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ABSTRACT
Inference latency prediction on mobile devices is essential for mul-
tiple applications, including collaborative inference and neural ar-
chitecture search. Training accurate latency predictors using ML
techniques requires sufficient and representative data; however,
collection of such data is challenging. To overcome these chal-
lenges, in this work, we focus on constructing a comprehensive
dataset that can be used to predict inference latency on mobile
devices. Our dataset contains 102 real-world CNNs, 69 real-world
ViTs and 1000 synthetic CNNs across 174 diverse experimental
environments on mobile platforms, accounting for critical fac-
tors affecting inference latency, including hardware heterogeneity,
data representations and ML frameworks. Our code is available at:
https://github.com/qed-usc/mobile-ml-benchmark.git.

CCS CONCEPTS
•General and reference→Measurement; •Computingmethod-
ologies → Neural networks; • Human-centered computing
→Mobile devices.
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1 INTRODUCTION
Machine learning (ML) techniques, especially Deep Neural Net-
works, have been broadly adopted to mobile platforms and play a
crucial role in performing inference tasks for applications such as
facial recognition, text generation, and healthcare.

Consequently, predicting the inference latency of neural net-
works on resource-constrained mobile devices is an essential task
across a broad range of applications, e.g.,: (1) collaborative infer-
ence [9, 11], where a deep neural network is partitioned between a
mobile device and a cloud server for cooperative processing – accu-
rate latency prediction for each component in the neural network
facilitates finding optimal partitions, and (2) neural architecture
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search (NAS) [4, 23], which automates the exploration of neural
architectures (NAs) with an appropriate trade-off between ML ac-
curacy and efficiency – an accurate latency model ensures that
the search process is directed towards architectures that satisfy
stringent low inference latency constraints.

However, simple metrics such as FLOPs (the number of float-
ing point operations) do not provide accurate proxies [15, 22] for
real-world latency, which is influenced by diverse factors such as
underlying optimization algorithms and hardware specifications.
To bridge this gap, ML techniques have been increasingly applied
to predict both end-to-end latency (e.g., by encoding the entire
NA as a graph [6]) and latency of individual building blocks (e.g.,
represented as a tuple of configuration parameters [13]).

Notably, the availability of sufficient and representative data is
essential for these ML-based approaches to achieve accurate latency
predictions. However, construction of a comprehensive dataset for
ML inference on mobile platforms is challenging due to the follow-
ing reasons. (1) Diverse experimental environment: The substantial
diversity of hardware configurations, operating systems and ML
frameworks results in distinct characteristics of inference latency;
designing a comprehensive dataset reflecting latency in diverse
and representative environments requires careful consideration of
these factors. (2) Opacity of ML frameworks: From our observations,
current ML frameworks lack functionality for profiling the latency
of each operation on mobile GPUs and hide the details of specific
optimizations on target devices; lack of this information in existing
datasets [10] presents challenges for constructing accurate block-
wise predictors for inference latency. (3) Evolving neural architecture
designs: State-of-the-art (SOTA) NAs continuously emerge and con-
sist of novel building blocks, such as the recent advances in Vision
Transformers (ViTs) achieving SOTA ML accuracy in vision tasks;
however, there is a lack of existing public datasets benchmarking
their real-world latency across diverse mobile platforms, since dif-
ferent NA designers provide their own model implementations and
some are difficult to deploy on mobile platforms (e.g., due to use of
operations unsupported on mobile GPUs).

Hence, in this work, we overcome these challenges by construct-
ing a comprehensive dataset that can be used to predict inference
latency on mobile devices. Specifically, our main contributions are:
• We present a methodology to generate, deploy and benchmark
NAs across 174 scenarios, including mobile CPUs and GPUs
on both Android and iOS devices, with float and integer data
representations, on both TFLite and PyTorch Mobile frame-
works; our methodology can be utilized for comprehensive
performance evaluation of NAs.

• We release a dataset [2] collected by applying our methodol-
ogy; the dataset includes 102 real-world and 1000 synthetic
Convolutional Neural Networks (CNNs), covering a majority
of representative configurations for typical building blocks. In
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Device Platform CPU Cores GPU

Google Pixel 4 Snapdragon 855 1x Large (2.84 GHz), 3x Medium (2.32 GHz), 4x Small (1.80 GHz) Adreno 640
Xiaomi Mi 8 SE Snapdragon 710 2x Large (2.20 GHz), 6x Small (1.70 GHz) Adreno 616
Samsung Galaxy S10 Exynos 9820 2x Large (2.73 GHz), 2x Medium (2.31 GHz), 4x Small (1.95 GHz) Mali G76
Samsung Galaxy A03s Helio P35 4x Large (2.30 GHz), 4x Small (1.80 GHz) PowerVR GE8320
Apple iPhone XS A12 Bionic 2x Large (2.49 GHz), 4x Small (1.52 GHz) Apple-designed G11P
Apple iPhone 7 A10 Fusion 2x Large (2.34 GHz), 2x Small (1.05 GHz) PowerVR GT7600 Plus (Custom)

Table 1: Mobile Platforms in Our Study

our previous work [13], latency prediction models trained on
this dataset achieved high accuracy (MAPE errors of 2.4% and
5.2% for CPUs and GPUs, respectively).

• We systematically collect ViTs from HuggingFace [21] and test
their compatibility with mobile platforms; based on this, we
extend our dataset [13] with real-world latency measurements
for 69 SOTA ViTs across multiple environments.

• We conduct evaluation of characteristics of end-to-end and
operation-wise latency for the NAs in our dataset, providing
insight for architecture design, including improvements in bot-
tleneck blocks, as well as inference runtime implementations,
such as efficient support of specific operations.

2 EXPERIMENTAL ENVIRONMENT
In this section, we describe the experimental environment, specifi-
cally ML frameworks (Section 2.1) and hardware (Section 2.2), that
drive the development of our dataset.

2.1 ML Frameworks
Our dataset contains measurements from two mainstream ML
frameworks for mobile platforms: TensorFlow Lite (TFLite) and
PyTorch Mobile. We evaluate the platform-specific runtime imple-
mentations (i.e., TFLite delegates and PyTorch backends) that exhibit
distinct performance characteristics (shown in Section 4.1).

2.1.1 TFLite. TFLite implements a variety of delegates to sup-
port execution on diverse hardware accelerators. For mobile CPUs,
TFLite offers native CPU kernels (i.e., executable programs for ML
operations) optimized for ARM Neon instructions, along with sup-
port for the XNNPACK delegate [8], a high-performance library for
inference on ARM CPUs. For mobile GPUs, the TFLite GPU Dele-
gate [12] builds OpenCL/OpenGL kernels for Android platforms
and Metal kernels for iOS platforms. These delegates improve the
flexibility of TFLite in choosing hardware for mobile deployment.
TFLite models are interpreted as a computational graph, in which
nodes represent ML operators and edges depict data dependencies.
During inference, a designated delegate for a particular platform
analyzes the graph and performs a set of optimizations: for example,
(1) merging a sequence of nodes to reduce dispatch overhead, or (2)
applying optimization algorithms (e.g., Winograd for convolution)
to accelerate the execution on specific hardware.

2.1.2 PyTorch Mobile. Similarly to TFLite, PyTorch Mobile imple-
ments diverse hardware backends, including CPU backend for ARM
CPUs, Vulkan backend for Android mobile GPUs, and Metal back-
end for iOS mobile GPUs. The CPU backend incorporates various
computing libraries for inference: XNNPACK [8] for floating-point
representations and QNNPACK [17] for integer representations.

Models in PyTorch Mobile are represented as TorchScript Interme-
diate Representations (IRs), which consist of ML operations as well
as flow control (e.g., loop and if-statements). This representation
facilitates various optimizations, such as constant folding and oper-
ator fusion, for efficient execution and supports the deployment of
models across diverse production environments.

2.2 Hardware
Modern mobile platforms commonly integrate cores with different
computational capacities into the same CPU, known as the ARM
big.LITTLE architecture; these cores are organized into multiple
clusters, each consisting of homogeneous cores running at the same
clock speed. For instance, the “big cores” with higher clock speeds
are suitable for urgent and computationally intensive tasks, while
the “LITTLE cores” with lower clock speeds are energy-efficient
for less demanding tasks. In our dataset, we conduct measurements
on both homogeneous cores within a cluster and heterogeneous
cores across clusters. Existing work [20] shows that utilizing cores
from different clusters does not necessarily lead to performance
improvement because of the communication cost overhead due to
synchronization between multiple clusters.

Mobile GPUs of different manufacturers exhibit heterogeneous
hardware architectures which affect inference latency in different
ways, e.g., (1) hardware support on Adreno GPUs for larger warp
sizes can reduce computational time as compared to Mali Bifrost ar-
chitectures or (2) Mali GPUs share global memory among compute
units, while Adreno GPUs reserve on-chip local memory in each
compute unit to speedup memory operations. Consequently, ML
workloads exhibit distinct performance characteristics across hard-
ware, which motivates comprehensive evaluations across diverse
mobile platforms in our dataset, as summarized in Table 1.

3 DATA COLLECTION
Construction of a comprehensive dataset involves the following
steps: selecting neural architectures (Section 3.1), applying ML
framework optimizations in model deployment (Section 3.2), prop-
erly configuring hardware (Section 3.3) and instrumenting ML
frameworks (Section 3.4).

3.1 Neural Architecture Selection
In our dataset, we focus on efficient NAs for image classification;
specifically, we evaluate (1) a broad range of real-world NAs devel-
oped in recent publications and (2) synthetic NAs covering a ma-
jority of representative configurations for typical building blocks.

3.1.1 Real-world. The real-world NAs include both CNNs and ViTs
designed for image classification tasks. For CNNs, we adopt the
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Figure 1: FLOPs and Model Sizes for NAs in our dataset

implementations from [1], which provides pre-trained parameters
as well as the Top-1 and Top-5 test errors on the ImageNet-1K
dataset. We select 102 CNNs from 25 recent publications with small
parameter sizes suitable for mobile devices: BagNet, BN-Inception,
DenseNet, DiracNetV2, DLA, EfficientNet, FBNet, FD-MobileNet,
Ghost-Net, HarDNet, HRNet, MnasNet, MobileNet, MobileNetV2,
MobileNetV3, PeleeNet, PreResNet, ProxylessNAS, RegNet, ResNet,
ResNeXt, SE-(Pre)ResNet, SPNASNet, Squeeze(Res)Net, VoVNet.

For ViTs, we utilize the implementations from HuggingFace [21]
and select all available NAs, including 69 ViTs from 18 recent
publications: BEiT, CvT, DeiT, DINOV2, EfficientFormer, Focal-
Net, LeViT, MobileViT, MobileViTV2, PoolFormer, PVT, SegFormer,
SwiftFormer, Swin, SwinV2, VAN, ViT, ViTMSN. The repository
offers PyTorch implementations for all the ViTs, but TensorFlow
implementations are available for only 29 out of the 69 ViTs.

Fig. 1 depicts the FLOPs and model sizes for these NAs; as can be
seen, ViTs tend to exhibit higher FLOPs and larger model sizes as
compared to CNNs, which motivates the recent research trend in
developing efficient ViTs for resource-constrained mobile platforms.

3.1.2 Synthetic. Training of an accurate latency predictor requires
a broad coverage of block configurations; this is lacking in the real-
world CNNs and existing benchmarks [5]. To this end, our dataset
also contains synthetic CNNs, which is used in our earlier work [13]
to train accurate latency predictors. This synthetic dataset contains
vast configurations of typical CNN building blocks adopted in NAS;
specifically, each NA contains a sequence of 9 blocks with output
channels {𝐶1, ...𝐶9} followed by a 1x1 convolution layer with output
channel𝐶10; blocks {1, 3, 5, 7} perform downsampling to reduce the
input height and width by half. The type and parameters of each
building block are sampled uniformly at random from:
(1) A convolution layer (with 3x3, 5x5 or 7x7 kernel, and optional

group size 4𝑘 , with 1 ≤ 𝑘 ≤ 16).
(2) Depthwise separable convolution (with 3x3, 5x5 or 7x7 kernel).
(3) Linear bottleneck (with 3x3, 5x5 or 7x7 kernel, expansion rate

1, 3 or 6, and optionally using Squeeze-and-Excite).
(4) Average or max pooling layer (with 1x1 or 3x3 window).
(5) A split layer (with 2, 3, or 4 splits), followed by element-wise op-

erations performed on each output tensor, and a concatenation
layer that merges all output tensors.

Considering the limited computing resources on mobile devices, we
place the following (additional) constraints on uniformly sampling
the output channel sizes of these building blocks: {𝐶1, ...𝐶5} ∈
[8, 80], {𝐶6, ...𝐶9} ∈ [80, 400], and 𝐶10 ∈ [1200, 1800]. Based on
this design, our search space can potentially cover over 2 × 107
possible convolution configurations, the dominant operations in
CNNs. In our dataset, we sample 1000 synthetic NAs with 6608

configurations of convolution operations. Fig. 1a illustrates that
the ranges of FLOPs and model sizes of these synthetic NAs (green
dots) are consistent with real-world CNNs (blue triangles).

We note that, at this time, construction of a comprehensive
search space of ViTs is challenging, because novel designs of ViTs
are being rapidly proposed in current literature and many of these
are not supported on mobile devices. Thus synthetic NAs for ViTs
are currently not included in our dataset.

3.2 ML Framework Optimizations
In this section, we focus on the various optimizations applied by
ML frameworks in the process of model deployment.

3.2.1 TFLite. In TFLite, a .tflite model is used across diverse hard-
ware platforms by utilizing different delegates. At inference time,
a range of optimizations, such as kernel fusion and specialized
algorithm selection, are performed within each delegate; such im-
plementation enables hardware-specific optimizations based on
the capability of each accelerator. Quantization is a technique that
converts weights and activations into low-precision representa-
tions, commonly used to reduce the model size and computational
cost on mobile platforms. To make use of quantization, TensorFlow
provides APIs, such as post-training quantization, to convert a 32-
bit floating-point model into 8-bit integer representation before
generating quantized .tflite models.

3.2.2 PyTorchMobile. In PyTorchMobile, amodel in torch.nn.Module
needs to be encoded as TorchScript IRs and then converted to
backend-specific IRs with operations supported on the backend.
During the conversion, a set of optimizations, such as operation
fusion and folding of prepacked operations, are conducted to accel-
erate the inference. However, these IR-based optimizations occur
during model generation phase, which lacks hardware informa-
tion about the target device, as compared to TFLite. PyTorch also
supports post-training static quantization, which, compared to Ten-
sorFlow, requires a sequence of manual modifications to the model
source, such as substituting the implementations of certain opera-
tors with their quantized version, converting input tensors through
(De)QuantStub, and specifying the structure for operation fusion.

Due to the limited support for various operations on PyTorch
Mobile, some NAs cannot be converted into corresponding quan-
tized versions (e.g., lack of quantization support for roll operation
in Swin [14]) or deployed on mobile GPUs (e.g., failure of as_strided
operation). We note that, in the current version of PyTorch (v2.1.2),
52 real-world ViTs are supported for quantization out of the 69
available on HuggingFace; however, execution on mobile GPUs is
not supported. Thus, our dataset includes measurements on CPUs
for (1) 69 real-world ViTs and (2) 52 supported quantized ViTs.

3.3 Hardware Configuration
In this section, we illustrate how to properly configure hardware
in order to obtain consistent latency measurements. To collect
measurements on a given set of CPU cores, we set the CPU affinity
of the spawn computing threads to encourage their scheduling
on these cores. Specifically, for Android devices, we use taskset
command to launch the benchmark processor with the given CPU
affinity; for iOS devices, we update the quality-of-service (QoS) class

33



EdgeSys ’24, April 22, 2024, Athens, Greece Li, et al.

for both the main thread and newly spawn threads to direct their
scheduling on either performance or efficiency cores.

Additionally, in order to acquire stable measurements over time,
we enforce the maximal CPU and GPU frequencies for Android
devices and adjust theGPU Performance State to high for iOS devices
through Xcode [3]. Moreover, to mitigate the impact of thermal
throttling, we attach a physical cooling fan to the back of each
device to lower the temperature during data collection.

3.4 ML Framework Instrumentation
In this section, we describe our approach to instrumenting ML
frameworks to collect operation-wise latency.

3.4.1 TFLite. We use the TFLite Model Benchmark Tool [7] in Ten-
sorFlow v2.15.0 to benchmark the inference latency of NAs. We
adopt original CPU kernels implemented in TFLite for inference
on mobile CPUs. For mobile GPUs, we enable 16-bit floating-point
data representation to enhance performance. Since the benchmark
tool supports latency measurements of operations only on mobile
CPUs, we record start/stop timestamps of GPU kernels by collecting
profiling information at both the OpenCL command queue in the
GPU delegate for Android platforms and Metal command buffer in
the Metal Delegate for iOS platforms. To reduce the overhead of
timestamp recording, we dispatch the same kernel multiple times
(e.g., 256) and record the average for that kernel. We also record
the specific OpenCL kernel implementation selected by TFLite for
each operation, e.g., whether convolution is executed using generic
implementations or Winograd kernels (which give substantial ac-
celeration when applicable [13]).

3.4.2 PyTorch Mobile. We also profile the latency of each architec-
ture based on the speed_benchmark_torch script in PyTorch v2.0.0.
For experiments on multi-core CPUs, we leverage the pthreadpool
API, which allocates threads for CPU computation, to limit the
thread counts to match the number of CPU cores. For Android
GPUs, we enable 16-bit floating-point inference on Vulkan backend,
aligned with our setup in TFLite GPU Delegate; to profile Vulkan
kernels, we utilize the built-in GPU event collector in PyTorch by
enabling the USE_VULKAN_GPU_DIAGNOSTICS macro. To pro-
file Metal kernels for iOS GPUs, we follow the implementation in
TFLite to dispatch each kernel multiple times and measure the GPU
execution time through Metal command buffers.

We also made changes to the QNNPACK backend in PyTorch
Mobile, addressing a performance issue in depthwise convolutions
with kernel size 7x7. PyTorch Mobile implements a caching al-
locator for CPU memory [18], which keeps track of previously
allocated memory blocks by mapping each block size to its most
recent memory address. However, the current implementation can
incur performance penalties when an inference task includes multi-
ple weight tensors of the same size – this may reuse memory blocks
during an inference task but requires repeated block initialization
in subsequent inference tasks. While for other depthwise kernels
weight initialization is negligible, it results in substantial cost for
depthwise convolutions with kernel size 7x7. A number of different
strategies are possible to resolve this performance issue: e.g., re-
quests to the allocator could provide not only the size of a memory
block but also its most recent address (which can be stored in the

0 1 2 3 4 5 6 7
GFLOPS

0

100

200

300

400

500

Pi
xe

l4
 C

PU
 (m

s) Linear Regression

(a) TFLite, CPU

0 1 2 3 4 5 6 7
GFLOPS

0

100

200

300

400

Pi
xe

l4
 C

PU
 (m

s) Linear Regression

(b) PyTorch, CPU

0 1 2 3 4 5 6 7
GFLOPS

0

100

200

300

400

500

iP
ho

ne
XS

 C
PU

 (m
s) Linear Regression

(c) TFLite, CPU (iOS)

0 1 2 3 4 5 6 7
GFLOPS

0

50

100

150

200

iP
ho

ne
XS

 C
PU

 (m
s) Linear Regression

(d) PyTorch, CPU (iOS)

0 1 2 3 4 5 6 7
GFLOPS

0

10

20

30

40

Pi
xe

l4
 G

PU
 (m

s) Linear Regression

(e) TFLite, GPU

0 1 2 3 4 5 6 7
GFLOPS

0

50

100

150

200

Pi
xe

l4
 G

PU
 (m

s) Linear Regression

(f) PyTorch, GPU

Figure 2: FLOPs and End-to-end Latency

NA metadata). Since this problem can be easily fixed, we opted to
include measurements that correspond to a fixed version of the
system; specifically, we simply skipped repeated initialization of
kernel weights as this gives us appropriate latency measurements,
without substantial modifications to PyTorch Mobile.

4 DATA ANALYSIS
In this section, we analyze both end-to-end (Section 4.1) and operation-
wise (Section 4.2) latency of NAs in our dataset.

4.1 End-to-end Latency
Fig. 2 presents the FLOPs and end-to-end latency for each synthetic
NA, where latency shows a positive correlation with FLOPs but in
a non-linear relationship: e.g., in all figures except Fig. 2e, the NAs
with around 2 GFLOPs exhibit a large latency range. In addition, we
fit linear regression model 𝑓 ∗ to predict latency 𝑦𝑖 based on FLOPs
𝑥𝑖 of each NA (denoted by the red dashed line) and evaluate the
mean absolute percentage error (MAPE): 1

𝑁

∑𝑁
𝑖=1 | (𝑓 ∗ (𝑥𝑖 ) − 𝑦𝑖 )/𝑦𝑖 |.

We observe substantial MAPEs across hardware platforms and ML
frameworks: for example, on Pixel 4 CPU, the MAPEs are 28.9%
for TFLite (Fig. 2a) and 39.9% for PyTorch Mobile (Fig. 2b); on
iPhone XS CPU, the MAPEs are 43.1% for TFLite (Fig. 2c) and 30.1%
for PyTorch Mobile (Fig. 2f). In comparison, our earlier work [13]
achieves MAPEs of 2.4% for CPUs and 5.2% for GPU for these
synthetic NAs. We also notice that the MAPEs for TFLite GPUs are
lower (e.g., 12.5% in Fig. 2e); the smaller scale of the y axis in this
figure indicates that this stronger linearity is attributed to the highly
optimized implementations of TFLite GPU Delegate which reduces
the memory access cost across various hardware and effectively
leverages the computing capacity of mobile GPUs.
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Figure 3: Latency Comparisons across Different Scenarios

Consistently with observations in recent studies [15, 22], FLOPs
do not serve as an accurate proxy metric for evaluating efficiency of
NAs. In fact, latency is affected by both hardware specifications and
the underlying ML frameworks: for example, DRAM bandwidth
as well as cache hierarchy can impact the cost of memory access;
ML frameworks can leverage accelerated algorithms for kernel
implementations (e.g., Winograd algorithm for convolution) based
on hardware specifications. FLOPs measurements alone do not
capture the effects of these factors.

We also compare latency across the experimental environments
in our dataset to justify the necessity of measurements over a broad
range of settings. The latency comparisons in Figs. 3a to 3c illustrate
that the increase in CPU time does not consistently align with the
increase in GPU time, regardless of ML frameworks or mobile plat-
forms; consequently, linear regression (indicated by a red dash line)
leads to high MAPE values in all cases: 30.8% for TFLite (Fig. 3a),
28.7% for iOS (Fig. 3b), and 48.1% for PyTorch Mobile (Fig. 3c). In
addition, Figs. 3d to 3f compare the latency between (1) one small
core and three small cores, (2) floating-point and integer represen-
tations, and (3) TFLite and PyTorch Mobile frameworks. In none
of these cases is strong linearity observed and linear regression re-
veals high MAPEs in these comparisons: 40.0% for different number
of cores, 29.0% between data representations, and 47.5% over ML
frameworks. The distinct performance characteristics across these
experimental environments highlight the importance of compre-
hensive evaluations in constructing our dataset.

4.2 Operation-wise Latency
An important component in our dataset is profiling of latency for
each operation in NAs, leading to insight such as bottleneck opera-
tions, as illustrated in this section.
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Figure 4: Real-world NAs Latency Breakdown (Pixel 4 CPU)
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Figure 5: Comparison of FLOPs and Latency for Transformers

4.2.1 Latency Breakdown. Figs. 4a and 4b depict the latency break-
down over multiple types of operations for 102 real-world CNNs
in TFLite and PyTorch Mobile, respectively. As can be seen, con-
volution operations account for most of the end-to-end latency
(i.e., a median of 91.2% on TFLite and 96.3% on PyTorch Mobile).
In contrast, as depicted in Figs. 4c and 4d for ViTs, linear opera-
tions contribute significantly to the end-to-end latency, because
the basic blocks (multi-head self-attention [19]) in transformers
mainly consist of linear operations, while most linear operations in
CNNs are fully-connected layers that produce final output classi-
fication. Notably, for ViTs, GELU activations occupy a significant
amount of time in both frameworks (e.g., 42.4% for EfficientFormer-
L1 in TFLite with float32 representation), and layer normalization
takes considerable time for integer representations (e.g., 37.2% for
Swin-Tiny in TFLite with int8 representation); both operations are
typically overlooked when using FLOPs measurements, resulting in
FLOPs being an inaccurate efficiency proxy. Figs. 5a and 5b further
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Figure 6: Coefficients of Operation Features

compare the percentages of FLOPs and latency for linear operations
in TFLite and convolution operations in PyTorch, respectively. As
can be seen, NAs with a significant portion of FLOPs attributed to
these layers spend disproportionate amount of time on these layers;
in both figures, the points at the upper-middle positions correspond
to nearly all FLOPs but contribute to only 60% of end-to-end la-
tency. This observationmotivates ViT researchers to measure actual
latency rather than FLOPs in evaluations of model efficiency [16].

Quantization can also affect latency distribution across opera-
tions, since there is non-uniform speedup among operations due to
quantization; for example, after quantization in TFLite, normaliza-
tion operations consume a larger portion of the end-to-end latency
as shown in Fig. 4c.

4.2.2 Effects of Operation Features. In this section, we analyze the
effects of multiple features on latency. Specifically, we fit a linear
regression model between various configurations of convolution
and latency; we enforce positive coefficients in the linear model
and utilize the magnitude of each coefficient to assess the positive
contribution to latency for the corresponding feature. Fig. 6 de-
picts coefficients of features for convolution operations in TFLite
derived from linear regression. As can be seen, FLOPs is the single
most critical feature affecting latency of convolution and depth-
wise convolution. However, as previously noted, FLOPs alone do
not serve as an accurate proxy for latency. There are also features
that affect memory access cost, such as kernel size for convolution
(37.8% of FLOPs’ coefficient on GPU) and input size for depthwise
convolution (38.8% of FLOPs’ coefficient on GPU).

5 CONCLUSIONS AND FUTURE DIRECTIONS
We constructed a dataset of inference latency measurements across
174 diverse experimental environments, exhibiting diversity in hard-
ware, data representation, and ML frameworks. We discussed gener-
ation, deployment and benchmarking of NAs in our dataset, arguing
for use of latency measurements on mobile devices over FLOPs. We
analyzed performance characteristics of end-to-end and operation-
wise latency of NAs across diverse experimental environments,
offering valuable insights for NA design and runtime implemen-
tation. Future directions include development of synthetic ViTs
in our dataset (once ML frameworks provide needed support for
their operations) and exploring energy consumption of inference,
another important metric for mobile platforms.
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