
16

Compositional Safe Approximation of Response Time

Probability Density Function of Complex Workflows

LAURA CARNEVALI, Department of Information Engineering, University of Florence, Italy

MARCO PAOLIERI, Department of Computer Science, University of Southern California, USA

RICCARDO REALI and ENRICO VICARIO, Department of Information Engineering, University of

Florence, Italy

We evaluate a stochastic upper bound on the response time Probability Density Function (PDF) of complex
workflows through an efficient and accurate compositional approach. Workflows consist of activities having
generally distributed stochastic durations with bounded supports, composed through sequence, choice/merge,
and balanced/unbalanced split/join operators, possibly breaking the structure of well-formed nesting. Work-
flows are specified using a formalism defined in terms of Stochastic Time Petri Nets that permits decom-
position into a hierarchy of subworkflows with positively correlated response times, guaranteeing that a
stochastically larger end-to-end response time PDF is obtained when intermediate results are approximated
by stochastically larger PDFs and when dependencies are simplified by replicating activities appearing in
multiple subworkflows. In particular, an accurate stochastically larger PDF is obtained by combining shifted
truncated Exponential terms with positive or negative rates. Experiments are performed on sets of manually
and randomly generated models with increasing complexity, illustrating under which conditions different
decomposition heuristics work well in terms of accuracy and complexity and showing that the proposed
approach outperforms simulation having the same execution time.

CCS Concepts: • Theory of computation→ Stochastic approximation; • Mathematics of computing

→ Stochastic processes;

Additional Key Words and Phrases: Stochastic workflows, response time Probability Density Function, ran-
domly generated structured models, Stochastic Time Petri Nets, non-Markovian processes, compositional
evaluation

ACM Reference format:

Laura Carnevali, Marco Paolieri, Riccardo Reali, and Enrico Vicario. 2023. Compositional Safe Approximation
of Response Time Probability Density Function of Complex Workflows. ACM Trans. Model. Comput. Simul.

33, 4, Article 16 (October 2023), 26 pages.
https://doi.org/10.1145/3591205

This work was partially supported by the European Union under the Italian National Recovery and Resilience Plan (NRRP)
of NextGenerationEU, partnership on “Telecommunications of the Future” (PE00000001 - program “RESTART”).
Authors’ addresses: L. Carnevali, R. Reali, and E. Vicario, Department of Information Engineering, University of Florence,
via di Santa Marta 3, Florence, Italy, 50139; emails: {laura.carnevali, riccardo.reali, enrico.vicario}@unifi.it; M. Paolieri, De-
partment of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, CA, USA, 90089; email:
paolieri@usc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
1049-3301/2023/10-ART16 $15.00
https://doi.org/10.1145/3591205

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

https://orcid.org/0000-0002-5896-4860
https://orcid.org/0000-0001-5110-203X
https://orcid.org/0000-0002-6047-3796
https://orcid.org/0000-0002-4983-4386
https://doi.org/10.1145/3591205
https://doi.org/10.1145/3591205
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3591205&domain=pdf&date_stamp=2023-10-26

16:2 L. Carnevali et al.

1 INTRODUCTION

Workflow models describe the production of an output through concurrent activities orchestrated
by precedence constraints and control-flow constructs. Over the years, a set of elementary patterns
has emerged to define workflows: the sequence pattern for consecutive activities, the split/join pat-
tern for independent prerequisites, and the choice/merge for alternative activities. Complex work-
flows can also break the well-formed nesting properties of these elementary patterns by including
directed acyclic graphs (DAGs) of dependencies between activities and loops that repeat some
activity [29]. This abstraction has been successfully applied to a large variety of material and digital
processes from multiple contexts, including supply chain management [15], administration [5, 33],
composite web services [14], and cloud “functions as a service” [34].

When a workflow includes a stochastic model for the duration of activities and for the out-
come of control-flow patterns, its quantitative evaluation can provide valuable metrics to achieve
tradeoffs between performance goals (e.g., average response time, subtask dispersion, energy con-
sumption) during different stages of system design and operation [6, 9, 17, 27]. This approach
is particularly useful for the analysis of Service Level Agreements (SLAs) with soft deadlines

and penalty functions [19, 26], which can be defined as rewards calculated from the Probability

Density Function (PDF) of the end-to-end response time of the workflow. For example, the prob-
ability of missing a soft deadline Tmax can be obtained by integrating the response time PDF over
[Tmax,+∞); the expected penalty can be evaluated by integrating the product of the response time
PDF and of a penalty function.

Notably, these metrics require not only summary statistics such as mean and variance but also
the entire response time PDF : While simulation and other approximation methods can speed up
its evaluation for complex workflows, many applications require additional safety guarantees. For
example, soft deadlines require a stochastically ordered approximation (i.e., a PDF with integral
over [Tmax,+∞) that is an upper bound of the exact result) to avoid underestimating the probability
of missing a deadline. Even more critically, the evaluation of expected penalties depends on the
accuracy of the PDF at every point instead of its cumulative integral.

However, exact analytical and numerical methods cannot be applied to large workflows because
of two main sources of computational complexity: (1) activity durations have general (i.e., non-

Exponential) probability distributions (GEN), often within firm bounds enforced by design or
by contract, which result in a non-Markovian stochastic process [13] of workflow execution, and
(2) the interleaving of activities in concurrent subworkflows leads to a state-space explosion and
to complex stochastic dependencies due to their overlapping GEN durations [4].

To address these issues, compositional approaches combine solutions of subworkflows in a
bottom-up fashion, with different limitations imposed on the distribution types of activity du-
rations and with different guarantees on the final error. When a workflow is acyclic and its activ-
ities have Continuous Phase (CPH) durations, the response time distribution can be evaluated
through the bottom-up composition of CPH distributions proposed in Reference [1]; complexity
can be reduced by limiting the number of phases of CPH distributions, without safety guarantees
on the final error. In Reference [23], repetitions of CPH activities are allowed, but the approach
suffers from state-space explosion. When activities with GEN duration are composed by fork/join,
sequence, and repetition, Reference [39] derives mean and standard deviation of the response time
(instead of its distribution) by an efficient bottom-up calculus. The response time distribution of
acyclic, well-nested workflows with GEN durations is evaluated bottom-up in Reference [12] by
combining results of Markov regenerative analysis of subworkflows with limited concurrency. The
solution is extended in Reference [10] to repetition and unbalanced split/join constructs, while
guaranteeing stochastic order through the method used to simplify dependencies and through the
class of PDFs used to approximate the response time of subworkflows.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:3

In this article, we propose an efficient and accurate compositional technique to evaluate a
stochastic upper bound on the response time PDF of complex workflows. Specifically, work-
flows consist of activities with GEN duration and bounded support, composed through sequence,
choice/merge, and balanced/unbalanced split/join constructs and specified by a structured formal-
ism, defined in terms of Stochastic Time Petri Nets (STPNs) [37], that permits the workflow
decomposition into a hierarchy of subworkflows with positively correlated response times (Sec-
tion 2). This work significantly extends the solution methods of References [10, 12] in the follow-
ing aspects: We provide a thorough formalization for the approximate derivation of conservative
measures that estimate the complexity of evaluation of a subworkflow, driving the workflow de-
composition into subworkflows analyzed in isolation (Section 3); we define a novel stochastically
ordered approximant for the response time PDF of subworkflows by combining shifted truncated
Exponential (EXP) terms, each having positive or negative rate depending on the concavity of
the response time Cumulative Distribution Function (CDF) (Section 4); notably, we provide an
extensive experimentation on manually and randomly generated models with increasing complex-
ity, illustrating which decomposition heuristics work better under which conditions, outperform-
ing simulations with the same computation times (Section 5). Finally, we draw our conclusions
(Section 6). We recall STPNs in Appendix A and bottom-up numerical analysis of well-nested
workflows in Appendix B, and we report theorem proofs in Appendix C.

2 WORKFLOW MODEL

We specify workflows through a class of STPNs (Section 2.1 and Appendix A) that is sufficient to
represent a variety of control patterns [29, 40] while making their structure of composition explicit
and guaranteeing positive correlation among the response times of subworkflows (Section 2.2).

2.1 STPN Blocks

Workflows are defined by recursive composition of blocks, each specified by an STPN with a sin-
gle initial place and a single final place. The execution of a block starts when a token is added
to the initial place, and it eventually terminates, with probability 1 (w.p.1), when a token reaches
the final place. Blocks compose STPN transitions through nested constructs modeling sequential
behavior (sequence, choice/merge) and concurrent behavior (split/join), and through acyclic con-
structs breaking well-formed nesting by unbalanced fork and join operations (simple split, simple
join). In particular, we consider the following types of blocks:

• An elementary activity is represented by an STPN with a single transition with GEN duration
connecting the initial and final places (e.g., S in Figure 1(a)). GEN transitions have expolyno-
mial (also termed exponomial [32]) PDFs defined as the sum of products of exponential and
mononomial terms, i.e., f (x) =

∑M
m=1 cm

∏Nm

n=0 x
αmn
n e−λmn xn , with analytical representation

over the entire domain or piecewise-defined over multiple subdomains.
• SEQ{Block1, . . . ,Blockn } is a sequence of n blocks Block1, . . . ,Blockn (e.g., Y in

Figure 1(a)).
• XOR{Block1, . . . ,Blockn ,p1, . . . ,pn } is an immediate random exclusive choice made ofn ini-

tial immediate (IMM) transitions (i.e., with zero time-to-fire) connected to n alternative
blocks Block1, . . . ,Blockn having probabilities p1, . . . ,pn , respectively, which, in turn, are
connected to a final IMM simple merge transition (e.g., R2 in Figure 1(a)). An XOR block is
balanced, i.e., all the alternative paths started at the initial split are terminated at the final
join.
• AND{Block1, . . . ,Blockn } is a balanced split-join made of an initial IMM parallel split tran-

sition that forks execution along n concurrent blocks Block1, . . . ,Blockn and a final IMM
synchronization transition that terminates the block (e.g., X in Figure 1(a)).

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:4 L. Carnevali et al.

Fig. 1. (a) STPN model of a workflow: Blocks are highlighted by boxes, blue for composite blocks, and red

for activity blocks; all transitions have uniform PDF over [0, 1] (firing intervals and PDF types are not shown

to reduce the cluttering). (b) Structure tree of the workflow of Figure 1(a): Composite blocks are filled with

blue.

• DAG{Block1, . . . ,Blockn } is the composition of n blocks Block1, . . . ,Blockn in a DAG
with a single initial place and a single final place, by means of IMM simple split transitions
(i.e., with a single input place and multiple output places) and IMM simple join transitions
(i.e., with multiple input places and a single output place) [29]. Since simple split and simple

join operators are not necessarily balanced, a DAG block can break well-formed nesting of
concurrent blocks. A DAG is termed minimal if it cannot be reduced by SEQ, XOR, and AND
(e.g., in Figure 1(a), the top level is a minimal DAG with initial place p0, final place p33,
simple split transitions t0 and t12, and simple join transitions t11 and t13).

We assign different priorities to the transitions of different blocks to exclude races between IMM
transitions; in addition to reducing the number of possible firing sequences, this approach avoids
the interaction of transition weights when XOR blocks are concurrently enabled (a formal seman-
tics of IMM selection through weights and priorities is provided in Appendix A).

According to this definition, each workflow model specified as a composition of STPN blocks
can be translated into a unique STPN. Conversely, the composition of blocks does not cover all
the expressivity of STPNs. In particular, given that choices are expressed only by IMM transitions
in balanced XOR blocks, workflow models cannot represent race selections where a choice is de-
termined by the execution times of concurrent activities, e.g., early preemption of a timed activity
by a timeout. As a positive consequence, this restriction also rules out anomalies where the early
completion of some intermediate step can result in a longer workflow duration, providing the basis
to guarantee positive correlation among the completion times of different intermediate steps.

2.2 Structure Tree

Blocks combined as described in Section 2.1 enable the decomposition of a workflow model as
a structure tree S = 〈N ,E,n0〉, where N is the set of nodes (i.e., blocks), E is the set of directed
edges connecting each block with its component blocks, and n0 is the root node (i.e., the overall

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:5

workflow). Figure 1(b) shows the structure tree of the workflow STPN of Figure 1(a). Specifically,
a block is depicted as a box labeled with the block name and with either the activity name (for
elementary activity blocks) or the block type (for SEQ, XOR, AND, and DAG blocks). Moreover,
the box of a DAG block also contains places and transitions connecting their component blocks.

The representation of workflows as hierarchical graphs with single-entry single-exit blocks are
inspired by program structure trees [20] and process structure trees [35]. Similarly to these works,
we ensure that the structure tree of a workflow is unique and robust to local changes (i.e., mod-
ifying a subworkflow in the STPN affects only the corresponding subtree in the structure tree)
by using maximal blocks (e.g., SEQ blocks with as many components as possible) and by match-
ing DAG blocks with lowest priority (i.e., if possible, SEQ and AND blocks are used instead of
DAG block).

3 COMPLEXITY OF WORKFLOW ANALYSIS

We derive the response time PDF of a block either by bottom-up numerical analysis (Appendix B)
if the block composes independent subworkflows in well-nested structures through SEQ, AND,
and XOR blocks or by forward transient analysis [18] if the block is a DAG including dependencies
among subworkflows composed in non-well-nested structures. We characterize the factors that
affect the complexity of forward transient analysis (Section 3.1), and we exploit the state class
graph of the underlying TPN to define measures to estimate such complexity (Section 3.2).

3.1 Complexity Factors

Evaluation of DAG blocks can be performed by forward transient analysis based on the method of
stochastic state classes [18]. Specifically, after each firing, the analysis computes a stochastic state
class Σ = 〈m,D, f 〉 encoding a marking m (i.e., an assignment of tokens to places), a Difference

Bounds Matrix (DBM) zone D [16] representing the joint support of the times-to-fire of the en-
abled transitions and the elapsed time, and a joint PDF f for such values. The analysis enumerates
the tree of stochastic state classes reached within a time limit tmax and computes the block response
time PDF as the derivative of the first-passage probability of the marking assigning one token to
the final place of the STPN. The SIRIO library [31] of the ORIS tool [25] provides a closed-form
implementation of the analysis provided that each transition has an expolynomial PDF. Note that
regenerative transient analysis [18] based on the method of stochastic state classes, also available
in the SIRIO library, is not used due to the very limited number of regeneration points (i.e., time
instants at which the Markov condition is satisfied) reached by DAG blocks.

The complexity of forward transient analysis of an STPN can be estimated from the maximum
number of concurrently enabled GEN transitions and the maximum number of firings of GEN
transitions from the start to the end of the model execution, which can be efficiently derived by
nondeterministic analysis of the underlying TPN. Specifically, nondeterministic analysis is suffi-
cient to identify the set of feasible behaviors while avoiding the complexity of evaluation of their
measure of probability, encoding the continuous set of executions of the STPN into a discrete rep-
resentation termed state class graph [3, 36], where each vertex is a state class S = 〈m,D〉 made of
a markingm and a DBM zone D for the times-to-fire of the enabled transitions, and each directed
edge (S, t , S ′) is a succession relation from S to the state class S ′ = 〈m′,D ′〉 with marking m′ and
zoneD ′ after the firing of transition t . The state class graph is finite under fairly general conditions
requiring that the number of reachable markings be finite and the earliest and latest firing times
of transitions be rational values [36]. Notably, the graph makes explicit the degree of concurrency
among GEN timers (i.e., the number of GEN transitions enabled in each state class) and facilitates
the derivation of the length of specific behaviors (i.e., the number of firings between selected state
classes). Given that the STPN of a workflow has a final absorbing place pfin, all the paths in the

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:6 L. Carnevali et al.

state class graph of the underlying TPN terminate in a state class with marking pfin and no enabled
transition.

For instance, forward transient analysis of the STPN of the workflow of Figure 1(a) is not afford-
able, which can be inferred from the large number of concurrently enabled GEN timers in the state
class graph and the large number of firings of GEN transitions from the initial to the final state
class. For more complex workflows, also non-deterministic analysis of the underlying TPN may
become computationally demanding, pointing out the need of an efficient compositional solution
not only to evaluate the workflow response time PDF but also to estimate the complexity of its
analysis.

Note that the complexity of forward transient analysis of an STPN depends on the number of
concurrently enabled GEN transitions and the number of firings of GEN transitions from the start
to the end of the model execution due to the following reasons. First, complexity depends on the
number and length of the firing sequences before the time limit tmax and thus on the number of
stochastic state classes reached by tmax, which, in turn, depends on the number of concurrently
enabled GEN transitions, the number of firings after which a GEN transition is persistent (i.e., con-
tinuously enabled), and the number of expolynomial terms of the (monovariate) PDFs of the GEN
transitions [30]. Our approach limits the number of stochastic state classes by decomposing a
workflow into subworkflows analyzed in isolation. Moreover, the number of DBM zones and the
number of expolynomial terms of the (multivariate) joint PDFs of stochastic state classes also af-
fect complexity and depend on the number of concurrently enabled GEN transitions and on the
number of firings after which a GEN transition is persistent [30]: In fact, at each firing, the number
of zones increases polynomially with the number of persistent transitions, and the number of ex-
polynomial terms increases linearly with the polynomial degree of the joint PDF. Additionally, if
the analytical form of the joint PDF contains no EXP factor, then the polynomial degree increases
linearly with the number of fired or disabled transitions. Our approach limits these complexity fac-
tors by workflow decomposition and by approximating the numerical form of the response time
PDF of subworkflows analyzed in isolation with a piecewise PDF made of EXP terms. The approx-
imation of the numerical form of the response time PDF of a subworkflow analyzed in isolation is
needed to perform forward transient analysis of a higher-level workflow, given that the analysis
of the workflow STPN requires each transition to have an expolynomial PDF.

3.2 Complexity Measures

According to the analysis of Section 3.1, we estimate the complexity of forward transient analysis
of the STPN of a workflow through the maximum number of concurrently enabled GEN transitions
and the maximum number of firings of GEN transitions from the start to the end of the workflow.

Definition 3.1 (Concurrency Degree of a TPN). The concurrency degree c of a TPN is the maximum
number of concurrent GEN transitions in the state class graph.

Definition 3.2 (Sequencing Degree of a TPN). The sequencing degree q of a TPN is the maximum
number of firings of GEN transitions from the initial to the final state class.

For complex workflows, the number of state classes may be significant and thus their enumer-
ation may require a non-negligible amount of time. Due to the exponential complexity in the
number of state classes, evaluation of q through enumeration of all paths from the initial to the
final class would thus become too expensive for our aim to perform workflow decomposition and
analysis in a very short time (i.e., a few tens of seconds for significantly complex models). More-
over, c and q would not tell how much of the complexity depends on the structure and the timings
of the workflow itself rather than on the structure and timings of its subworkflows, which instead

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:7

becomes relevant to decide how to decompose the workflow. To cope with both aspects, we char-
acterize c and q both for the TPN of the workflow and for a variant that hides the complexity of
the subworkflows.

Definition 3.3 (Unexpanded TPN). The unexpanded TPN of a workflow is the TPN obtained
from the workflow TPN by replacing each composite block with an activity block with the same
duration.

We consider a workflow with structure tree Ω with depth D, i.e., the top level has depth 1 and
the bottom level has depth D. We perform a bottom-up visit of Ω starting from depth D − 1. At
each level, for each composite block b, we derive the complexity tuple 〈C, C̄,q, q̄〉, where C and
C̄ are upper bounds on the concurrency degree of the TPN and of the unexpanded TPN of b,
respectively, and q and q̄ are the sequencing degree of the TPN and of the unexpanded TPN of b,
respectively. For each leveld ∈ {D−1, . . . , 1} and each composite blockb, we perform the following
operations.

• We derive a variant of the unexpanded TPN of b by replacing each composite block having
duration [l ,u] with an activity block having duration [L,U] ⊇ [l ,u]. In particular, the in-
terval [L,U] is computed by the previous iteration of the procedure, at the next lower level
(note that, at the first iteration, i.e., at level D−1, each block consists of only activity blocks).
Then, we derive a lower bound L and an upper bound U on the duration of block b itself,
which are used by the next iteration of the procedure to derive a variant of the unexpanded
TPNs of the composite blocks at the next higher level. Specifically,

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

∑
z∈Kb

Lz if b is SEQ,DAG

max
z∈Kb

{Lz } if b is AND

min
z∈Kb

{Lz } if b is XOR

U =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

∑
z∈Kb

Uz if b is SEQ,DAG

max
z∈Kb

{Uz } if b is AND,XOR
, (1)

where Kb is the set of child blocks of b, and, if z ∈ Kb is a composite block, then Lz and Uz

are the lower and upper bound on the duration of z, respectively, computed by the previous
step of the procedure, otherwise (i.e., if z is an activity block) Lz and Uz are the minimum
and maximum duration of z, respectively. Note that L and U are bounds due to the overap-
proximation of duration intervals of the composite blocks of b, and also due to the fact that
dependencies among subworkflows of DAG blocks are not considered.

• We perform nondeterministic analysis of the variant of the unexpanded TPN of block b:

C = max
S ∈Γ

⎧⎪⎪⎨
⎪⎪
⎩

∑
t ∈ES

Ct

⎫⎪⎪⎬
⎪⎪
⎭

C̄ = max
S ∈Γ

⎧⎪⎪⎨
⎪⎪
⎩

∑
t ∈ES

1
⎫⎪⎪⎬
⎪⎪
⎭
, (2)

where Γ is the set of state classes enumerated for the simplified TPN of block b, ES is the set
of GEN transitions enabled in state class S , and Ct is equal to 1 if the block corresponding
to transition t is an activity block; otherwise, Ct is equal to the upper bound on the concur-
rency degree of the composite block corresponding to t , computed at the next lower level.
Note that C and C̄ are upper bounds due to the fact that behaviors of blocks are considered
independently of each other, e.g., it may be the case that two concurrent blocks cannot both
reach their maximum number of concurrent GEN timers at the same time.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:8 L. Carnevali et al.

• We efficiently derive q and q̄ as follows (avoiding enumeration of paths from the initial to the
final state class, which would have exponential complexity in the number of state classes):

q =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

∑
z∈Kb

qz if b is SEQ,AND,DAG

max
z∈Kb

{qz } if b is XOR
q̄ =

⎧⎪⎪⎨
⎪⎪
⎩

∑
z∈Kb

1 if b is SEQ,AND,DAG

1 if b is XOR
, (3)

where Kb is the set of child blocks of b, and, if z ∈ Kb is a composite block, then qz is the
sequencing degree of z computed by the previous step of the procedure at the next lower
level, otherwise (i.e., if z is an activity block) qz is equal to 1.

The concurrency degree and the sequencing degree are exploited to define the complexity heuris-

tics based on thresholds Θc and Θq on the concurrency and sequencing degree, respectively.

Definition 3.4 (Complexity of a Block). A block b with complexity tuple 〈C, C̄,q, q̄〉 is termed
easy to analyze if C � Θc and q � Θq and complex to analyze otherwise. The block is also termed
internally easy to analyze if C̄ � Θc and q̄ � Θq and internally complex to analyze otherwise.

For instance, for the workflow of Figure 1, the evaluation of complexity yields the tuple
〈C, C̄,q, q̄〉 = 〈7, 3, 13, 5〉, confirming that forward transient analysis of the overall workflow is
not affordable due to the large concurrency degree (C = 7) and sequencing degree (q = 13)
among GEN transitions. Moreover, the unexpanded concurrency and sequencing degrees (respec-
tively, C̄ = 3 and q̄ = 5) point out that the workflow complexity depends not on the structure
of the top-level DAG block but rather on the complexity of block R that it contains, for which
〈C, C̄,q, q̄〉 = 〈4, 2, 5, 2〉.

4 WORKFLOW EVALUATION

In this section, we illustrate our compositional solution to evaluate the response time PDF of a
workflow (Section 4.1), we derive a stochastic upper bound for monovariate PDFs with bounded
support (Section 4.2), and we prove that it is indeed a stochastic upper bound (Section 4.3).

4.1 Evaluation Heuristics

We evaluate the end-to-end response time by decomposing a workflow into a hierarchy of sub-
workflows and by composing the results of their separate analyses, repeatedly applying numer-
ical analysis (Appendix B) and forward transient analysis (Section 3) to leverage their different
strengths. On the one hand, numerical analysis combining monovariate PDFs turns out to be ef-
ficient in the composition of independent subworkflows through well-nested operators (i.e., SEQ,
XOR, AND blocks), but it is not feasible for subworkflows with common dependencies encoded
by not well-nested structures (i.e., DAG blocks). However, forward transient analysis manipulat-
ing multivariate joint PDFs enables the evaluation of such dependencies among subworkflows,
but it suffers from the concurrency degree and the sequencing degree among activities with GEN
duration, and its efficient implementation requires that subworkflow durations be represented in
analytic form, which may require approximated fitting of numerical results.

We exploit the structure tree to aggregate the subworkflows and to select the solution techniques
according to heuristics that trade approximation for complexity reduction while ensuring that
the final result is a stochastic upper bound of the exact PDF of the workflow response time. As
illustrated by Algorithm 1, first we perform a top-down visit of the structure tree to decompose
the workflow into subworkflows, and then we perform a bottom-up visit to compose the results of
their separate analyses. Specifically, at each step of the top-down visit, we perform the following
operations to derive a stochastic upper boundϕ (t) on the response time PDF of the current blockb:

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:9

ALGORITHM 1: Evaluation of the response time PDF of a block

CompositionalAnalysis(b, Θc , Θq , h)
input : block b, concurrency degree threshold Θc , sequencing degree threshold Θq , heuristics h
output : response time PDF ϕ (t) of b

1 if b is an activity block then

2 return the duration PDF of b

3 if b is a SEQ block or an XOR block or an AND block then

4 foreach block bi of b do

5 ϕi (t) ← CompositionalAnalysis(bi , Θc , Θq , h)

6 if b is a SEQ block then

7 return the PDF of b computed as illustrated in Appendix B

8 if b is an XOR block then

9 return the PDF of b computed as illustrated in Appendix B

10 if b is an AND block then

11 return the PDF of b computed as illustrated in Appendix B

12 if b is a DAG block then

13 return h(b, Θc , Θq)

ALGORITHM 2: Evaluation of the response time PDF of a DAG block by the SDF heuristics

SplitDependenciesFirst(b, Θc , Θq)
input : workflow block b
output : response time PDF ϕ (t) of b, concurrency degree threshold Θc , sequencing degree

threshold Θq

1 if b is internally complex to analyze then

2 return InnerBlockReplication(b, Θc , Θq)

3 if b is complex to analyze then

4 return InnerBlockAnalysis(b, Θc , Θq)

5 return the PDF of b computed through forward transient analysis

• If b is an activity block, then its exact response time PDF is its duration PDF (lines 1 and 2).
• If b is, or can be reduced to, a well-nested composition of independent subworkflows, then

recursive numerical analysis efficiently evaluates the exact response time PDF (lines 3–11).
• If b is a DAG block, then one of two different heuristics can be recursively applied to re-

duce the block complexity until its forward transient analysis becomes affordable (lines 12
and 13).
– Algorithm 2 shows the Split Dependencies First (SDF) heuristics: If b is internally com-

plex to analyze, then it is split into the AND of two decoupled subworkflows by replicating
the common nodes of the two subworkflows (inner block replication, lines 1 and 2); if b is
complex to analyze, then some block is analyzed in isolation (inner block analysis, lines 3
and 4); otherwise (i.e., if b is easy to analyze), forward transient analysis is affordable
(line 5).

– Algorithm 3 shows the Replace Block First (RBF) heuristics, a variant of the SDF heuris-
tics where inner block analysis (lines 1 and 2) is applied before inner block replication
(lines 3 and 4).

In turn, inner block replication and inner block analysis introduce different approximations.

• As illustrated by Algorithm 4, performing inner block replication on a DAG block b consists
in replicating some predecessors of a block v contained within b (line 3) to evaluate the

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:10 L. Carnevali et al.

ALGORITHM 3: Evaluation of the response time PDF of a DAG block by the RBF heuristics

ReplaceBlockFirst(b, Θc , Θq)
input : workflow block b, concurrency degree threshold Θc , sequencing degree threshold Θq

output : response time PDF ϕ (t) of b
1 if b contains at least one composite block and is complex to analyze then

2 return InnerBlockAnalysis(b Θc , Θq)

3 if b is internally complex to analyze then

4 return InnerBlockReplication(b, Θc , Θq)

5 return the PDF of b computed through forward transient analysis

ALGORITHM 4: Evaluation of the response time PDF of a DAG block by replicating some of its

blocks
InnerBlockReplication(b, Θc , Θq)

input : workflow block b
output : response time PDF ϕ (t) of b

1 order the predecessors of the final block of b by the values of C and q

2 v ← predecessor of the final block of b with max value of C (and, in case of tie, with max value of q)

3 b ′ ← b after replicating the predecessors of block v

4 return CompositionalAnalysis(b ′, Θc , Θq)

response time of v independently of the rest of the DAG (replicated blocks are identical) by
recursively invoking the compositional analysis algorithm (line 4). The selected block v is
the predecessor of the final block of b that has maximum upper bound on the concurrency
degree and, in case of tie, maximum sequencing degree (lines 1 and 2).
Specifically, let G = (V ,E,vI ,vF) be the DAG (e.g., the top-level DAG of Figure 1(b)) where
V is the set of vertices (i.e., the blocks of b) plus a fictitious initial vertex vI and a fictitious
final vertex vF (not shown in Figure 1(b)), both with zero-duration, and E is the set of edges
(i.e., the precedence relations between blocks). First, the most complex vertexv ∈ V \{vI ,vF }
is identified (i.e., block T in Figure 1(b)). Let K be the set of vertices in V \ {vI ,vF } that are
predecessors both of v and of some node u ∈ V not predecessor of v (i.e., K = {R}). The
vertices inK and the edges to/from vertices inK are replicated (i.e., R′ is added toV ;vI → R′

and R′ → T are added to E; R → T is removed from E). The DAG is then transformed into
an AND of two blocks, one consisting of node v and its predecessors, and the other one
consisting of the remaining nodes. For instance, as shown in Figure 2(a), after replication
of the predecessor R of blocks S and T, the DAG of Figure 1(b) becomes an AND of two
blocks, one made of S and its predecessors P, Q, and R, and the other one made of T and
the replicated block R′. Then, the model becomes well-nested and thus it can be solved by
numerical analysis.
• As illustrated by Algorithm 5, performing inner block analysis on a DAG block b consists

in: performing compositional analysis of a composite block v contained within b (line 3),
which yields a stochastic upper bound PDF ϕ (t) on the response time PDF of v ; deriving a
stochastic upper bound PDF ϕ̂ (t) on ϕ (t) by Lemma 4.2 (line 4); replacing block v with an
activity block with duration ϕ̂ (t) (line 5); and, performing compositional analysis of block b
(line 6). The selected block v is the composite block of b that has maximum upper bound on
the concurrency degree and, in case of tie, maximum sequencing degree (lines 1 and 2).
For instance, as shown in Figure 2(b), compositional evaluation of the example of Figure 1(b)
through the RBF heuristics consists in analyzing blocks P and R in isolation and then

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:11

ALGORITHM 5: Evaluation of the response time PDF of a DAG block by analyzing one of its blocks

InnerBlockAnalysis(b, Θc , Θq)
input : workflow block b
output : response time PDF ϕ (t) of b

1 order the blocks of b by the values of C and q

2 v ← block of b with max value of C (and, in case of tie, with max value of q)

3 ϕ ′(t) ← CompositionalAnalysis(v , Θc , Θq)

4 ϕ̂ (t) ← safe upper bound PDF of ϕ ′(t)

5 b ′ ← b after replacing v with an activity block with PDF ϕ̂ (t)

6 return CompositionalAnalysis(b ′, Θc , Θq)

approximating their response time PDF. Then, the model can be solved by forward transient
analysis.

The SDF heuristics is more accurate than the RBF heuristics if the correlation between the re-
sponse times of the replicated nodes and the response time of the overall workflow is low. Con-
versely, the RBF heuristics is more accurate than the SDF heuristics if the correlation between
the response times of the nodes replicated by the SDF heuristics and the response time of the
overall workflow is high. For instance, if all activity blocks of the model of Figure 1(b) had uni-
form response time PDF over [0, 1], then the correlation between the response times of block R
and of the overall workflow would be low, and thus thus replicating block R (as done by the SDF
heuristics) would yield a more accurate result than analyzing in isolation blocks Q and R (as done
by the RBF heuristics), as shown in Figure 2(c). Conversely, if the response times of all the activ-
ities of the subworkflow R were uniformly distributed over [4, 8], then the correlation between
the response times of R and of the overall workflow would be very high, and thus replicating
block R would yield a less accurate result than analyzing in isolation blocks Q and R, as shown in
Figure 2(c).

Note that replicating the shared dependencies of a block of a DAG typically reduces the DAG
complexity more than analyzing in isolation a block of the DAG. Therefore, if a DAG were
internally complex, then, after analyzing in isolation all the non-elementary blocks of the DAG,
the RBF heuristics would be forced to replicate the shared dependencies of a node, thus yielding
less accurate results than the SDF heuristics if replication alone were sufficient to make the
DAG analysis affordable. According to this, the RBF heuristics is expected to outperform the SDF
heuristics only in the specific case that: DAGs are not internally complex; DAGs are in top of the
structure tree (otherwise they would consist of activity blocks only and inner block analysis could
not be applied at all); and, the correlation between the response time of the overall workflow
and the response times of the blocks of a DAG that would be replicated by the SDF heuristics is
very high.

4.2 Safe Approximation of Duration Distributions

Definition 4.1 (Stochastic Order). Given two random vectors X1 and X2, “X1 is smaller than X2”
(X1 �st X2) if E[f (X1)] � E[f (X2)] for all monotone nondecreasing functions f . For scalar X1

and X2 with CDFs F1 (x) and F2 (x), respectively, this is equivalent to F1 (x) � F2 (x) for all x .

In our compositional analysis, a block may be analyzed in isolation to reduce the workflow com-
plexity and make its analysis affordable. In this case, forward transient analysis of the workflow
can be performed provided that the numerical PDF of the block duration be approximated with an
analytical PDF (required to be expolynomial for the analysis in ORIS). To obtain safe and accurate

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:12 L. Carnevali et al.

Fig. 2. The workflow of Figure 1(b) after executing (a) the SDF heuristics or (b) the RBF heuristics. (c) Sto-

chastic upper bound on the workflow response time PDF assuming that the response time of each block has

uniform PDF over [0, 1] (left) or that the response times of all the activities of block R only have uniform PDF

over [4, 8] (right). In both cases, the GT curve is obtained by a 5-million-run simulation.

analytical approximations of the block PDF f (x), we analyze the concavity of the CDF F (x): for
each “concave down” or “concave up” piece, our approximation F̂ (x) uses the CDF of a shifted and
truncated EXP of the form λ e−λx with positive or negative rate λ, respectively. In particular, for
each “concave down” (“concave up”) piece, the positive (negative) rate is small (large) enough to
guarantee stochastic order (i.e., F̂ (x) � F (x) ∀x) but as small (large) as possible to provide a close
approximation. Figure 3 illustrates four cases for the concavity of F (x): concave down (Figure 3(a));
concave up (Figure 3(b)); concave down, then concave up (Figure 3(c)); concave up, then concave
down (Figure 3(d)). In the majority of cases in our experiments (Section 5), we observe CDFs chang-
ing concavity at most once, from upward to downward. Lemma 4.2 guarantees stochastic order of
F̂ (x).

Lemma 4.2 (Stochastic Upper Bound PDF). Let X be a random variable with numerical

PDF f (xi) and CDF F (xi) with xi = x0 + δi for i = 1, . . . ,N , x0 ∈ R�0, δ ∈ R>0. Let

xi1 < xi2 < · · · < xiM
denote the inflection points of F ; then, the random variable X̂ with CDF F̂ (x)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:13

Fig. 3. Stochastic upper bound CDF: (a) fixed downward concavity, (b) fixed upward concavity, (c) changing

concavity downward to upward, and (d) changing concavity upward to downward, of the approximated CDF.

such that

F̂ (x) = F (xi j−1) + [F (xi j
) − F (xi j−1)]

1 − e−λj (x−xij−1)

1 − e−λj (xij
−xij−1)

if x ∈ [xi j−1 ,xi j
], for all j = 1, . . . ,M (4)

where, for a downward (upward) concavity over [xi j−1 ,xi j
], λj ∈ R is the largest positive (smallest

negative) value such that F̂ (x) � F (x) ∀x ∈ [xi j−1 ,xi j
] is stochastically larger than X , i.e., X̂ �st X .

4.3 Approximation Safety

We ensure that our compositional analysis method is safe when workflows are used to guarantee
soft deadlines of SLAs. Specifically, our proofs (reported in the Appendix) hinge on the idea of
stochastic order (recalled in Section 4.2) and on the following lemma on the order of independent
replication of positively correlated random variables [2].

Lemma 4.3 (Order of Independent Replicas Under Positive Correlation). Let X =

(X1, . . . ,Xn) be a vector of positively correlated random variables, i.e., Cov[f (X), д(X)] � 0 holds

for all monotone nondecreasing functions f ,д : Rn → R. Then, X is larger than X (X �st X), where

X is a vector of independent random variables with X i ∼ Xi for all i .

In our inner block analysis, a node n in the structure tree is replaced with an activity block
having duration stochastically larger than the response time of node n. The next lemma proves
that, after this approximation, the response time of the obtained workflow is stochastically larger
than the actual response time of the workflow.

Lemma 4.4 (Stochastic Order of Inner Block Analysis). Let S = (N ,E,n0) be the structure

tree of a workflow with root node n0 ∈ N , and let T (n) be the response time of the subtree rooted

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:14 L. Carnevali et al.

in n ∈ N . If n is replaced with n′ s.t. T (n) is lower than T (n′) (T (n) �st T (n′)), yielding the new

structure tree S ′ = (N ′,E ′,n′0), then T (n0) �st T (n′0).

In our inner block replication, ancestors of a node v are replicated in a DAG block to evaluate
the response time of v independently of the rest of the DAG. The next lemma proves that, also
after this approximation, the response time of the obtained workflow is stochastically larger than
the actual response time of the workflow.

Lemma 4.5 (Stochastic Order of Inner Block Replication). Given a DAG block G =

(V ,E,vI ,vF) and a node v ∈ V , let T (v) be the response time of v , let K be the set of vertices in

V \ {vI ,vF } that are predecessors both of v and of some node u ∈ V not predecessor of v , let F be

the set of edges in E to/from a node in K , and let G ′ = (V ′,E ′,v ′I ,v
′
F) be the DAG s.t. V ′ includes all

vertices inV plus a new node k ′ withT (k ′) ∼ T (k) ∀k ∈ K , and E ′ includes all edges in E plus an edge

to/from each new node k ′ for each edge to/from the corresponding node k ∈ K . Then,T (v ′F) �st T (vF).

5 EXPERIMENTATION

In this section, we consider a quantitative measure to evaluate the analysis accuracy with respect
to a ground truth obtained by simulation (Section 5.1); we compare accuracy and complexity of
the heuristics using sets of artificially and manually generated models (Section 5.2); we assess
the approach scalability by significantly increasing the workflow complexity (Section 5.3); and,
we evaluate how the accuracy of the heuristics varies with respect to the stochastic upper bound
PDF used in Reference [10] to approximate the response time PDF of subworkflows (Section 5.4).
The approach is implemented in the Eulero Java library [11], which supports definition of sto-
chastic workflows, derivation of their response time PDFs, and random generation of workflows,
exploiting the SIRIO library [31] of the ORIS tool [25] to build STPN blocks and evaluate accuracy.
Experiments are performed on a single core of an Intel Xeon Gold 5120 CPU (2.20 GHz) with 32
GB of RAM.

5.1 Ground Truth and Accuracy Measure

The accuracy of the workflow response time PDF is evaluated with respect to a ground truth

(GT) obtained by a 5-million-run simulation of the workflow STPN using the Jensen–Shannon

(JS) Divergence [22, 24], which quantifies the distance between two PDFs fa and fb as

D J S (fa | | fb) =
1

2
DK L (fa | | Z) +

1

2
DK L (fb | | Z) , (5)

whereZ (t) = 1
2 (fa (t) + fb (t)) ∀ t ∈ Ω is the random variable that averages the input variables, Ω is

a set of equidistant time points covering the support of fa and fb, and DK L (· | | ·) is the Kullback–

Leibler (KL) divergence defined as

DK L (fa | | fb) =
∑
t ∈Ω

fa (t) · log

(
fb (t)

fa (t)

)
. (6)

To select the number of simulation runs needed to evaluate the ground truth, for each model
randomly generated in Section 5.2.1, we performed 1-million-run, 2-million-run, . . . , 5-million-run
simulations, using a time tick nearly three orders of magnitude lower than the width of the support
of the workflow response time. Then, we evaluated the JS divergence of the workflow response
time PDF provided by each experiment with respect to the one computed by the 5-million-run sim-
ulation. Experimental results show that, for each model where both heuristics perform multiple
approximations, the JS divergence of the 4-million-run simulation with respect to the 5-million-
run simulation converges to a value that is at least one or two orders of magnitude lower than

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:15

the JS divergence of the heuristics from the 5-million-run simulation, which is sufficient for the
context of use and indicates that a 5-million-run simulation can be considered as the ground truth.

5.2 Comparing the SDF and the RBF Heuristics

5.2.1 Models Analyzed More Accurately by the SDF Heuristics. We randomly generated a set of
models by controlling the following parameters that characterize the structure tree: the depth D
of the structure tree; the number B of concurrent and alternative blocks in AND and XOR blocks,
respectively; and the number T of sequential blocks in SEQ blocks. Each model is generated by
keeping the value of two parameters at 2, and varying the remaining parameters within {2, 4, 6},
leading to seven different models. Then, each model was implemented in two variants, one allocat-
ing DAG blocks on the bottom level of the structure tree, and the other one allocating them on the
top level, for a total amount of 14 models. The type of the remaining blocks was randomly drawn,
giving AND and SEQ blocks higher probability than XOR blocks. DAG blocks were randomly gen-
erated, too, assuming that they consisted of a maximum of seven blocks connected through paths
having maximum length equal to 3. Simple activities have uniform duration PDF over [0, 1].

Models were evaluated using the following threshold values Θc and Θq on the concurrency
and the sequencing degree, respectively, of the workflow TPN: For the SDF heuristics, Θc = 3 for
models with DAGs at the bottom level and Θc = 2 otherwise, and Θq = 7; for the RBF heuristics,
Θc = 3 and Θq = 7. Models were also evaluated by simulations (S) of the workflow STPN lasting
as long as the analysis with the SDF heuristics. The workflow response time PDF computed by S
is also averaged using a sliding window of width 3, which is found to be the value that produces
the most accurate results, yielding a PDF referred to as the result of Averaged Simulation (AS).

Table 1 reports the values of the JS divergence and computation times obtained by evaluating
models having the DAG blocks at the bottom level (BOTTOM) and at the top level (TOP) of the
structure tree for the mentioned techniques, and Figures 4 and 5 plot the workflow response time
PDFs. For the BOTTOM set of models, the heuristics prove to be extremely efficient in terms of
computation time as they are able to evaluate models of increasing complexity in minimal times,
never exceeding 3 s. As evident both from the JS values and the PDFs of Figures 4 and 5, the two
heuristics produce the same very accurate results, which is due to the model topology: Given that
the models are well-nested in all the levels except for the bottom one, and that the bottom-level
DAGs do not have composite internal blocks and are not complex to analyze, both heuristics solve
the DAGs by forward transient analysis and then the rest of the model by numerical analysis,
without introducing approximation. Note that the heuristics achieve better JS values than those
obtained by the simulation, which are three orders of magnitude larger in the majority of the cases.
The averaged simulation, obtained from the simulation using the optimal width of the sliding win-
dow according to the ground truth, improves the accuracy of the simulation, though remaining in
the same order of magnitude. Also note that the JS divergence tends to smooth out the fluctuations
of both types of simulation, which are instead clearly visible in the response time PDFs of Figures 4
and 5, where the heuristics are significantly better at approximating the ground truth.

In the TOP set of models, the computation times are again lower than 3 s, except for the D2B2T2
model for the RBF heuristics and the D2B2T4 model for the SDF heuristics, for which they are
is in the order of 5 min and 10 s, respectively, due to complex DAGs (in terms of concurrency
and sequencing degrees) that challenge forward transient analysis. Nevertheless, the computation
times remain at least one order of magnitude lower than the time needed to achieve the same
accuracy by simulation. The heuristics in fact prove to be very accurate, with JS values lower
than those of simulation by at least one order of magnitude and up to four orders of magnitude.
For the D2B6T2 model, the RBF heuristics achieves a JS value in the order of 10−1, comparable

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:16 L. Carnevali et al.

Table 1. JS Divergence and Computation Times of SDF Heuristic, RBF Heuristic, Simulation (S), and AS

for the BOTTOM and the TOP Configuration Models of Section 5.2, Randomly Generated Using Different

Values of the Depth D of the Structure Tree, the Number B of Concurrent and Alternative Blocks in AND

and XOR Blocks, Respectively, and the Number T of Sequential Blocks in SEQ Blocks

BOTTOM

D, B, T
JS Time

SDF RBF S AS SDF RBF S AS GT

2 2 2 0.00001 0.00001 0.02915 0.01800 0.69s 0.39s 0.69s 0.69s 5518.22s
4 2 2 0.00001 0.00001 0.07012 0.04065 1.82s 1.70s 1.83s 1.83s 23268.95s
6 2 2 0.00005 0.00005 0.10118 0.04272 2.47s 2.26s 2.50s 2.50s 190396.48s
2 4 2 0.00001 0.00001 0.05532 0.03476 0.36s 0.33s 0.37s 0.37s 3167.33s
2 6 2 0.00001 0.00001 0.06945 0.04075 0.32s 0.28s 0.32s 0.32s 4573.85s
2 2 4 0.00001 0.00001 0.04672 0.02770 0.63s 0.43s 0.64s 0.64s 4526.35s
2 2 6 0.00000 0.00000 0.07568 0.05331 0.21s 0.12s 0.26s 0.26s 2344.53s

TOP

D, B, T
JS Time

SDF RBF S AS SDF RBF S AS GT

2 2 2 0.00188 0.00151 0.17183 0.09817 0.08s 277.53s 0.09s 0.09s 3618.21s
4 2 2 0.01411 0.01411 0.08571 0.05109 2.65s 1.59s 2.71s 2.71s 20660.48s
6 2 2 0.00004 0.01365 0.36369 0.24701 0.32s 1.01s 0.36s 0.36s 195106.73s
2 4 2 0.00008 0.00103 0.22228 0.13425 0.13s 6.89s 0.13s 0.13s 6513.53s
2 6 2 0.00240 0.19732 0.23625 0.13771 0.08s 10.44s 0.10s 0.10s 3347.82s
2 2 4 0.00091 0.00091 0.00223 0.00593 12.44s 8.95s 12.48s 12.48s 3238.71s
2 2 6 0.00054 0.01023 0.09563 0.05805 0.09s 0.30s 0.09s 0.09s 6040.17s

For each model (i.e., for each row), the best (i.e., lowest) JS value is highlighted in bold. The last column shows the
computation time of the GT.

to that of simulation and averaged simulation, due to the fact that the workflow decomposition
requires to execute inner block analysis three times, approximating PDFs that exhibit cusp points.
The averaged simulation improves the simulation, but the JS values remain in the same order of
magnitude. Finally, the SDF heuristics achieves lower JS values than the RBF heuristics in the
majority of the cases, which is due to the fact that, in these cases, the DAGs are internally complex
and thus the analysis of individual blocks in isolation is not sufficient to reduce complexity and
make forward transient analysis affordable, forcing the RBF heuristic to perform both separate
analysis of individual blocks and replication of shared dependencies of selected blocks. Overall, the
proposed approach significantly outperforms both simulation and averaged simulation in accuracy
and complexity, notably computing a duration PDF that is a stochastic upper bound on the actual
workflow response time PDF, which instead cannot be guaranteed by simulation.

5.2.2 Models Analyzed More Accurately by the RBF Heuristics. We hand-crafted seven models
M1, . . . , M7 with the aim of demonstrating cases where the RBF heuristics outperforms the SDF
heuristics. With this purpose, the top-level block of each model is a DAG that is internally sim-
ple (i.e., the sequencing and the concurrency degrees of the workflow unexpanded TPN do not
exceed their respective thresholds θs and θc for the RBF heuristics, respectively), each DAG has a
maximum of two shared activities, and the top-level DAG complexity is obtained by embedding
complex sub-workflows in the activities that are shared predecessors of multiple nodes. Moreover,
to increase the correlation between the response time of the workflow and the response times
of activities that are shared predecessor of multiple nodes, all the simple activities contained in
(composite) shared predecessors of some node have uniformly distributed response time between

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:17

Fig. 4. Response time PDFs of SDF heuristics, RBF heuristics, simulation (S), AS, and GT for the BOTTOM

and TOP models of Section 5.2.1, with different values of the depth D of the structure tree, B = 2 concurrent

and alternative blocks in AND and XOR blocks, respectively, and T = 2 of sequential blocks in SEQ blocks.

4 and 8. In particular, M1 has two DAG blocks at the bottom level, M2 is a variant of M1 with
more precedence relations in the top-level DAG, M3 has also two bottom-level DAG blocks, M4
is a variant of M3 with more composite blocks in the top-level DAG, M5 is a variant of M1 with
a middle-level DAG (and no bottom-level DAG), M6 has a top-level DAG with more precedence
relations than the previous models, and M7 is a variant of M6 with one more composite block in
the top-level DAG.

We evaluated the accuracy of the heuristics, simulation, and averaged simulation with respect
to the ground truth, with the same experimental setup of Section 5.2.1, except for the simulation
time and averaged simulation time, which is at least equal to that of the RBF heuristics (i.e., the
most accurate heuristics for the benchmark). Results are shown in Table 2 and Figure 6. The SDF
heuristics performs the analysis in relatively less time than the RBF heuristics, though results are
comparable. As expected, the RBF heuristics yields more accurate results than the SDF heuristics,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:18 L. Carnevali et al.

Fig. 5. Response time PDFs of SDF heuristics, RBF heuristics, simulation (S), AS, and GT for the BOTTOM

and TOP models of Section 5.2.1 with depth D = 2 of the structure tree, and different values of the number B
of concurrent and alternative blocks in AND and XOR blocks, respectively, and the number T of sequential

blocks in SEQ blocks.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:19

Table 2. JS Divergence and Computation Times of SDF Heuristic, RBF Heuristic, Simulation (S), and

AS for the Models of Section 5.2.2

Model
JS Time

SDF RBF S AS SDF RBF S AS GT

1 0.04506 0.01254 0.03382 0.02127 1.42s 1.28s 1.31s 1.31s 9287.89s
2 0.04526 0.01256 0.05248 0.03376 0.46s 0.64s 0.66s 0.66s 9549.46s
3 0.03756 0.00665 0.04640 0.04326 0.20s 0.31s 0.33s 0.33s 5776.45s
4 0.03737 0.00660 0.01350 0.01126 0.16s 0.85s 0.86s 0.86s 6657.49s
5 0.12228 0.00909 0.05926 0.03398 0.21s 0.22s 0.22s 0.22s 6692.07s
6 0.03837 0.00820 0.01449 0.01015 0.13s 0.84s 0.86s 0.86s 6050.73s
7 0.03962 0.00456 0.00434 0.00852 0.21s 3.08s 3.09s 3.09s 8979.62s

For each model (i.e., for each row), the best (i.e., lowest) JS value is highlighted in bold.

Table 3. Computation Times of SDF Heuristic, RBF Heuristic,

Simulation (S), and AS for the BOTTOM and TOP Models of

Section 5.3, with Structure Tree Depth D ∈ {4, 6}, B = 4
Concurrent and Alternative Blocks in AND and XOR Blocks,

Respectively, and T = 4 Sequential Blocks in SEQ Blocks

DAG D, B, T SDF RBF S AS

BOTTOM 4, 4, 4 3.04 s 15.63 s 3.07 s 3.07 s
TOP 4, 4, 4 1.25 s 2.44 s 1.28 s 1.28 s
BOTTOM 6, 4, 4 33.25 s 156.94 s 42.16 s 42.16 s
TOP 6, 4, 4 22.92 s 5.73 s 38.66 s 38.66 s

with a JS divergence gain of at least a factor of 4, and of nearly two orders of magnitude in the
best cases. Overall, we were not able to randomly generate a benchmark of models for which the
RBF heuristics significantly outperforms the SDF heuristics, confirming that the RBF heuristics is
more accurate only under very restrictive conditions (discussed at the end of Section 4.1). There-
fore, except when these conditions occur, the SDF heuristics is preferable with respect to the RBF
heuristics.

5.3 Increasing Workflow Complexity

We further stressed the evaluation complexity by generating workflows with parameters D = 4,
B = 4, T = 4 and D = 6, B = 4, T = 4, notably obtaining huge models having up to 448 and 7,168
simple activities, respectively, for which obtaining a ground truth via stochastic simulation is defi-
nitely not viable. The computation times are shown in Table 3 and the analysis results in Figure 7.
Although the computation times increase with respect to the cases described in Section 5.2, the ob-
tained results highlight that extremely complex models can be evaluated in relatively short times.
In particular, for the majority of the models with structure tree depthD = 4, the computation times
of the heuristics do not exceed 4 s. Notably, the results obtained by simulation during such amount
of time are too noisy to represent a valid alternative to the proposed analysis heuristics. Though
obtaining accurate simulation results is not viable for these complex models, rare event simulation
methods [7, 8, 28, 38] could be applied to evaluate rewards that focus on selected behaviors.

For models with structure tree depth D = 6, the computation times of the heuristics slightly
increase, but always without exceeding 35 s, except for the BOTTOM D6B4T4 model, for which the
RBF heuristics executes in nealry 157 s (which is still affordable). Despite this, the results achieved
by simulation are much worse than those obtained for the models with depth D = 4, due to

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:20 L. Carnevali et al.

Fig. 6. Response time PDFs of SDF heuristic, RBF heuristic, simulation (S), AS, and GT for the models of

Section 5.2.2.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:21

Fig. 7. Response time PDFs of SDF heuristic, RBF heuristic, simulation (S), and AS for the BOTTOM and

TOP models of Section 5.3, with structure tree depth D ∈ {4, 6}, B = 4 concurrent and alternative blocks in

AND and XOR blocks, respectively, and T = 4 sequential blocks in SEQ blocks.

the significant increase in the time needed to complete a simulation run (simulation time is the
minimum time, larger than the analysis time, that is needed to perform an integer number of runs).

5.4 Sensitivity to the Stochastic Upper Bound PDF

We performed a sensitivity analysis with respect to the stochastic upper bound PDF used to approx-
imate the numerical solutions of inner blocks. To this end, we considered two randomly generated
models with parameters D = 4, B = 2,T = 2 and D = 6, B = 2,T = 2, respectively, and DAG blocks
at the top level consisting of a maximum of seven blocks connected through paths of maximum
length equal to 2. Due to the model structure and parameters, both heuristics apply inner block
analysis rather than inner block replication, and thus these models are evaluated through the SDF
heuristics. We performed two experiments: In the first case, we used the approximation defined in
Section 4.2 (A1); in the second case, we used a variant with bounded support of the approximant
proposed in Reference [10], approximating numerical PDFs with support [a,b] with a truncated
Exponential PDF with support [δ ,b], defined as p (t) := λe−λ (t−δ)/(1 − e−λ (b−δ)), where δ is the
intersection point of the x-axis with the line that is tangent to the inflection point of the approxi-
mated CDF and λ is the rate of the Exponential, computed to impose the stochastic upper bound
with respect to the approximated function (A2). The accuracy of the resulting PDFs is evaluated
using JS divergence with respect to a ground truth obtained by 5-million-run simulation.

For both models, the SDF heuristics with the approximant A1 obtains JS values at least four
times lower than with approximant A2 (i.e., 0.01023 for the D4B2T2 model and 0.01680 for the
D6B2T2 model, compared to 0.04164 and 0.07939, respectively). As expected, the PDFs in Figure 8
show that A1 results in a curve that is visually closer to the ground truth, pointing out that the
stochastic upper bound defined in Section 4.2 is more accurate than the alternative.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:22 L. Carnevali et al.

Fig. 8. Response time PDFs of the GT and SDF heuristics using the approximant PDF of Section 4.2 (A1) and

a variant with bounded support of the one proposed in Reference [10] (A2) for the models of Section 5.4, with

structure tree depth D ∈ {4, 6}, B = 2 concurrent and alternative blocks in AND and XOR blocks, respectively,

T = 2 sequential blocks in SEQ blocks, and DAG blocks at the top level.

6 CONCLUSIONS

We presented a compositional approach to efficiently compute an accurate stochastic upper bound
on the response time PDF of complex workflows. A workflow is specified as a composition of STPN
blocks to enable hierarchical decomposition into subworkflows, evaluated by combining numeri-
cal analysis and forward transient analysis according to heuristics that achieve different tradeoffs
between accuracy and complexity. Experiments on suites of manually and randomly generated
models of increasing complexity show that the approach achieves sufficient accuracy in a very
limited computation time, notably outperforming simulation having the same computation time.
Moreover, note that the approach derives a response time PDF that is proved to be a stochastic up-
per bound on the actual workflow response time PDF, which cannot be guaranteed by simulation.

The workflow model could be extended with other constructs, possibly affecting well-formed
nesting, provided that positive correlation is guaranteed among the response times of different
subworkflows. The approach is open to the definition of other heuristics to explore the structure
tree and decompose the workflow, to the exploitation of other analytical approximants in the class
of expolynomial functions or piecewise CPHs over bounded supports [21] to fit numerical PDFs,
and to the integration of other solution techniques to evaluate the response time PDF of a block.
Applicability could be tested in various relevant domains where the evaluation of deadlines missed
within a given time requires the computation of the response time PDF.

APPENDICES

A STOCHASTIC TIME PETRI NETS

A.1 Syntax

STPNs [37] model concurrent stochastic systems. As shown in Figure 1(a), transitions are depicted
as bars and represent the stochastic duration of activities (e.g., transition Q); tokens within places
are represented as dots within circles, respectively, and model the discrete logical state of the
system (e.g., place p0 contains one token); directed arcs from input places to transitions, and from
transitions to output places, are depicted as directed arrows and model precedence relations among
activities (e.g., place p3 is an input place for transition Q).

Formally, an STPN is a tuple 〈P ,T ,A−,A+,EFT ,LFT , F ,W ,Z 〉 where: P and T are disjoint sets
of places and transitions, respectively; A− ⊆ P × T and A+ ⊆ T × P are pre-condition and post-
condition relations, respectively; EFT and LFT associate each transition t ∈ T with an earliest

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:23

firing time EFT (t) ∈ Q�0 and a latest firing time LFT (t) ∈ Q�0 ∪ {∞} such that EFT (t) � LFT (t);
F associates each transition t ∈ T with a CDF Ft for its duration τ (t) ∈ [EFT (t),LFT (t)], i.e.,
Ft (x) = P {τ (t) � x }, with Ft (x) = 0 for x < EFT (t) and Ft (x) = 1 for x > LFT (t); W and Z
associate each transition t ∈ T with a weight W (t) ∈ R>0 and a priority Z (t) ∈ N, respectively.
Other features, such as inhibitor arcs, enabling functions, and update functions, could be added to
the model and are actually supported by the ORIS tool [25].

As in Petri nets, for a transition t ∈ T , a place p ∈ P is termed an input place if (p, t) ∈ A−

and is termed an output place if (t ,p) ∈ A+. As in stochastic Petri nets, a transition t is termed
IMM if EFT (t) = LFT (t) = 0 and timed otherwise; a timed transition t is termed EXP if Ft (x) =
1 − exp(−λx) for some rate λ ∈ R>0, and GEN otherwise. For each GEN transition t , we assume
that Ft is the integral function of a PDF ft , i.e., Ft (x) =

∫ x

0
ft (y) dy. Similarly, an IMM transition

t ∈ T is associated with the Dirac impulse function ft (y) = δ (y − y) as generalized PDF, with
y = EFT (t) = LFT (t). In particular, IMM transitions are depicted as thin black bars (e.g., transition
t0), and GEN transitions as thick black-filled bars (e.g., transition Q has non-EXP CDF possibly
with bounded support).

A.2 Semantics

The state of an STPN is a pair s = 〈m,τ 〉, where m : P → N is a marking assigning a number of
tokens to each place and τ : T → R�0 associates each transition with a time-to-fire. A transition
is enabled by a marking if each of its input places contains at least one token (e.g., transition t0
is enabled). Upon enabling, a transition samples a time-to-fire according to its CDF Ft . When the
time-to-fire of an enabled transition has elapsed, the transition becomes firable. When a transition
fires, one token is removed from each of its input places and one token is added to each of its
output places (e.g., the firing of transition t0 removes one token from place p0 and adds one token
to each of places p1 and p2), and the times-to-fire of the transitions enabled before and after the
token moves are reduced by the time-to-fire of the fired transition (e.g., when transition Q fires
before transition X1, the time-to-fire of X1 is reduced by the time-to-fire of Q). Formally, when a
transition t fires in a state s = 〈m,τ 〉, s is replaced by a new state s ′ = 〈m′,τ ′〉, where:m′ is derived
from m by removing a token from each input place of t , yielding an intermediate marking mtmp,
and adding a token to each output place of t ; τ ′ is derived from τ by (i) reducing the time-to-fire
of each persistent transition (i.e., enabled bym,mtmp andm′) by the time elapsed in s , (ii) sampling
the time-to-fire of each newly-enabled transition tn (i.e., enabled bym′ but not bymtmp) according
to Ftn

, and (iii) removing the time-to-fire of each disabled transition (i.e., enabled by m but not
bym′).

If multiple transitions are firable in a state s = 〈m,τ 〉, then the next transition to fire is deter-
mined by a random switch based on probabilistic weights and priorities associated with transitions,
i.e., the next transition t to fire is selected with probability W (t)/

∑
ti ∈E W (ti) from the set E of

transitions that are enabled bym and have time-to-fire equal to zero and maximum priority. Given
that this condition occurs only in limit cases of synchronization among IMM or DET transitions,
weights and priorities are not depicted in the graphical representation of STPNs, and, if omitted,
weights are assumed to be equal to 1 and priorities are assumed to be equal to 0.

B NUMERICAL ANALYSIS

For blocks composing independent subworkflows by SEQ, AND, and XOR operators, the numer-
ical form of the response time PDF can be derived by bottom-up composition of the response
time PDFs or CDFs of the blocks. Specifically, given n blocks b1, . . . ,bn with response time PDFs
ϕ1 (t), . . . ,ϕn (t), respectively, and response time CDFs Φ1 (t), . . . ,Φn (t), respectively: the response

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

16:24 L. Carnevali et al.

time PDF ϕseq (t) of a SEQ block made of b1, . . . ,bn is derived through subsequent convolutions of
ϕ1 (t), . . . ,ϕn (t) ∀ t ∈ [0, tmax], i.e., ϕseq (t) = ϕ1 (t) � ϕ2 (t) � · · · � ϕn (t), where the convolution

of PDFs ϕi (t) and ϕ j (t) is ϕi (t) � ϕ j (t) =
∫ t

0
ϕi (τ) ϕ j (t − τ) dτ ; the response time CDF Φxor (t) of

an XOR block made of b1, . . . ,bn is derived as the weighted sum of Φ1 (t), . . . ,Φn (t) according to
p1, . . . ,pn , respectively,∀ t ∈ [0, tmax], i.e., Φxor (t) = p1 Φ1 (t)+· · ·+pn Φn (t); and, the response time
CDF Φand (t) of an AND block made of b1, . . . ,bn is the CDF of the maximum among the response
times of b1, . . . ,bn , which is derived as the product of Φ1 (t), . . . ,Φn (t) ∀ t ∈ [0, tmax] given that
the response times of b1, . . . ,bn are independent random variables, Φand (t) = Φ1 (t) · . . . · Φn (t).

Then, the response time PDF ϕand and ϕxor of an AND and an XOR block, respectively, can be
obtained as the derivative of the response time CDF of the block, e.g., ϕand (t) = d/dt Φand (t), e.g.,
for block R in Figure 1, the response time PDF is ϕR (t) = d/dt (ΦR1 (t) · ΦR2 (t)), where ΦR1 (t) =
d/dt (ΦX (t) · ΦY (t)) and ΦR2 (t) = pR2AΦR2A (t) + pR2BΦR2B (t) are the response time CDFs of blocks R1

and R2, respectively, and, ΦX (t) = d/dt (ΦX1 (t) · ΦX2 (t)) and ΦY (t) =
∫ t

0

∫ τ

0
ϕY1 (x) ϕY2 (τ − x) dx dτ

are the response time CDFs of blocks X and Y, respectively, and, finally, ΦX1 (t), ΦX2 (t), ΦY1 (t), ΦY1 (t),
ΦR2A (t), and ΦR2B (t) are the response time CDFs of blocks X1, X2, Y1, Y2, R2A, and R2B, respectively.

C THEOREM PROOFS

Proof of Lemma 4.2. By construction, F̂ (x) � F (x) ∀x ∈ D ∩ [a,b]. Indeed, for every sub-
support [xi j−1 ,xi j

] between two successive inflection points xi j−1 and xi j
, F (x) has downward or

upward concavity. In the first case, the rate of the truncated exponential of Equation (4) is taken as
a positive value resulting in a negative rate. Hence, approximation F̂ (x) has downward concavity
too. Moreover, the rate is chosen as the smallest value for which stochastic ordering with respect to
F (x) is guaranteed ∀x ∈ D ∩ [xi j−1 ,xi j

]. Then, stochastic ordering is guaranteed for all supports
[xi j−1 ,xi j

] where F (x) has downward concavity. When F (x) has upward concavity, the rate of
the truncated exponential of Equation (4) is taken as a negative value resulting in a positive rate.
Approximation F̂ (x) has upward concavity, too, and a rate chosen as the largest value for which
stochastic ordering with respect to F (x) is guaranteed ∀x ∈ D ∩ [xi j−1 ,xi j

]. Then, stochastic
ordering is guaranteed for all supports [xi j−1 ,xi j

] where F (x) has upward concavity. Therefore,

X̂ �st X . �

Proof of Lemma 4.4. The duration of the subworkflow associated with any nodem (SEQ, AND,
XOR, REPEAT, DAG) is a monotone nondecreasing function of the durations of the subworkflows
associated with its children; respectively, the sum (SEQ), max (AND), random mixture (XOR), series
(REPEAT), max over all paths from the initial to the final node (DAG). By definition of stochastic
order, if a child n is replaced with n′ s.t.T (n) �st T (n′), thenT (m) �st T (m′) for the new nodem′.
By recursion, T (n0) �st T (n′0) for the new root n′0. �

Proof of Lemma 4.5. Since DAG edges denote AND-join dependencies, the response time of a
vertexv isT (v) = D (v)+max(T (k1), . . . ,T (kn)), whereD (v) is the duration of the block associated
with v and T (k1), . . . ,T (kn) are the response times of its predecessors. By visiting the vertices
of G in topological order, we can evaluate the response time T (vF) of the DAG as an expression
combining nonnegative block durations D (v) ∀v ∈ V through monotone nondecreasing operators
(i.e., summation and maximum). The intermediate values of this expression obtained during the
visit are the response timesT (·) of the nodes ofG, which, by construction, are positively correlated.
In the evaluation ofT (v ′F) inG ′, the random variableT (k) of each node k ∈ K is replaced with the
independent replica T (k ′) ∼ T (k). Then, by Lemma 4.3, we obtain T (v ′F) �st T (vF). �

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

Compositional Safe Approximation of Response Time PDF 16:25

REFERENCES

[1] Florian Arnold, Holger Hermanns, Reza Pulungan, and Mariëlle Stoelinga. 2014. Time-dependent analysis of attacks.
In Proceedings of the International Conference on Principles of Security and Trust. Springer, 285–305.

[2] François Baccelli and Armand M. Makowski. 1989. Multidimensional stochastic ordering and associated random vari-
ables. Operat. Res. 37, 3 (1989), 478–487.

[3] B. Berthomieu and M. Diaz. 1991. Modeling and verification of time dependent systems using time Petri nets. IEEE

Trans. Soft. Eng. 17, 3 (1991), 259–273. https://doi.org/10.1109/32.75415
[4] Andrea Bobbio and Miklos Telek. 1995. Markov regenerative SPN with non-overlapping activity cycles. In Proceedings

of the International Computer Performance and Dependability Symposium. 124–133.
[5] Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio, and Emiliano Paglia. 2020. Modeling resources to simulate

business process reliability. ACM Trans. Model. Comput. Simul. 30, 3 (2020), 1–25.
[6] Dario Bruneo, Salvatore Distefano, Francesco Longo, and Marco Scarpa. 2012. Stochastic evaluation of QoS in service-

based systems. IEEE Transactions on Parallel and Distributed Systems 24, 10 (2012), 2090–2099.
[7] James Bucklew. 2013. Introduction to Rare Event Simulation. Springer Science & Business Media.
[8] Carlos E. Budde, Marco Biagi, Raúl E. Monti, Pedro R. D’Argenio, and Mariëlle Stoelinga. 2020. Rare event simulation

for non-markovian repairable fault trees. In Proceedings of the International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’20). Springer, 463–482.
[9] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. 2005. QoS-aware replanning of

composite web services. In Proceedings of the IEEE International Conference on Web Services. IEEE, 121–129.
[10] Laura Carnevali, Marco Paolieri, Riccardo Reali, and Enrico Vicario. 2021. Compositional safe approximation of re-

sponse time distribution of complex workflows. In Proceedings of the International Conference on Quantitative Evalu-

ation of Systems (QEST’21), Vol. 12846. Springer, 83–104.
[11] Laura Carnevali, Riccardo Reali, and Enrico Vicario. 2022. Eulero: A tool for quantitative modeling and evaluation of

complex workflows. In Proceedings of the International Conference on Quantitative Evaluation of Systems (QEST’22).
[12] Laura Carnevali, Riccardo Reali, and Enrico Vicario. 2021. Compositional evaluation of stochastic workflows for re-

sponse time analysis of composite web services. In Proceedings of the ACM/SPEC International Conference on Perfor-

mance Engineering. 177–188.
[13] Gianfranco Ciardo, Reinhard German, and Christoph Lindemann. 1994. A characterization of the stochastic process

underlying a stochastic Petri net. IEEE Trans. Softw. Eng. 20, 7 (1994), 506–515.
[14] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Leymann, Kevin Liu,

Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. 2003. Business process execution
language for web services. http://xml.coverpages.org/BPELv11-May052003Final.pdf.

[15] Ton G. de Kok and Jan C. Fransoo. 2003. Planning supply chain operations: Definition and comparison of planning
concepts. In Handbooks in Operations Research and Management Science, Vol. 11. Elsevier, 597–675.

[16] David L. Dill. 1990. Timing assumptions and verification of finite-state concurrent systems. In Proceedings of the

Annual Conference on Automatic Verification Methods for Finite State Systems (AVMFSS’89), Lecture Notes in Computer

Science, Vol. 407. Springer, 197–212. https://doi.org/10.1007/3-540-52148-8_17
[17] Alim U. Gias, André van Hoorn, Lulai Zhu, Giuliano Casale, Thomas F. Düllmann, and Michael Wurster. 2020. Per-

formance engineering for microservices and serverless applications: The RADON approach. In Companion of the

ACM/SPEC International Conference on Performance Engineering. 46–49.
[18] András Horváth, Marco Paolieri, Lorenzo Ridi, and Enrico Vicario. 2012. Transient analysis of non-Markovian models

using stochastic state classes. Perf. Eval. 69, 7-8 (2012), 315–335.
[19] E. Douglas Jensen, C. Douglas Locke, and Hideyuki Tokuda. 1985. A time-driven scheduling model for real-time

operating systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS’85), Vol. 85. 112–122.
[20] Richard Johnson, David Pearson, and Keshav Pingali. 1994. The program structure tree: Computing control regions

in linear time. In ACM SIGPLAN’94 Conference on Programming Language Design and Implementation (PLDI’94). ACM,
171–185.

[21] L’uboš Korenčiak, Jan Krčál, and Vojtěch Řehák. 2014. Dealing with zero density using piecewise phase-type approx-
imation. In European Workshop on Performance Engineering. Springer, 119–134.

[22] Jianhua Lin. 1991. Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory 37, 1 (1991), 145–151.
[23] Yanjie Liu, Zheng Zheng, and Jiantao Zhang. 2019. Markov model of web services for their performance

based on phase-type expansion. In Proceedings of the IEEE International Conference on Dependable, Autonomic

and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Confer-

ence on Cloud and Big Data Computing, and International Conference on Cyber Science and Technology Congress

(DASC’19/PiCom’19/CBDCom’19/CyberSciTech’19). IEEE, 699–704.
[24] Frank Nielsen. 2019. On a generalization of the jensen-shannon divergence and the JS-symmetrization of distances

relying on abstract means. arXiv:1904.04017. Retrieved from https://arxiv.org/abs/1904.04017.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

https://doi.org/10.1109/32.75415
http://xml.coverpages.org/BPELv11-May052003Final.pdf
https://doi.org/10.1007/3-540-52148-8_17
https://arxiv.org/abs/1904.04017

16:26 L. Carnevali et al.

[25] Marco Paolieri, Marco Biagi, Laura Carnevali, and Enrico Vicario. 2021. The ORIS tool: Quantitative evaluation of
non-markovian systems. IEEE Trans. Softw. Eng. 47, 6 (June 2021), 1211–1225.

[26] Joy Rahman and Palden Lama. 2019. Predicting the end-to-end tail latency of containerized microservices in the cloud.
In Proceedings of the IEEE International Conference on Cloud Engineering (IC2E’19). IEEE, 200–210.

[27] Andreas Rogge-Solti and Mathias Weske. 2015. Prediction of business process durations using non-markovian sto-
chastic petri nets. Inf. Syst. 54 (2015), 1–14.

[28] Gerardo Rubino and Bruno Tuffin. 2009. Rare Event Simulation using Monte Carlo Methods. John Wiley & Sons.
[29] Nick Russell, Arthur H. M. Ter Hofstede, Wil M. P. Van Der Aalst, and Nataliya Mulyar. 2006. Workflow Control-flow

Patterns: A Revised View. BPM Center Report BPM-06-22, BPMcenter. Org (2006), 06–22.
[30] Luigi Sassoli and Enrico Vicario. 2007. Close form derivation of state-density functions over DBM domains in the

analysis of non-Markovian models. In Proceedings of the International Conference on Quantitative Evaluation of Systems.
IEEE, 59–68.

[31] SIRIO Library. 2022. Retrieved from https://github.com/oris-tool/sirio.
[32] Kishor S. Trivedi and Robin Sahner. 2009. SHARPE at the age of twenty two. SIGMETRICS Perform. Eval. Rev. 36, 4

(March 2009), 52–57. https://doi.org/10.1145/1530873.1530884
[33] Wil M. P. Van der Aalst. 1998. The application of Petri nets to workflow management. J. Circ. Syst. Comput. 8, 01

(1998), 21–66.
[34] Erwin Van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, and Simon Eismann. 2018. A SPEC RG cloud

group’s vision on the performance challenges of FaaS cloud architectures. In Companion of the ACM/SPEC International

Conference on Performance Engineering. 21–24.
[35] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. 2009. The refined process structure tree. Data Knowl. Eng. 68, 9

(2009), 793–818. https://doi.org/10.1016/j.datak.2009.02.015
[36] Enrico Vicario. 2001. Static analysis and dynamic steering of time-dependent systems. IEEE Trans. Softw. Eng. 27, 8

(Aug. 2001), 728–748. https://doi.org/10.1109/32.940727
[37] Enrico Vicario, Luigi Sassoli, and Laura Carnevali. 2009. Using stochastic state classes in quantitative evaluation of

dense-time reactive systems. IEEE Trans. Softw. Eng. 35, 5 (2009), 703–719.
[38] Manuel Villén-Altamirano and José Villén-Altamirano. 2011. The rare event simulation method RESTART: Efficiency

analysis and guidelines for its application. In Network Performance Engineering. Springer, 509–547.
[39] Yilei Zhang, Zibin Zheng, and Michael R. Lyu. 2011. WSPred: A time-aware personalized QoS prediction framework

for web services. In IEEE International Symposium on Software Reliability Engineering. IEEE, 210–219.
[40] Zheng Zheng, Kishor S. Trivedi, Kun Qiu, and Ruofan Xia. 2015. Semi-Markov models of composite web services for

their performance, reliability and bottlenecks. IEEE Trans. Serv. Comput. 10, 3 (2015), 448–460.

Received 1 February 2022; revised 11 September 2022; accepted 23 March 2023

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 16. Publication date: October 2023.

https://github.com/oris-tool/sirio
https://doi.org/10.1145/1530873.1530884
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1109/32.940727

