subset D(t1),
normalizing the PDF f(xage , x⃗), and then obtaining the marginal PDF of τ⃗ by
integrating over all possible values for τage in D(t1).

Stochastic process r⃗(t) of times to fire τ⃗ across renewals. Successive visits to
the stochastic state class Σ = ⟨m,D, f⟩ observe copies of ⟨τage , τ⃗⟩ that are
independent and identically distributed (i.i.d.) according to the PDF f , since the
MRGP encounters a regeneration point between visits and then performs the
same sequence of transition firings. Similarly, visits to Σ that end with the firing
of t1 also observe the same PDF f (t1) of τ⃗ derived in Eq. (6), and their sojourn
times are i.i.d. random variables.

We focus our attention on the time intervals of these i.i.d. sojourn times: as
time advances, we move from a sojourn in Σ to the next one, always under the
hypothesis that t1 is the transition that fires in Σ. We construct a renewal process
{N(t), t ⩾ 0} where times between events (i.e., interarrival times) are distributed
as a sojourn in Σ that ends with the firing of t1. We denote interarrival times as
S1, S2, . . . and renewal times as Tk =

∑k
i=1 Si for k ⩾ 0; N(t) = max{k | Tk ⩽ t}
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is the number of sojourns completed by time t and N(t) = k ⇔ Tk ⩽ t < Tk+1.
The interarrival PDF of this renewal process is given by the marginal PDF of τ1
given that it is minimum in τ⃗ , which is

g(x1) =

∫
D(t1)

f (t1)(x1, x2, . . . , xn) dx2 · · · dxn (7)

where D(t1) is the support of f (t1). Eq. (7) integrates over all possible values of
τ2, . . . , τn to obtain the marginal PDF of τ1 when τ1 ⩽ τi for all i = 2, . . . , n.

As N(t) evolves across each renewal T0, T1, T2, . . . , a new time-to-fire vector
τ⃗ (i), i = 0, 1, 2, . . . is sampled independently at each Ti according to the same
PDF f (t1). Our goal is to study the evolution of these time-to-fire random vectors
over time, subject to the fact that renewal times Ti are also random. We denote
by { r⃗(t), t ⩾ 0 } the n-dimensional stochastic process describing, for each t ⩾ 0,
the current value of the time-to-fire vector, i.e., r⃗(t) := τ⃗ (N(t)) − (t− TN(t)) , and
denote its PDF at all t ⩾ 0 by h(t, x⃗), i.e.,

P (r1(t) ⩽ x1, . . . , rn(t) ⩽ xn) :=

∫ x1

−∞
· · ·
∫ xn

−∞
h(t, x⃗) dx1 · · · dxn.

Equilibrium PDF of r⃗(t). Our goal is to compute the equilibrium PDF of r⃗(t),
i.e., the function f̂ (t1)(x⃗) = limt→∞ h(t, x⃗), which gives the PDF of the times to
fire in Σ at equilibrium (given that sojourns end with the firing of t1). First, we
provide the following result, which highlights the fundamental relation between
h(t, x⃗), the object of our analysis, and the PDF f (t1)(x⃗), which can be readily
computed using Eq. (6).

Lemma 2 (Renewal Equation for h). If h(t, x⃗) is the PDF of r⃗(t) for each
t ⩾ 0, f (t1)(x⃗) is the PDF of τ⃗ at each renewal, and g(x) is the PDF of τ1 (the
interarrival time of the renewal process), the following renewal equation holds:

h(t, x⃗) = f (t1)(x⃗+ t) +

∫ t

0

h(t− u, x⃗) g(u) du . (8)

Proof. Eq. (8) can be derived through a renewal argument: for the first renewal
time S1 we have that either S1 > t or S1 ⩽ t.

If S1 > t, then the first renewal has not occurred, so that N(t) = 0 and
r⃗(t) = τ⃗ (0) − t. The PDF of r⃗(t) at time t is then given by f (t1)(x⃗+ t)/P (τ1 > t),
i.e., the PDF f (t1) used to sample τ⃗ (0) but conditioned on the event {τ1 > t}
and where each component is shifted by time t (we denote by x⃗+ t the vector
(x1 + t, . . . , xn + t)). Then, we have that h(t, x⃗ | S1 > t)P (S1 > t) = f (t1)(x⃗+ t),
since S1 := τ1.

If S1 ⩽ t, the process r⃗(t) “probabilistically restarts” after S1, when a new
time-to-fire vector τ⃗ (1) is sampled. Formally, if S1 = u, at least one renewal is
encountered by time t, N(t) = N(t− u) + 1, TN(t−u)+1 = TN(t−u) + u, and thus

r⃗(t) = τ⃗ (N(t−u)+1) − (t− TN(t−u)+1)

= τ⃗ (N(t−u)+1) − [(t− u)− TN(t−u)]
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for u ⩽ t. Given that time-to-fire vectors τ⃗ (N(t−u)+1) and τ⃗ (N(t−u)) have the
same PDF f (t1), it holds that h(t, x⃗) = h(t− u, x⃗) for u ⩽ t. By conditioning on
all the possible values of S1 = u and decreasing t accordingly, we have

h(t, x⃗ | S1 ⩽ t)P (S1 ⩽ t) =

∫ t

0

h(t− u, x⃗) g(u) du .

By putting together the two cases, we obtain Eq. (8).

Lemma 2 establishes a connection between h and f (t1) and also reveals the
recursive structure of h across renewals. This kind of renewal-type equation is
well-known for renewal processes and provides a strategy to compute h at the
equilibrium through the following result [12, Theorem 8.17].

Theorem 1 (Key Renewal Theorem). Let g(x) be the PDF of the interarrival
time, and let h be a solution to the renewal-type equation h(t) = d(t) +

∫ t

0
h(t−

u)g(u) du. Then, if d is the difference of two non-negative bounded monotone
functions and

∫∞
0

|d(u)| du < ∞,

lim
t→∞

h(t) =
1

E[S]

∫ ∞

0

d(u) du

where E[S] =
∫∞
0

u g(u) du is the mean interarrival time.

Theorem 1 applies to Eq. (8) with d(t) = f (t1)(x⃗+ t). Moreover, when the
PDFs ft used to sample newly-enabled transitions are piecewise expolynomials
(products of exponentials and polynomials), the joint PDF f of timers, and thus
f (t1), is also piecewise continuous and with bounded variation [16].

By combining Lemma 2 and Theorem 1, we obtain the equilibrium PDF f̂ (t1)

of τ⃗ in Σ when t1 is the transition that fires at the end of each sojourn:

f̂ (t1)(x⃗) := lim
t→∞

h(t, x⃗) =
1

E[S(t1)]

∫ ∞

0

f (t1)(x⃗+ u) du (9)

where E[S(t1)] =
∫∞
0

u g(u) du is the mean sojourn time in Σ when t1 fires. The
identity of Eq. (9) is a major step for the analysis of the joint PDF of τ⃗ at the
steady state. Combined with Eq. (6) to obtain f (t1) from f , and with Eq. (7) to
obtain g from f (t1), it provides a straightforward derivation of the equilibrium
PDF under the hypothesis that t1 is always the transition that fires in Σ.

Equilibrium PDF when multiple transitions can fire. The equilibrium PDF f̂ (t1)

of Eq. (9) assumes that, after each visit to Σ, transition t1 is always the one that
fires among t1, . . . , tn. The following theorem removes this hypothesis.

Theorem 2 (Equilibrium PDF). Let Σ = ⟨m,D, f⟩ be a stochastic state class
where transitions t1, . . . , tn can fire with probabilities µ(t1), . . . , µ(tn), respectively.
Then, the equilibrium PDF of τ⃗ = (τ1, . . . , τn) is given by

f̂(x⃗) =
1

E[S]

n∑
i=1

µ(ti)

∫ ∞

0

f (ti)(x⃗+ u) du (10)
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where E[S] is the expected sojourn time in Σ and, for all i = 1, . . . , n, f (ti) is
the PDF of τ⃗ conditioned on the firing of ti according to Eq. (6).

Proof. We focus only on sojourns in class Σ and ignore the rest of the time line.
The probability that a sojourn ends with the firing of ti is µ(ti) for i = 1, . . . , n,
with

∑n
i=1 µ

(ti) = 1; conditioned on this event, the expected sojourn time in Σ
is E[S(ti)]. Then, the steady-state probability of sojourns in Σ that end with the
firing of ti is given by

pi =
µ(ti)E[S(ti)]∑n
j=1 µ

(tj)E[S(tj)]

which is the mean fraction of time spent in such sojourns. Since f̂ (ti) is the
equilibrium PDF when sojourns end with ti,

f̂(x⃗) =

n∑
i=1

pi f̂
(ti)(x⃗) =

n∑
i=1

(
µ(ti)E[S(ti)]∑n
j=1 µ

(tj)E[S(tj)]

)
f̂ (ti)(x⃗)

=
1∑n

j=1 µ
(tj)E[S(tj)]

n∑
i=1

µ(ti)

∫ ∞

0

f (ti)(x⃗+ u) du

which, since
∑n

j=1 µ
(tj)E[S(tj)] = E[S], gives Eq. (10).

4 Experimental Evaluation

Steady-state probabilities and equilibrium PDFs represent the equilibrium distri-
bution of the MRGP. When used as an initial distribution for transient analysis,
this distribution must result in constant transient probabilities that are equal
to the steady-state ones. In this section, we describe how to perform transient
analysis from this distribution and validate the correctness of the approach.

In Section 3.1, we derived the steady-state probability pc of each each class
c ∈ ∪i∈RInner(i). Given that the MRGP is in class c = ⟨m,D, f⟩, the marking
is equal to m and the time-to-fire vector τ⃗ has equilibrium PDF given by f̂(x⃗),
which is computed from f according to Eq. (10) of Theorem 2. To compute
transient probabilities from the equilibrium, we modify the approach of Eq. (1)
as follows.

First, for each inner node c = ⟨m,D, f⟩, c ∈ ∪i∈RInner(i), we compute a
tree of stochastic state classes until the next regeneration. We construct the
initial class Start(c) of this tree using marking m and PDF of ⟨τage , τ⃗⟩ equal
to g(xage , x⃗) = δ(xage)f̂(x⃗), i.e., τage = 0 and the time-to-fire vector τ⃗ has PDF
f̂(x⃗). For each c ∈ ∪i∈RInner(i), we denote the inner nodes and leaves of the
tree computed from Start(c) (until the next regeneration) as StartInner(c)
and StartLeaves(c), respectively.

Then, we extend the Markov renewal equations of Eq. (1) by introducing an
additional regeneration r̂ that represents the state of the MRGP at equilibrium.
The process starts in r̂ at time 0, but never returns to this artificial regeneration:
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by construction, the next regeneration belongs to R and, afterward, the MRGP
cycles through its original trees of stochastic state classes. To achieve this behavior,
we set MRGP kernel entries as follows. Let R̂ = R ∪ {r̂} and set, for i = r̂,

Lij(t) =
∑

c∈∪i′∈RInner(i′)

pc

( ∑
Σ∈StartInner(c) s.t.

Σ has marking j

pin(Σ, t)

)
(11)

Gik(t) =
∑

c∈∪i′∈RInner(i′)

pc

( ∑
Σ∈StartLeaves(c) s.t.
Σ has regeneration k

preach(Σ, t)

)
(12)

for all k ∈ R, j ∈ M , and t ⩾ 0. Since r̂ is never reached again, we set Gik(t) = 0
for all i ∈ R̂ when k = r̂.

Kernel entries in the additional row r̂ model a random choice of the initial
stochastic state class c according to the discrete distribution given by pc for
c ∈ ∪i∈RInner(i); for a given class c, the tree computed from Start(c) is used
to characterize the system evolution from the equilibrium in c and until the next
regeneration. As in Section 2.3, measures pin(Σ, t) and preach(Σ, t) provide the
probability that the MRGP is in the stochastic state class Σ at time t, and that
it has reached Σ by time t, respectively.
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Fig. 4: Transient Analysis of Parallel Producer-Consumer Example

Example 5. We consider the STPN of Fig. 1a and its underlying MRGP of
Fig. 2 with markings M = {m0,m1,m2,m3} (defined in Fig. 1b), regenerations
R = {m0,m3}, inner nodes Inner(m0) = {Σ0, Σ11, Σ12, Σ2} and Inner(m3) =
{Σ30}. The steady-state probabilities pc result in steady-state probabilities of
the marking process equal to 77

293 ≈ 0.263 for m0 (steady state probability of Σ0),
2

879 +
7

879 ≈ 0.010 for m1 (steady-state probabilities of Σ11 and Σ12), 93
293 ≈ 0.317

for m2 (steady-state probability of Σ2), 120
293 ≈ 0.410 for marking m3 (steady-

state probability of Σ30). Fig. 4a illustrates the transient probabilities Pij(t) for
0 ⩽ t ⩽ 15 of the MRGP for i = m0 (i.e., from the initial regeneration) and for
each j ∈ M . Fig. 4b shows the transient probabilities Pr̂j(t) for 0 ⩽ t ⩽ 15 and
each j ∈ M , where the additional kernel row of r̂ is computed using Eqs. (11)
and (12). As expected, these correspond to the steady-state probabilities.
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5 Conclusions

We presented a solution to compute a closed-form expression of the equilibrium
distribution of MRGPs. The solution leverages the calculus of stochastic state
classes, and it can be applied to a given STPN through the implementation
in the ORIS tool. In future work, we plan to apply this solution to compute
survivability measures [15] for MRGPs; in particular, equilibrium PDFs can be
used to characterize the system after a catastrophic failure at the steady state,
providing the initial conditions for the transient analysis of system recovery.

A Stochastic Time Petri Nets

STPNs are a formal model of concurrent timed systems where: transitions
(depicted as vertical bars) represent activities; places (depicted as circles) represent
discrete components of the logical state, with values encoded by a number of
tokens (depicted as dots); directed arcs from input places to transitions and
from transitions to output places represent token moves triggered by the firing
of transitions. A transition is enabled when all its input places contain at least
one token; its firing removes a token from each input place and adds a token
to each output place. The time from the enabling to the firing of a transition
is a random variable, and the choice between transitions with equal time to
fire is solved by a random switch determined by transition weights. Moreover,
STPNs can: (1) restrict the enabling of a transition using general constraints
on token counts (called enabling functions); (2) execute additional updates of
token counts after a transition firing (specified by update functions); (3) restart
selected transitions after a firing (using reset sets); (4) impose priorities among
immediate or deterministic transitions.

Definition 2 (Syntax). An STPN is a tuple ⟨P, T,A−, A+, B, U,R,EFT,LFT,
F,W,Z⟩ where: P and T are disjoint sets of places and transitions, respectively;
A− ⊆ P × T and A+ ⊆ T × P are precondition and post-condition relations,
respectively; B, U , and R associate each transition t ∈ T with an enabling
function B(t) : M → {true, false}, an update function U(t) : M → M , and
a reset set R(t) ⊆ T , respectively, where M is the set of reachable markings
m : P → N; EFT and LFT associate each transition t ∈ T with an earliest firing
time EFT (t) ∈ Q⩾0 and a latest firing time LFT (t) ∈ Q⩾0 ∪ {∞} such that
EFT (t) ⩽ LFT (t); F , W , and Z associate each transition t ∈ T with a Cumu-
lative Distribution Function (CDF) Ft for its duration τ(t) ∈ [EFT (t), LFT (t)]
(i.e., Ft(x) = P{τ(t) ⩽ x}, with Ft(x) = 0 for x < EFT (t), Ft(x) = 1 for
x > LFT (t)), a weight W (t) ∈ R>0, and a priority Z(t) ∈ N, respectively.

A place p is said to be an input or output place for a transition t if (p, t) ∈ A−

or (t, p) ∈ A+, respectively. Following the usual terminology of stochastic Petri
nets, a transition t is called immediate (IMM) if EFT (t) = LFT (t) = 0 and
timed otherwise; a timed transition is called exponential (EXP) if Ft(x) =
1 − exp(−λx) for some rate λ ∈ R>0, or general (GEN) if its time to fire
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has a non-exponential distribution; as a special case, a GEN transition t is
deterministic (DET) if EFT (t) = LFT (t) > 0. For each transition t with
EFT (t) < LFT (t), we assume that Ft can be expressed as the integral function
of a probability density function (PDF) ft, i.e., Ft(x) =

∫ x

0
ft(y) dy. The same

notation is also adopted for an IMM or DET transition t ∈ T , which is associated
with a Dirac impulse function ft(y) = δ(y − y) with y = EFT (t) = LFT (t).

A marking m ∈ M assigns a natural number of tokens to each place of an
STPN. A transition t is enabled by m if m assigns at least one token to each of
its input places and the enabling function B(t)(m) evaluates to true. The set of
transitions enabled by m is denoted as E(m).

Definition 3 (State). The state of an STPN is a pair ⟨m, τ⃗⟩ where m ∈ M

is a marking and vector τ⃗ ∈ R|E(m)|
⩾0 assigns a time to fire τ⃗(t) ∈ R⩾0 to each

enabled transition t ∈ E(m).

Definition 4 (Semantics). Given an initial marking m0, an execution of the
STPN is a (finite or infinite) path ω = s0

γ1−→ s1
γ2−→ s2

γ3−→ · · · such that:
s0 = ⟨m0, τ⃗0⟩ is the initial state, where the time to fire τ⃗0(t) of each enabled
transition t ∈ E(m0) is sampled according to the distribution Ft; γi ∈ T is the
ith fired transition; si = ⟨mi, τ⃗i⟩ is the state reached after the firing of γi.
In each state si:

– The next transition γi+1 is selected from the set of enabled transitions with min-
imum time to fire and maximum priority according to the distribution given
by weights: if Emin = argmint∈E(mi) τ⃗i(t) and Eprio = argmaxt∈Emin Z(t),

then t ∈ Eprio is selected with probability pt = W (t)/
(∑

u∈Eprio
W (u)

)
.

– After the firing of γi+1, the new marking mi+1 is derived by (1) removing
a token from each input place of γi+1, (2) adding a token to each output
place of γi+1, and (3) applying the update function U(γi+1) to the resulting
marking. A transition t enabled by mi+1 is termed persistent if it is distinct
from γi+1, it is not contained in R(γi+1), and it is enabled also by mi and
by the intermediate markings after steps (1) and (2); otherwise, t is termed
newly enabled (thus, transitions in the reset set of γi+1 are newly enabled if
enabled after the firing).

– For each newly enabled transition t, the time to fire τ⃗i+1(t) is sampled
according to the distribution Ft; for each persistent transition t, the time
to fire in si+1 is reduced by the sojourn time in the previous marking, i.e.,
τ⃗i+1(t) = τ⃗i(t)− τ⃗i(γi+1).

When features are omitted for a transition t ∈ T , default values are assumed
as follows: an always-true enabling function B(t)(m) = true; an identity update
function U(t)(m) = m for all m ∈ M ; an empty reset set R(t) = ∅; a weight
W (t) = 1; and, a priority Z(t) = 0.

Arc cardinalities greater than 1 can also be introduced in STPN syntax and
semantics, letting the firing of a transition remove an arbitrary number of tokens
from each input place or add an arbitrary number of tokens to each output place.
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