
Inference Latency Prediction for CNNs

on Heterogeneous Mobile Devices and ML Frameworks

Zhuojin Li
a
, Marco Paolieri

a
, Leana Golubchik

a

aUniversity of Southern California, Los Angeles, CA, 90089, USA

Abstract

Due to the proliferation of inference tasks on mobile devices, state-of-the-art neural architectures are typically de-

signed using Neural Architecture Search (NAS) to achieve good tradeoffs between machine learning accuracy and

inference latency. While measuring inference latency of a huge set of candidate architectures during NAS is not

feasible, latency prediction for mobile devices is challenging, because of hardware heterogeneity, optimizations ap-

plied by machine learning frameworks, and diversity of neural architectures. Motivated by these challenges, we

first quantitatively assess the characteristics of neural architectures (specifically, convolutional neural networks

for image classification), ML frameworks, and mobile devices that have significant effects on inference latency.

Based on this assessment, we propose an operation-wise framework which addresses these challenges by develop-

ing operation-wise latency predictors and achieves high accuracy in end-to-end latency predictions, as shown by

our comprehensive evaluations on multiple mobile devices using multicore CPUs and GPUs. To illustrate that our

approach does not require expensive data collection, we also show that accurate predictions can be achieved on

real-world neural architectures using only small amounts of profiling data.

Keywords: Convolutional Neural Networks, NAS, Latency, Prediction, Mobile, GPU, CPU

1. Introduction

Due to significant breakthroughs in machine learning (ML), inference tasks using neural networks are being

deployed to a growing number of mobile devices (e.g., smartphones, smartwatches, tablets), largely for computer

vision and natural language tasks. In comparison with powerful cloud servers, mobile devices have limited resources,

which restricts the choice of neural architectures (NAs).

To achieve good tradeoffs between machine learning accuracy and hardware efficiency, state-of-the-art NAs

[1, 2, 3] are typically designed through Neural Architecture Search (NAS) [4]. Recent work [5, 6, 7] proposes zero-

shot NAS, which substantially reduces the search cost by utilizing proxy metrics to estimate the ML accuracy of each

candidate NA without training. Consequently, the bottleneck of zero-shot NAS becomes latency measurement; for

example, the evaluation of accuracy proxy metric in [5] takes less than a second for each candidate NA, while de-

ploying and compiling each NA on a device for latency measurement typically requires a few minutes. In addition,

NAs exhibit distinct performance characteristics across hardware platforms [8], and it is time-consuming to repeat

the measurements on all platforms during NAS. As an alternative to measurements, existing approaches for evalu-

ating the efficiency of NAs can be categorized as those using (1) proxy metrics [3, 9] (e.g., FLOPs), which are usually

platform-independent and cannot accurately reflect the actual performance due to the diversity of platforms [10, 8];

(2) look-up tables [11, 12, 13] of measurements collected for the building blocks of NAs, which require extensive

profiling on each platform and cannot cover every possible block configuration; (3) prediction models, which can

predict the performance of any block configuration in the search space, broadly relying on machine learning tech-

niques [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], but also including analytical performance models (e.g., accounting

for computations [25] and memory access traffic of GEMM-based convolution [26, 27]). However, building accurate

prediction models for efficiency metrics on mobile devices is difficult due to the following challenges (where we also

highlight related work).

(1) Hardware heterogeneity: Existing prediction models mainly focus on Nvidia cloud GPUs [14, 17, 18, 19, 20]

or Nvidia embedded GPUs [23, 24]; instead, the heterogeneity of CPUs and GPUs on mobile devices makes the

Preprint submitted to Performance Evaluation July 24, 2024

performance predictions more difficult. In particular, inference tasks are frequently performed on mobile devices

using CPUs [28], due to the support of a broader set of available operations (e.g., Channel Shuffle [29] is currently

unavailable on the TensorFlow Lite (TFLite) [30] GPU Delegate [31]; batch normalization is not implemented as

Metal kernel for iOS GPUs in PyTorch Mobile [32]). Modern mobile CPUs typically use the ARM big.LITTLE ar-

chitecture, which consists of heterogeneous core clusters, e.g., high-performance cores and high-efficiency cores

[33]; when an inference task takes advantage of this multicore architecture, the schedule of threads on different

cores has a significant impact on performance (Section 3.1.1). In addition, multicore speedups on a given device can

vary for different NAs; for instance, MobileNet (with width multiplier of 0.75) and ResNet18 (with width scale of

0.25) achieve comparable inference latency (28.4 ms and 28.1 ms, respectively) on Pixel 4 with one medium core, but

differ by 24.6% with three medium cores (11.8 ms and 14.7 ms, respectively) on TFLite. Therefore, it is necessary

to evaluate prediction approaches using heterogeneous hardware resources, in particular over multiple CPU cores;

this is not taken into consideration by existing work on latency prediction for mobile CPUs [15, 21, 22].

(2) ML framework optimizations: Modern ML frameworks introduce optimizations that can significantly accel-

erate inference tasks. For example, operator fusion [34] reduces overhead in the invocation of kernels on GPUs:

our tests show that kernel fusion can result in up to 22% and 48% performance improvements over 102 real-world

NAs on TFLite and PyTorch Mobile, respectively (Section 3.2.1). Similarly, the choice of algorithms for implement-

ing each operation can considerably affect inference performance: for example, TFLite uses the faster Winograd

[35] algorithm for some (but not all) convolution layers on GPUs; PyTorch Mobile implements five types of kernels

for convolution layers of different configurations on GPUs (Section 3.2.2). Existing work on latency estimation for

GPUs [24, 23, 18, 20, 15] does not consider such optimizations (which are specific to ML frameworks); instead, current

literature predicts inference latency only from the features of NAs and hardware platforms.

(3) Neural architecture diversity: During the exploration of the search space by NAS algorithms, the properties of

NAs (e.g., the number of operations and their latency) can vary considerably; in addition, novel neural architectures

are proposed by manual design [1, 10, 29], prompting the definition of new NAS search spaces. Existing ML-based
performance prediction models use training and test datasets with very similar NAs [14, 24, 36], or with a small set of
popular NAs [37, 18, 19]; in contrast, practical applicability to NAS requires accuracy on a large set of diverse NAs.

Motivated by these challenges, we first quantitatively assess characteristics of neural architectures, ML frame-

works, and mobile devices affecting inference latency; then, we use our findings to develop a framework to predict

end-to-end inference latency on mobile CPUs and GPUs by estimating the latency of NA components through ma-

chine learning models. In so doing, we address several shortcomings of related work: (i) we develop a training

dataset of convolutional neural networks for image classification that is more representative of real-world NAs, by

including a broader set of NA blocks than current literature [38]; (ii) we measure and predict latency on different
combinations of heterogeneous CPU cores and different data representations (i.e., floating-point or integer quantiza-

tion [39]) over two ML frameworks, while related work [21, 22] uses only a single CPU core (unrealistic in practice)

and floating-point calculations for a given ML framework. Notably, our solution explicitly accounts for optimiza-

tions applied by ML frameworks on each NA; in contrast, previous work nn-Meter [22] uses black-box models to

estimate the effects of ML framework optimizations (and is limited to a single core for CPUs).

In this paper, we significantly extend our preliminary work [40] (which only considers TFLite) by collecting

inference measurements and applying our prediction approach to PyTorch Mobile (for all NAs and on all mobile

platforms, effectively doubling our experimental evaluation from 90 to 174 scenarios). The comparison of perfor-

mance characteristics between different ML frameworks highlights not only the impact, but also the heterogeneity of

ML framework optimizations. For example, many operations (including addition, mean, pooling) obtain significant

speedups from multithreading execution in PyTorch Mobile, but no benefits in TFLite (Section 3.1.1); in contrast,

model quantization can result in performance degradation on PyTorch (using large and medium cores on Snap-

dragon 855), instead of the speedups observed in TFLite (Section 3.1.2). These differences are due to the different

implementations and optimization strategies of TFLite and PyTorch Mobile; to obtain accurate predictions, we ana-

lyze and model the optimizations applied by each ML framework. Specifically, the main contributions of our work

are as follows.

• By collecting measurements for 102 state-of-the-art NAs (from 25 articles) on 6 mainstream mobile platforms

using 2 ML frameworks (TFLite and PyTorch Mobile), and based on quantitative evidence, we identify aspects

of hardware and ML frameworks that substantially affect the latency of inference tasks on mobile devices. For

2

mobile CPUs, we expose performance characteristics under various settings, including multithreading over ARM

heterogeneous core clusters and quantization with lower-bit representations (Section 3.1). For mobile GPUs, we

analyze two types of optimization strategies in ML frameworks: kernel fusion and kernel selection (Section 3.2).

As a representative example, we present the principles of both strategies in TFLite and PyTorch Mobile, and

empirically evaluate resulting speedups to highlight their impact on inference latency.

• Based on the results of our performance study, we develop a framework for estimating end-to-end inference

latency on mobile devices by combining accurate latency predictions of individual NA components (Section 4.2). In

contrast with complex ML models predicting end-to-end latency by encoding the configurations of all operations

as a single feature vector [14, 17, 16], latency predictors for NA components require less training data and are easier

to interpret. To address hardware heterogeneity, we profile execution times of NAs using different sets of CPU

cores and different data representations, and we train ML models to predict performance for each combination.
1

For ML framework optimizations, we precisely deduce the selected GPU kernels without deploying and compiling
the target NA on the actual hardware (Section 4.1). After collecting one-time training data on each device, we apply

ML models to accurately predict the latency of inference tasks under various settings of mobile CPUs and GPUs,

which can be used by existing NAS techniques without access to the actual hardware.

• Since the existing benchmark dataset NATSBench [38] (studied in [14, 22]) lacks depthwise convolution operations

and exhibits limited diversity of operation configurations (see Section 5.6.2 for quantitative analysis), we build a

synthetic dataset of 1000 NAs sampled from a NAS space covering a majority of configurations for common oper-

ations and building blocks (Section 4.3). For each NA, we comprehensively measure latency under 174 scenarios

across 6 mainstream mobile platforms, including multicore combinations and use of integer quantization on both

TFLite and PyTorch Mobile. In addition to accurate latency prediction, this dataset provides insight (i) to NA de-

velopers on how to build efficient NAs and (ii) to mobile developers on how to choose effective optimizations on

different ML frameworks.

• To evaluate how our approach addresses the aforementioned challenges, in addition to the default setting of

NAS (Section 5.1), we show that our approach also achieves accurate predictions under hardware heterogeneity

(Section 5.2), neural architecture diversity (Section 5.3), and ML framework optimizations (Section 5.4). To address

concerns regarding the cost of training data collection [21], we evaluate prediction accuracy with limited amounts

of training data, using multiple ML methods (Section 5.5). Our results highlight that, when trained with latency

measurements for a sufficient number of NAs (e.g., 1000 synthetic NAs), powerful ML methods (e.g., GBDT [41])

achieve very accurate predictions for NAs with similar characteristics (e.g., average errors 2.4% and 5.2% on CPUs

and GPUs for TFLite; 2.6% and 4.8% on CPUs and GPUs for PyTorch Mobile); when training and testing data have

different characteristics (e.g., training on synthetic NAs and testing on real-world NAs), simple linear models (e.g.,

Lasso [42]) are robust and still accurate (e.g., average errors of 5.4% and 8.0% on CPUs and GPUs for TFLite; 10.4%

and 8.2% on CPUs and GPUs for PyTorch Mobile). When training data is very limited (e.g., 30 synthetic NAs),

accuracy is lower (e.g., with GBDT, average errors of 8.1% and 8.6% on CPUs and GPUs for TFLite; 6.2% and 8.8%

on CPUs and GPUs for PyTorch Mobile) but sufficient for NAS, while profiling time for a target device is negligible

compared to deploying and measuring latency of thousands of candidate NAs, as noted in [21].

2. Background

2.1. Convolutional Neural Architectures for Image Classification
Convolutional Neural Networks (CNNs) play an important role in computer vision tasks. These models process

an input image (e.g., 224x224 pixels and 3 channels) using a sequence of convolutional layers. Each layer uses a set of

filters (e.g., moving windows of 3x3 pixels) that are applied at each image location (e.g., using a dot product across all

input channels, followed by an element-wise activation function) to detect higher level features (e.g., shapes, colors,

and textures); the outputs of these filters are collected into output channels (also known as feature maps), which are

1
As in existing literature [14, 22] on mobile devices, we collect data and train models for each setting instead of constructing one model to

predict inference latency across all devices (e.g., [18] for cloud GPUs) due to the heterogeneity of mobile platforms.

3

CPU Delegate

GPU Delegate

Compile

Neural Architecture

Data

Mobile DeveloperNeural Architecture

Researcher

Model File

Accuracy, FLOPs
Memory, latency

(Assembly)

(Kernels)

Server Mobile

Training 0 1

1 0

Compiled Model

Quantization
(Multi-core)

Figure 1: Lifecycle of Neural Architecture Development and Deployment on Mobile Devices

then provided as input to the next layer. Pooling layers are used to replace feature map values in a moving window

(e.g., 3x3 pixels) with their maximum or mean, thus reducing the resolution of the map for efficiency. At the end of

the CNN, fully connected layers are frequently used to obtain confidence scores of output classes as weighted sums

of features extracted by previous layers.

CNNs are usually deep, to be able to learn complex and hierarchical features: earlier layers extract low-level

local details (e.g., edges), while later layers capture high-level features as a combination of low-level ones (e.g., a

specific shape). However, deeper CNNs are computationally expensive; in order to reduce complexity, depthwise
convolutions [43] have been proposed to perform separate convolutions for each input channel, instead of using

values from all input channels. Grouped convolutions are a variant where input channels are split into groups, each

processed by a different set of filters. Feature maps calculated using different filters can also be concatenated or

combined using element-wise addition. To improve efficiency, a sequence of operations (e.g., a convolutional filter

and the following ReLU activation) can be combined as a single operation if a more efficient implementation is

available (e.g., in kernel fusion of GPU operations).

The weights of the filters computing and combining feature maps are trained from a dataset of input/output

examples; after training, CNNs are deployed to cloud servers or mobile devices for inference tasks, i.e., classification

of new input images. When CNNs are deployed to mobile devices, memory and computation required for inference

tasks are particularly critical, due to their limited resources and to responsiveness requirements for many appli-

cations (e.g., augmented reality or real-time user interaction). For this reason, we investigate methods to predict

end-to-end latency of a given NA, i.e., the total time required to execute the operations of all layers, to obtain an

input classification from an input example. Notably, inference latency does not depend on the input values or model

weights, but on the input shape and the model architecture; this makes our prediction method useful for NAS.

2.2. Development and Deployment of Neural Architectures
As illustrated in Fig. 1, the lifecycle of neural architecture development and deployment on mobile devices con-

sists of (1) designing and training a neural network on cloud servers, and (2) deploying the model on a target mobile

device where inference tasks are performed on CPU cores or GPU.

State-of-the-art neural architectures are developed by both manual design [44, 43, 10] and NAS [45, 1, 2, 3].

Due to scarce computing and memory resources, NAs intended for inference tasks on mobile devices are designed

not only to maximize prediction accuracy, but also to satisfy performance constraints on end-to-end latency and

memory consumption. To achieve these goals, model quantization [46, 39] is frequently applied: instead of floating-

point values, fixed-width integers are used to represent model parameters and to perform computations with low

precision, reducing memory requirements and computation times (as shown in Section 3.1.2).

After training on cloud servers, the identified neural architecture is stored as a model file, which can be dis-

tributed to heterogeneous mobile platforms for inference tasks. For instance, in TFLite, a neural architecture is

described as a computational graph, where each node represents an operation and each edge represents the flow

of intermediate results between operations; the complete computational graph is included in the .tflite model

file; in PyTorch, the model is serialized and optimized as a TorchScript program, which contains the information of

control and data flow during inference.

4

Device Platform CPU Cores GPU

Google Pixel 4 Snapdragon 855 1x Large (2.84 GHz), 3x Medium (2.32 GHz), 4x Small (1.80 GHz) Adreno 640

Xiaomi Mi 8 SE Snapdragon 710 2x Large (2.20 GHz), 6x Small (1.70 GHz) Adreno 616

Samsung Galaxy S10 Exynos 9820 2x Large (2.73 GHz), 2x Medium (2.31 GHz), 4x Small (1.95 GHz) Mali G76

Samsung Galaxy A03s Helio P35 4x Large (2.30 GHz), 4x Small (1.80 GHz) PowerVR GE8320

Apple iPhone XS A12 Bionic 2x Large (2.49 GHz), 4x Small (1.52 GHz) Apple-designed G11P

Apple iPhone 7 A10 Fusion 2x Large (2.34 GHz), 2x Small (1.05 GHz) PowerVR GT7600 Plus

Table 1: Mobile Platforms in Our Study

A mobile device can be equipped with multiple hardware accelerators for inference tasks (e.g., CPU, GPU, DSP,

and Edge TPU are available on Pixel 4). To be executed on specific hardware, the model is “compiled” as a sequence of

CPU operations and GPU kernels. Notably, different ML frameworks provide distinct implementations; for instance,

the GPU kernels on Android are implemented in OpenCL for TFLite, while in Vulkan for PyTorch Mobile. Within

a framework, the same operation can be executed using different algorithms on different devices; for example,

the TFLite GPU Delegate can select different kernels for convolution operations on Adreno GPUs vs. Mali GPUs

(Section 3.2.2). In addition, several consecutive operations/kernels can be “fused” into one to reduce the dispatching

overhead (Section 3.2.1). Eventually, a compiled model is executed on the target hardware: on GPUs, kernels are

dispatched to a command queue for execution; on CPUs, operations are executed sequentially, while multithreading

is used only to accelerate the execution of individual operations using multiple cores (Section 3.1.1).

3. Inference on Mobile Devices

In this section, we present the results of our empirical study on the performance of real-world neural architec-

tures on mobile platforms; in particular, we analyze thread scheduling and model quantization in multicore mobile

CPUs (Section 3.1), and kernel fusion and selection in mobile GPUs (Section 3.2), evaluating their impact on inference

latency. The insight gained from our results will be used in Section 4 to develop a latency prediction framework.

3.1. Mobile CPUs
3.1.1. Effects of Multithreading

Modern mobile platforms typically adopt the ARM big.LITTLE architecture, which allows multiple types of CPU

cores to be integrated into the same system; each group of homogeneous cores is operated as a “core cluster” running

at the same clock speed. The “big cores” with higher clock speeds can handle computationally intensive tasks, while

the “LITTLE cores” with lower clock speeds require less power. High-priority tasks are usually scheduled on big

cores for better performance; non-urgent tasks are assigned to little cores to reduce energy consumption. Table 1

lists the core clusters of the mobile platforms in our study.
2

An inference task can be accelerated with multithreading over multiple cores. For Android devices, given a

set of CPU cores, we use an equal number of threads and set the CPU affinity of these threads to encourage their

scheduling on the cores; for iOS devices, we specify the quality-of-service (QoS) class [47] of each thread to schedule

on performance or efficiency cores. Considering the limited resources available on mobile devices, we select 102

real-world convolutional neural networks for image classification with up to 18 million parameters from 25 articles

(with manual design or NAS) [48, 49, 50, 51, 52, 3, 13, 53, 54, 55, 56, 2, 43, 45, 1, 57, 58, 15, 59, 44, 60, 61, 62, 63, 64]. The

TensorFlow and PyTorch implementations of these NAs are from [65], which also provides pre-trained parameters

and Top-1/Top-5 test errors on the ImageNet-1K dataset. Similarly to related work, we observe in our experiments

that inference latency depends on the shape of the input data but not on input values; therefore, we use a random

224x224 image (as in the ImageNet-1K dataset) for measurements of end-to-end inference latency.

2
Since the architectures of Snapdragon 710 and A10 are similar to Snapdragon 855 and A12, respectively, we report their measurements in

Appendix A. The evaluation of our prediction method on Helio P35 and A10 Fusion using the GPU backend of PyTorch Mobile are not included

in the paper due to their insufficient memory for the backend.

5

1S 2S 3S 4S 1M 2M 3M 1L 1L1M1L1S1M1S
Cores

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

La
te

nc
y

(s
)

(a) Snapdragon 855 (TFLite)

1S 2S 3S 4S 1M 2M 1L 2L 1L1S 2L1S 2L2S
Cores

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

(b) Exynos 9820 (TFLite)

1S 2S 3S 4S 1L 2L 3L 4L 1L1S 2L1S
Cores

0.0
0.2
0.5
0.8
1.0
1.2
1.5
1.8

(c) Helio P35 (TFLite)

1S 2S 3S 4S 1L 2L
Cores

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(d) A12 Bionic (TFLite)

1S 2S 3S 4S 1M 2M 3M 1L 1L1M1L1S1M1S
Cores

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

La
te

nc
y

(s
)

(e) Snapdragon 855 (PyTorch)

1S 2S 3S 4S 1M 2M 1L 2L 1L1S 2L1S 2L2S
Cores

0.0
0.2
0.5
0.8
1.0
1.2
1.5
1.8
2.0

(f) Exynos 9820 (PyTorch)

1S 2S 3S 4S 1L 2L 3L 4L 1L1S 2L1S
Cores

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

(g) Helio P35 (PyTorch)

1S 2S 3S 4S 1L 2L
Cores

0.0
0.1
0.2
0.3
0.4
0.5
0.6

(h) A12 Bionic (PyTorch)

Figure 2: Effects of Multicore on End-to-end Latency (L, M, S represent Large, Medium, Small cores, respectively)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0.5
1.0
1.5
2.0
2.5

Sp
ee

du
p 2 Med

3 Med

(a) Snapdragon 855 (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0.8
1.0
1.2
1.4
1.6
1.8
2.0

2 Med

(b) Exynos 9820 (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

1.0
1.5
2.0
2.5 2 Large

3 Large

(c) Helio P35 (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

1.0
1.5
2.0
2.5
3.0 2 Small

3 Small

(d) A12 Bionic (TFLite)

Conv DW-
Conv

FC Mean Pool Concat/
Split

Add/
Mul

Operations

1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p 2 Med

3 Med

(e) Snapdragon 855 (PyTorch)

Conv DW-
Conv

FC Mean Pool Concat/
Split

Add/
Mul

Operations

0.8
1.0
1.2
1.4
1.6
1.8
2.0

2 Med

(f) Exynos 9820 (PyTorch)

Conv DW-
Conv

FC Mean Pool Concat/
Split

Add/
Mul

Operations

1.0
1.5
2.0
2.5
3.0
3.5

2 Large
3 Large

(g) Helio P35 (PyTorch)

Conv DW-
Conv

FC Mean Pool Concat/
Split

Add/
Mul

Operations

0.5
1.0
1.5
2.0
2.5
3.0

2 Small
3 Small

(h) A12 Bionic (PyTorch)

Figure 3: Effects of Homogeneous Multicore on Operation-wise Latency (Speedup over One Core)

Fig. 2 uses boxplots
3

to depict end-to-end latency of these real-world neural architectures with different multicore

configurations.
4

Counterintuitively, using multiple heterogeneous cores can result in performance degradation: for

example, on Snapdragon 855 (Figs. 2a and 2e), the combination of a medium core and a small core results in worse

performance (on average) than a medium core. As noted in previous work [33], we attribute this performance

degradation to the overhead of inter-cluster communication; also, we observe that the work of an operation is split

equally among threads in modern ML framworks (e.g., TFLite Threadpool [66] with its matrix multiplication library

Ruy [67], and PyTorch Mobile Threadpool [68]), which is suboptimal for heterogeneous cores.
5

In Fig. 2, we observe a sublinear end-to-end speedup with respect to the number of homogeneous cores for

multithreading. That is because, as shown in Fig. 3, convolution, depthwise convolution (DW-Conv) and fully-

connected (FC) operations achieve sublinear speedups on both ML frameworks as the number of threads increases;

the performance improvements of Mean and Pool operations are significant in PyTorch Mobile but negligible in

TFLite, due to the lack of support for parallel execution of these operations in TFLite.

Insight 1. On mobile CPUs, multithreading significantly impacts the performance of inference tasks. On homo-

geneous cores, multithreading leads to sublinear reduction of latency for convolution, depthwise convolution, and

fully-connected operations; however, on heterogeneous cores, multithreading can result in performance degrada-
tion due to the overhead of inter-cluster communication.

3.1.2. Effects of Quantization
On mobile devices with limited power and computing resources, neural architectures can be converted into

lower-precision representations (e.g., 16-bit floating-point or 8-bit integers) to reduce memory utilization and com-

3
In the paper, boxplots indicate 1st quartile, median, and 3rd quartile of the data; whiskers extend for 1.5x the interquartile range.

4
For clarity of presentation, we omit some outliers with substantially higher latency in Fig. 2 (<4% of the data per configuration) and report

the complete data in Fig. A.31 of the Appendix.

5
The work in [33] also proposes solutions to improve the throughput over heterogeneous cores. In our paper, we focus on the performance

characteristics of ML workloads and follow the current implementation of ML frameworks.

6

1S 2S 3S 4S 1M 2M 3M 1L 1L1M
Cores

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p Int8

(a) Snapdragon 855 (TFLite)

1S 2S 3S 4S 1M 2M 1L 2L 1L2M
Cores

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Int8

(b) Exynos 9820 (TFLite)

1S 2S 3S 4S 1L 2L 3L 4L
Cores

1.0
1.5
2.0
2.5
3.0 Int8

(c) Helio P35 (TFLite)

1S 2S 3S 4S 1L 2L
Cores

0.8
1.0
1.2
1.4
1.6 Int8

(d) A12 Bionic (TFLite)

1S 2S 3S 4S 1M 2M 3M 1L 1L1M
Cores

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sp
ee

du
p Int8

(e) Snapdragon 855 (PyTorch)

1S 2S 3S 4S 1M 2M 1L 2L 1L2M
Cores

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Int8

(f) Exynos 9820 (PyTorch)

1S 2S 3S 4S 1L 2L 3L 4L
Cores

1.0
2.0
3.0
4.0
5.0
6.0
7.0 Int8

(g) Helio P35 (PyTorch)

1S 2S 3S 4S 1L 2L
Cores

0.8
1.0
1.2
1.4
1.6
1.8
2.0 Int8

(h) A12 Bionic (PyTorch)

Figure 4: Effects of Quantization on End-to-end Latency

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0
2
4
6
8

10

Sp
ee

du
p

1

1 Large, Int8

(a) Snapdragon 855 (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0
2
4
6
8

10

1

1 Large, Int8

(b) Exynos 9820 (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0
3
6
9

12
15
18

1

1 Large, Int8

(c) Helio P35 (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0
3
6
9

12

1

1 Large, Int8

(d) A12 Bionic (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Add/
Mul

Operations

0
3
6
9

12

Sp
ee

du
p

1

1 Large, Int8
1 Small, Int8

(e) Snapdragon 855 (PyTorch)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Add/
Mul

Operations

0
5

10
15
20

1

1 Large, Int8

(f) Exynos 9820 (PyTorch)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Add/
Mul

Operations

0
3
6
9

12
15
18

1

1 Large, Int8

(g) Helio P35 (PyTorch)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Add/
Mul

Operations

0
2
4
6
8

1

1 Large, Int8

(h) A12 Bionic (PyTorch)

Figure 5: Effects of Quantization on Operation-wise Latency

putational demand, without substantial loss in ML accuracy. We study the approach of integer-arithmetic-only

inference [46] in TFLite (where both weights and activations are represented as 8-bit integers during inference
6
)

and post-training static quantization in PyTorch
7
, respectively. Fig. 4 compares end-to-end inference latency using

8-bit integer with 32-bit floating-point.
8

As can be seen, quantization shows a distinct speedup on various core

combinations. Particularly, we observe performance degradation after quantization on large and medium cores on

Snapdragon 855 in PyTorch Mobile (Fig. 4e); we attribute this degradation to the use of a different inference backend,

QNNPACK [70], for quantized models in PyTorch, resulting in an average of 32% performance degradation for con-

volutions (for one large core) as compared to the inference backend XNNPACK [71] used for floating-point models,

as shown in Fig. 5e. Notably, our prediction approach still achieves accurate prediction for this anomalous case, as

shown in Section 5.2.

Fig. 5 depicts the latency improvement of each type of operation after quantization. In TFLite, on all devices,

most operations achieve significant speedup when using 8-bit integers however, padding and element-wise opera-

tions show performance degradation after quantization: the average latency of element-wise operations is increased

by 2.55x and 2.60x on Snapdragon 855 and Exynos 9820, respectively. Previous work [46, 39] suggests that this

degradation is due to the overhead of matching quantization ranges (i.e., the scale) of all inputs of quantized oper-

ations (e.g., element-wise addition). In PyTorch Mobile, operations of DW-Conv, Mean, and Pool show significant

performance improvements after quantization; however, the performance of the remaining operations varies on

different cores of devices, due to the distinct implementations of the backends.

6
We study the effects of integer quantization only on mobile CPUs, because using 8-bit integers can cause significant overhead in the current

implementation of the TFLite GPU delegate when extra GPU kernels for quantization and dequantization are invoked.

7
We made minor modifications to the QNNPACK backend to solve a performance issue for DW-Conv with 7x7 kernels, as described in [69].

8
Similarly to Fig. 2, we omit outliers (only of a couple of points) for better visualization.

7

Efficientnet
(edge_small_b)

Mnasnet
(b1)

Mobilenet
(w1)

Mobilenetv2
(w1)

Mobilenetv3
(large_w1)

Resnet18

Neural Architectures

0
25
50
75

100
125
150
175
200

of

 K
er

ne
ls

1.81x 1.80x

1.87x

1.81x

1.80x

2.00x

w/ Fusion
w/o Fusion

(a) Number of Kernels (TFLite)

PowerVR
GE8320

Adreno
616

Adreno
640

Mali
G76

A12 A10

Platforms

1.0
1.1
1.2
1.3
1.4
1.5
1.6

Sp
ee

du
p w/ Fusion

(b) End-to-end Latency (TFLite)

Efficientnet
(edge_small_b)

Mnasnet
(b1)

Mobilenet
(w1)

Mobilenetv2
(w1)

Mobilenetv3
(large_w1)

Resnet18

Neural Architectures

0
50

100
150
200
250
300
350

of

 K
er

ne
ls

2.27x 2.36x
2.86x

2.37x 1.51x

1.74x

w/ Fusion
w/o Fusion

(c) Number of Kernels (PyTorch)

Adreno
616

Adreno
640

Mali
G76

Platforms

1.0
1.5
2.0
2.5
3.0
3.5

Sp
ee

du
p w/ Fusion

(d) End-to-end Latency (PyTorch)

Figure 6: Effects of Kernel Fusion

Conv DW-
Conv

FC Mean Concat/
Split

Pool Element-
wise

Operations

0

4

8

12

16

Sp
ee

du
p

1

w/ Fusion

(a) Adreno 640 (TFLite)

Conv Winograd DW-
Conv

FC Mean Concat/
Split

Pool Element-
wise

Operations

0
2
4
6
8

10
12

1

w/ Fusion

(b) A12 Bionic (TFLite)

Conv DW-
Conv

FC Mean Pool Add/Mul BN Activ

Operations

0
1
2
3
4
5
6

Sp
ee

du
p w/ Fusion

(c) Adreno 640 (PyTorch)

Conv DW-
Conv

FC Mean Pool Add/Mul BN Activ

Operations

0
1
2
3
4
5
6
7

w/ Fusion

(d) Adreno 616 (PyTorch)

Figure 7: Effects of Kernel Fusion on Operation-wise Latency

Insight 2. While quantization reduces memory utilization and latency of inference tasks in most cases (as ex-

pected), there is performance degradation for some operations due to the cost of scaling inputs or inefficient backend

implementations in ML frameworks.

3.2. Mobile GPUs
3.2.1. Effects of Kernel Fusion

Kernel fusion has been broadly adopted to reduce the overhead of dispatching kernels [22]. In PyTorch Mobile, a

sequence of optimizations are applied to models generated for mobile, including (1) fusion of the batch normalization

(BN) with the convolution layers, (2) fusion of activation layers (as clamping) with the previous convolution and

linear layers, and (3) fusion of ReLu layers into the previous addition operations. In TFLite, the implementation of

kernel fusion is more sophisticated, as reported in Algorithm B.2: two consecutive operations of the computational

graph are fused when the first operation has only one output tensor (Line 5) and the second operation: (1) is the

only operation in the graph using this output tensor (Line 14), (2) uses this output tensor as its first input to produce

a single output (Line 22), and (3) has a compatible type (Line 24). To study the impact of kernel fusion, we modified

the source code of TFLite [72] and PyTorch Mobile [73] to disable this feature.

Figs. 6a and 6c illustrate that kernel fusion leads to a reduction in the number of kernels of over 45% for real-

world NAs on both frameworks. Figs. 6b and 6d show the performance improvements from kernel fusion on different

mobile devices.
9

We observe up to 1.22x and 1.48x speedup of the average end-to-end latency over all the neural

architectures for TFLite and PyTorch Mobile, respectively, due to a reduction in the cost of kernel dispatching. As

shown in Fig. 7,
10

kernel fusion can significantly reduce the latency of certain operations (i.e., element-wise in TFLite;

batch normalization and activation in PyTorch Mobile) by merging multiple kernels; at the same time, there is no

substantial latency increase for other operations. This observation is aligned with our analysis: the operations fused

into other operations are mainly element-wise operations in TFLite (Line 24 of Algorithm B.2), as well as batch

normalization and activation layers in PyTorch Mobile.

Insight 3. By substantially reducing the number of operation kernels, kernel fusion can improve the performance

of inference tasks on mobile GPUs. The fusion can substantially reduce the latency of element-wise operations in

TFLite and batch normalization and activation in PyTorch Mobile by fusing them into the predecessor layer; the

effect on other operations is negligible.

8

Bninception Resnet16 Diracnet18v2Vovnet27s Preresnet14 Seresnet18
Neural Architectures

0
50

100
150
200
250

La
te

nc
y

(m
s)

1.12x
1.23x 1.21x 1.32x

1.28x
1.18x

w/ Winograd
w/o Winograd

(a) PowerVR GE8320 (TFLite)

Bninception Resnet16 Diracnet18v2 Vovnet27s Preresnet14 Seresnet18
Neural Architectures

0
2
4
6
8

10
12
14
16

1.12x

1.27x 1.22x 1.36x
1.32x

1.21x

w/ Winograd
w/o Winograd

(b) A12 Bionic (TFLite)

Adreno 616 Adreno 640 Mali G76
Platforms

0.75
1.00
1.25
1.50
1.75
2.00
2.25

Sp
ee

du
p w/ Select

(c) End-to-end Latency (PyTorch)

conv2d_dw conv2d_dw_3x3 conv2d_dw_5x5 conv2d_pw_2x2
Kernels

0.5
1.0
1.5
2.0
2.5
3.0

w/ Select

(d) Adreno 640 (PyTorch)

Figure 8: Effects of Kernel Selection

3.2.2. Effects of Kernel Selection
Machine learning frameworks use different optimized implementations for the operations of neural architec-

tures. Algorithm B.3 summarizes the criteria used by TFLite to select the Winograd algorithm for convolution

operations: when the input tensor and kernel size of a convolution operation satisfy the criteria defined by the

CheckWinograd function, a Winograd kernel will be selected. Figs. 8a and 8b shows the performance improve-

ment from using Winograd kernels in real-world NAs; we observe performance improvements of up to 1.32x for

PowerVR GE8320 and up to 1.36x for A12 Bionic. Notably, kernel selection is hardware-dependent in TFLite: none of

the NAs obtain performance improvements on Adreno 640 or 616, because the requirements for applying the Wino-

grad algorithm on these GPUs are stricter than Mali and PowerVR GPUs in the current TFLite implementation.

Details are illustrated in Appendix B.

Similarly, PyTorch Mobile implements five types of Vulkan kernels for the convolution operations: conv2d,

conv2d_pw, conv2d_dw, conv2d_dw_3x3, and conv2d_dw_5x5 based on the input/output size, kernel shape and

number of groups of the convolution, as presented in Algorithm B.1. Fig. 8c shows that, in comparison with only

using conv2d kernels, applying various optimized kernels leads to an average speedup of 1.33x on end-to-end latency;

Fig. 8d further illustrates the improvement on each type of kernel (over conv2d) on Adreno 640.

Insight 4. Framework-dependent optimizations have a significant impact on the performance of inference tasks.

Convolution operations with certain shapes of input tensors and kernel sizes can use the optimized kernels (e.g.,

Winograd algorithm in TFLite) to accelerate the execution. Therefore, an accurate performance prediction model

needs to accurately capture which kernels are executed during inference.

4. Methodology

Given an input model file generated on a cloud server (e.g., during NAS), we aim at accurately predicting its end-

to-end latency on different mobile CPUs and GPUs without deploying it to actual devices. Our approach includes

the following steps: (1) from the model file, we first extract the configurations (e.g., input shape, channel size) of

the operations (i.e., the execution units on mobile CPUs) in the neural architecture; (2) for mobile GPUs, we deduce

(without deploying to the mobile device) the actual kernels executed after kernel fusion and kernel selection (Sec-

tion 4.1); (3) we use ML models to predict inference latency of each operation from its configurations (Section 4.2);

(4) end-to-end latency is estimated as the sum of predicted operation latencies plus the additional latency due to ML

framework overhead. To train the prediction models and to evaluate our approach, we collect latency measurements

on both real-world NAs and a synthetic dataset including 1000 neural architectures from a NAS space (Section 4.3),

which is available at [69] and was described in [74].

4.1. Kernel Deduction
From the model file, we are able to extract the configurations of all the operations of a neural architecture. As

discussed in Section 3.1.1, these operations are executed sequentially on mobile CPUs; multiple threads collabo-

rate within the execution of each operation. For each type of operation, platform, ML framework, and CPU core

combination, we train a machine learning model to predict inference latency.

9
The outliers (only a couple of data points) are removed to improve visualization. Disabling kernel fusion in PyTorch Mobile leads to failure

on iOS GPUs, due to the lack of implementations for batch normalization in the Metal backend.

10
A few outliers with large speedups on element-wise operations are reported in Fig. A.33 of the Appendix.

9

When using mobile GPUs, operations can be further fused (Section 3.2.1) or implemented with optimized algo-

rithms (Section 3.2.2), which have substantial effects on performance (as illustrated by our measurements); conse-

quently, identifying which kernels are actually executed on the target device is critical to obtaining accurate latency

predictions. To save the cost of deploying the neural architectures to physical devices, we deduce the kernels exe-

cuted on a device by simulating the process of kernel fusion and kernel selection, according to the principles elicited

from the implementation of ML framework. Specifically, to predict latency on mobile GPUs, we first fuse kernels

according to the rules (e.g., Algorithm B.2 for TFLite); then, we use the rules (Algorithms B.1 and B.3) to select a

kernel based on the configurations of each convolution operation and on the specific target device.

Operation / Kernel Features

Conv, DW-Conv Input height (width), input channel, output height (width), stride, kernel height (width), filters, input

size, output size, kernel size, FLOPs

Grouped-Conv Input height (width), input channel, output height (width), stride, kernel height (width), filters, input

size, output size, kernel size, group number, FLOPs

FullyConnected Input channel, filters, parameter size, FLOPs

Mean Input height (width), input channel, kernel height (width), input size, FLOPs

Concat, Split Input height (width), input channel, kernel height (width), output channel, input size, output size

Pooling Input height (width), input channel, output height (width), stride, kernel height (width), input size,

output size, FLOPs

Padding Input height (width), input channel, output height (width), padding size, output size

Element-wise, BN, Activations Input height (width), input channel, input size

Table 2: Feature Space for Each Category of Operations

4.2. Prediction Models
To predict the latency of an operation, we use features associated with both memory access cost (e.g., size of

input, output and parameters) and computational cost (e.g., FLOPs), as reported in Table 2. Formally, for each opera-

tion, given the feature vectors xi ∈ X and latencies yi ∈ Y measured on a specific device, i = 1, . . . , N (where N is

the size of the training dataset of the operation), we train a prediction model f∗ = argminf
1
N

∑N
i=1 |(f(x̂i)− yi)/yi|2

where each feature xi,j is standardized as x̂i,j = (xi,j −µj)/σj based on its training set mean µj = (
∑N

i=1 xi,j)/N

and standard deviation σj =
√∑N

i=1(xi,j − µj)2/N . Note that we minimize the mean squared percentage error;

during testing, we evaluate the mean absolute percentage error (MAPE)
1
N

∑N
i=1 |(f∗(x̂i)− yi)/yi|. For prediction

model, we consider the following representative ML approaches [75] adopted in the literature [23, 24, 22, 18, 20].

Lasso. We first consider a linear model f(x) = wTx and estimate the optimal weights w∗
as

w∗ = argmin
w

1

N

N∑
i=1

∣∣∣∣wT x̂i − yi
yi

∣∣∣∣2 + α∥w∥1 s.t. w ≥ 0 . (1)

An L1 regularization term with hyperparameter α is included to control model complexity and to favor a sparse

solution. We use grid search in [10−5, 102] to find the best α. Since each input feature x̂i,j is positively correlated

with latency, we constrain weights wj to be non-negative in Eq. (1).

Random Forests (RF). An RF model includes multiple decision trees to reduce the overfitting of a single decision

tree. We tune hyperparameters including the number of decision trees (1 to 10) and the minimum number of samples

to split an internal node (2 to 50) using 5-fold cross-validation.

Gradient-Boosted Decision Trees (GBDT). GBDT generates decision trees with gradient boosting on multiple

stages. We tune hyperparameters including the number of gradient boosting stages (1 to 200) and the number

of examples required to split a node (2 to 7) using 5-fold cross-validation.

Multi-Layer Perceptron (MLP). An MLP consists of multiple layers of fully-connected neurons. We tune the hyper-

parameters for the number of layers from 1 to 6 and the number of neurons in each layer from {64, 128, 256, 512}.

10

Helio
P35

Snapdragon
710

Snapdragon
855

Exynos
9820

A12 A10

Devices

0
1
2
3
4
5
6

Di
ffe

re
nc

e
(m

s)

1 Large

(a) CPUs (TFLite)

PowerVR
GE8320

Adreno
616

Adreno
640

Mali
G76

A12 A10

Devices

0
2
4
6
8

10
12
14

(b) GPUs (TFLite)

Helio
P35

Snapdragon
710

Snapdragon
855

Exynos
9820

A12 A10

Devices

0

2

4

6

8

Di
ffe

re
nc

e
(m

s)

1 Large

(c) CPUs (PyTorch)

Adreno
616

Adreno
640

Mali
G76

A12

Devices

0
2
4
6
8

10

(d) GPUs (PyTorch)

Figure 9: Difference between End-to-end Latency and Sum of Operation-wise Latency for Real-World NAs

Similarly to previous work [18], we use ReLU activations after each layer and the Adam optimizer with learning

rate from {5× 10−3, 5× 10−4, 5× 10−5}, and weight decay from {10−3, 10−4, 10−5}. We use 20% of training data

as the validation set, and stop training when there is no improvement in the validation error over 50 epochs.

To obtain end-to-end latency predictions, we add up latencies predicted for all operations of the NA, since CPU

operations and GPU kernels are executed sequentially (in a topological order determined by their dependencies).

We also account for the additional latency due to overhead and data transfers; as shown in Fig. 9, the sum of the

latencies measured for all operations is consistently lower than the measured end-to-end latency, especially on

GPUs. Since the difference fluctuates around a constant value for all NAs on a specific GPU, we use the average

difference between end-to-end latencies and the total operation-wise latencies in the training dataset to estimate

this additional latency Toverhead. Formally, for a neural architecture with set of operations C , we predict end-to-end

latency as Toverhead+
∑

c∈C f∗
c (x̂c), where f∗

c is the latency predictor trained from measurements of operations with

the same type as c, and Toverhead is the estimated overhead. We note that, if the same kernel (e.g., a 3x3 convolution)

is executed multiple times within the NA, these are considered different operations, for which we collect different

measurements.

In our experiments, we trained our prediction models (Lasso, Random Forests, GDBT, MLP) on an Intel i7-

6800K CPU. Taking Pixel 4 (using one large CPU core) as an example, the process of comprehensive training and

hyperparameter-tuning of all operations (convolutions, depthwise convolutions, etc.) from synthetic NAs required

1 minute for Lasso, 7 minutes for RF, 2.6 hours for GBDT, and 28.7 hours for MLP.

4.3. Synthetic Dataset
Next, we present our synthetic dataset of NAs sampled from a NAS space including operations and building

blocks proposed in recent works. We first introduce the approach to collecting latency measurements (Section 4.3.1)

and then describe the design of the NAS space (Section 4.3.2).

4.3.1. Kernel Latency Profiling
For TFLite, We use the TFLite Model Benchmark Tool [76] to benchmark the performance of neural architectures.

Since the tool supports latency measurements of elementary operations only on mobile CPUs, we record start/stop

timestamps of GPU kernels by collecting profiling information at the OpenCL command queue (on Android) or

Metal command buffer (on iOS), respectively. To reduce the overhead of timestamp recording, we dispatch the same

kernel 256 times,
11

and we set the GPU Performance State [78] to high for iOS devices, in order to acquire stable

measurements over time.

In PyTorch Mobile, we utilize the Kineto profiler [79] to collect the duration of every CPU operation; for the

Vulkan backend on Android GPUs, we measure the duration of GPU kernels by collecting GPU timestamps from

the query pool in Vulkan; for Metal backend on iOS GPUs, similarly to TFLite, we dispatch each Metal command

buffer for 256 times and record the GPU execution time.

We adopt the default precision settings of the TFLite Model Benchmark tool, which uses 32-bit floating-point

on mobile CPUs and 16-bit floating-point on mobile GPUs. For PyTorch Mobile, we enable 16-bit floating-point

11
Here, we follow the TFLite implementation [77], which allows no more than 256 dispatches for Mali GPUs; we found that using fewer

dispatches does not sufficiently reduce the overhead of timestamp recording.

11

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0%
20%
40%
60%
80%

100%

Pe
rc

en
ta

ge

CPU, 1 Large
GPU

(a) Real-world NAs (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0%
20%
40%
60%
80%

100%
CPU, 1 Large
GPU

(b) Synthetic NAs (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool BN Element-
wise

Operations

0%
20%
40%
60%
80%

100%

Pe
rc

en
ta

ge

CPU, 1 Large
GPU

(c) Real-world NAs (PyTorch)

Conv DW-
Conv

FC Mean Concat/
Split

Pool BN Element-
wise

Operations

0%
20%
40%
60%
80%

100%
CPU, 1 Large
GPU

(d) Synthetic NAs (PyTorch)

Figure 10: Latency Breakdown on Snapdragon 855

B
lo

ck
122

4x
22

4x
3

11
2x

11
2x

C
1

11
2x

11
2x

C
2

B
lo

ck
2

B
lo

ck
3 56

x5
6x

C
3

B
lo

ck
4 56

x5
6x

C
4

28
x2

8x
C

5

B
lo

ck
5

B
lo

ck
6 28

x2
8x

C
6

B
lo

ck
7 14

x1
4x

C
7

14
x1

4x
C

8

B
lo

ck
8

B
lo

ck
9

7x
7x

C
9

C
on

v1
x1 1x

1x
C

10

FC

1x
1x

10
00

Figure 11: Design of the NAS Space for Synthetic Dataset

inference for Vulkan backend on Android GPUs. Figs. 10a and 10c show the average latency breakdown for 102 real-

world neural architectures on Snapdragon 855 for TFLite and PyTorch Mobile, respectively
12

. Notably, convolution

and depthwise convolution operations account for most of the end-to-end latency in both frameworks.

4.3.2. NAS Space for Sampling Neural Architectures
Figs. 10a and 10c highlights the importance of convolution and depthwise convolution operations in end-to-end

latency. Consequently, we design a search space to sample diverse configurations of each operation type to learn

their performance characteristics. As shown in Fig. 11, synthetic neural architectures from our NAS space contain

a sequence of 9 blocks with fixed input height and width, following the design of sequential connections of blocks

in MobileNetV2 [45].
13

The type and parameters of each building block are sampled uniformly at random among:

1. A convolution layer (with kernel size 3x3, 5x5 or 7x7, and optional group size 4k, with 1 ≤ k ≤ 16).

2. Depthwise separable convolution [43] (with kernel size 3x3, 5x5 or 7x7).

3. Linear bottleneck [45] (with kernel size 3x3, 5x5 or 7x7, expansion rate 1, 3 or 6, and optionally using Squeeze-

and-Excite [1]).

4. Average or max pooling layer (with window size 1x1 or 3x3).

5. A split layer (with 2, 3, or 4 splits), followed by element-wise operations performed on each output tensor, and a

concatenation layer that merges all output tensors.

Due to the limited memory and computing resources on mobile devices, we uniformly sample the output chan-

nel sizes of these building blocks (identified as C1 to C9) with the following constraints: {C1, ...C5} ∈ [8, 80],
{C6, ...C9} ∈ [80, 400], and C10 ∈ [1200, 1800].

Similarly to real-world NAs, inference latency does not depend on the input values or model weights, but on

the input shape and operations performed. For this reason, in our inference latency measurements for synthetic

NAs, we used randomly initialized model weights and a random 224x224 input image. We built a synthetic dataset

including 1000 neural architectures sampled from this NAS space. For each neural architecture, we collected training

measurements on 6 mobile platforms (Table 1), for a total of 174 scenarios, covering (1) combinations of homogeneous

or heterogeneous cores, (2) floating-point and 8-bit integer representations, (3) mobile GPUs from different man-

ufacturers, and (4) two mainstream ML frameworks. Figs. 10b and 10d illustrates the latency breakdown for NAs

12
When presenting the percentage of end-to-end latency, we include the results of NAs that may not have all types of operations, e.g., depthwise

convolution operations only appear in 44 NAs, so its median across 102 NAs is zero.

13
In Section 5.3, we also evaluate our predictions on real-world NAs that consist of non-linearly connected building blocks.

12

50%

60%

M
AP

E

10.7%

2.7%2.5%2.3%

11.2%

5.4%
3.5%5.2%

62.2%

4.1%4.6%5.9%

11.2%

2.8%2.4%2.8%

Lasso
RF
GBDT
MLP

Conv DW-Conv Mean End-to-end
Predictions

0%

5%

10% 10.7%

2.7%2.5%2.3%

11.2%

5.4%
3.5%

5.2%

62.2%

4.1%4.6%
5.9%

11.2%

2.8%2.4%2.8%

(a) CPU, One Large Core (TFLite)

Conv GroupedConv DW-Conv End-to-end
Predictions

0%
2%
4%
6%
8%

10%
12%
14%
16%

10.0%

5.1%4.8%4.5%

13.8%
12.0%

9.8%

13.7%

10.3%

4.0%3.5%3.9%

9.4%

5.5%5.2%5.1%

Lasso
RF
GBDT
MLP

(b) GPU (TFLite)

Conv DW-Conv Pool End-to-end
Predictions

0%

10%

20%

30%

40%

50%

11.3%

3.2%2.4%1.8%

50.9%

7.5%
4.5%3.6%

26.3%

14.0%

5.5%4.2%

27.5%

4.2%2.6%2.0%

Lasso
RF
GBDT
MLP

(c) CPU, One Large Core (PyTorch)

conv2d conv2d_pw conv2d_dw End-to-end
Predictions

0%

5%

10%

15%

20%

25%

10.5%

6.6%6.1%5.3%
7.2%

3.5%2.8%2.4%

16.9%

7.8%

4.2%3.1%

21.5%

5.9%4.8%4.4%

Lasso
RF
GBDT
MLP

(d) GPU (PyTorch)

Figure 12: Predictions of ML Models (Synthetic NAs)

in our synthetic dataset, where the latency distribution over operations is similar to real-world NAs. In summary,

our synthetic dataset includes latency measurement and corresponding parameters for 23275 operations under 84

scenarios for PyTorch Mobile, and 22182 operations under 90 scenarios for TFLite, resulting in 3951480 data points

in total. This dataset is available at [69] and was described in [74].

5. Results

This section presents a comprehensive evaluation of our latency prediction framework across a broad range of

scenarios: first, we show results on the default setting of NAS (Section 5.1), and then we evaluate the impact of

hardware heterogeneity (Section 5.2), neural architecture diversity (Section 5.3), and ML framework optimizations

(Section 5.4). In addition, to address concerns regarding the cost of training data collection, we present results using

a small number of training examples (Section 5.5). Lastly, we quantitatively compare both our predictions and the

design of the synthetic dataset with existing literature (Section 5.6).

5.1. Default Setting: NAS Space
We first test our framework in the common scenario of predicting inference latency during NAS: we sample test

data (the candidate architectures during NAS) and training data (the profiling architectures used to train our latency

prediction model) uniformly at random from the same search space (Section 4.3.2). These sampled NAs constitute

our synthetic dataset of 1000 samples; in this section, we use 900 of these for training and 100 for testing.

Fig. 12 presents the average MAPE across 6 platforms
14

on both TFLite and PyTorch Mobile under different

ML approaches when predicting end-to-end latency, as well as the latency of the 3 operation types accounting

for most of end-to-end latency. Based on the latency breakdown of synthetic neural architectures on CPUs and

GPUs (Figs. 10b and 10d), convolution operations typically account for the most significant proportion of end-to-

end latency; consequently, the prediction error of convolution dominates the error of end-to-end latency prediction

for all ML approaches on both CPUs and GPUs. For example, Lasso has a large MAPE (62.2%) for “mean” operations

on CPU in TFLite (Fig. 12a), while its MAPE for end-to-end latency is only 10.0%; that is because, as shown in Fig. 10b,

for 75% of synthetic neural architectures, mean operations contribute to less than 3.6% of the CPU end-to-end latency.

As shown in Fig. 12, in our default setting, all non-linear ML approaches (RF, GBDT, MLP) achieve comparable

accuracy on end-to-end latency predictions, with average MAPE across six platforms: below 2.8% for CPUs and

below 5.5% for GPUs on TFLite; below 4.2% for CPUs and below 5.9% for GPUs on PyTorch Mobile. Lasso achieves

less accurate predictions (11.2% on CPUs and 9.4% on GPUs for TFLite; 27.5% on CPUs and 21.5% on GPUs for

PyTorch Mobile) because its linear model cannot represent non-linear relationships between latency and operation

features, as identified by previous work [8, 22].

5.2. Case Study: Hardware Heterogeneity
Next, we evaluate our prediction framework under hardware heterogeneity, including scenarios with different

CPU core combinations and with both floating-point and integer representations. We select GBDT as a representa-

tive ML approach in this section, since it shows comparable or slightly better predictions than RF and MLP in the

case of a large CPU core (Figs. 12a and 12c).

14
Due to lack of space, MAPE of each platform is reported in Tables C.5 and C.7 of the Appendix.

13

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
2%
5%
8%

10%
12%
15%
18%
20%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(a) Snapdragon 855 (TFLite)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
5%

10%
15%
20%
25%
30%

NTrain = 900, Float
NTrain = 900, Int8

(b) Exynos 9820 (TFLite)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%

5%

10%

15%

20% NTrain = 900, Float
NTrain = 900, Int8

(c) Helio P35 (TFLite)

1L 2L 1S 2S 3S 4S
Cores

0%
2%
5%
8%

10%
12%
15%
18%
20% NTrain = 900, Float

NTrain = 900, Int8

(d) A12 Bionic (TFLite)

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
2%
4%
6%
8%

10%
12%
14%
16%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(e) Snapdragon 855 (PyTorch)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
2%
5%
8%

10%
12%
15%
18%
20% NTrain = 900, Float

NTrain = 900, Int8

(f) Exynos 9820 (PyTorch)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

NTrain = 900, Float
NTrain = 900, Int8

(g) Helio P35 (PyTorch)

1L 2L 1S 2S 3S 4S
Cores

0%
2%
4%
6%
8%

10%
12%

NTrain = 900, Float
NTrain = 900, Int8

(h) A12 Bionic (PyTorch)

Figure 13: Predictions of GBDT on Multicore CPUs (Synthetic NAs)

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0.00
0.02
0.04
0.06
0.08
0.10

CV

(a) Snapdragon 855 (TFLite)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0.00
0.04
0.08
0.12
0.16

(b) Exynos 9820 (TFLite)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0.000

0.008

0.016

0.024

0.032

(c) Helio P35 (TFLite)

1L 2L 1S 2S 3S 4S
Cores

0.00
0.03
0.06
0.09
0.12
0.15

(d) A12 Bionic (TFLite)

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0.000
0.008
0.016
0.024
0.032
0.040

CV

(e) Snapdragon 855 (PyTorch)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0.000
0.025
0.050
0.075
0.100
0.125

(f) Exynos 9820 (PyTorch)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0.000
0.006
0.012
0.018
0.024

(g) Helio P35 (PyTorch)

1L 2L 1S 2S 3S 4S
Cores

0.00
0.02
0.04
0.06
0.08
0.10

(h) A12 Bionic (PyTorch)

Figure 14: Coefficient of Variation for Latency Measurements of Synthetic NAs on CPUs

Fig. 13 illustrates GBDT predictions of end-to-end latency over various core configurations.
15

We observe that

more homogeneous cores typically lead to higher prediction errors. Using more cores can result in larger measure-

ment variance, due to background jobs running on mobile devices (e.g., cameras, sensors, and networking services);

measurement variance can impair the quality of profiling data and thus affect prediction accuracy.
16

For example,

from the results on Exynos 9820 shown in Fig. 13b, the MAPE on 4 small cores (10.3% for floating-point and 10.5%

for integer quantization) is higher than the MAPE on 1 small core (8.6% and 4.9%, respectively), due to the inter-

ference of background jobs when an inference task attempts to make use of all the efficient cores on the device;

in these situations, latency measurements have larger coefficient of variation, as shown in Fig. 14. Overall, GBDT

achieves accurate predictions across all platforms: the worst MAPEs for homogeneous cores are 10.5% on Exynos

9820, 5.8% on Snapdragon 855, 6.0% on Helio P35, and 5.8% on A12 Bionic for TFLite; 8.5% on Exynos 9820, 6.6% on

Snapdragon 855, 5.1% on Helio P35, and 3.3% on A12 Bionic for PyTorch Mobile.

Note that using heterogeneous cores results in even higher variability of latency measurements due to inter-

cluster communication [33]. In addition, as explained in Section 3.1.1, operations without multithreading imple-

mentations can be scheduled on arbitrary cores, complicating prediction; for example, when using 1 large and 1

medium core on Snapdragon 855 with TFLite (Fig. 13a), MAPEs (3.9% for floating-point and 5.5% for integer quan-

tization) are higher with respect to using 2 medium cores (3.2% and 3.9%, respectively).

Fig. 15 presents predictions of GBDT for different GPUs. For convolution operations, we split the results of dif-

ferent types of kernels (i.e., Winograd for TFLite; conv2d_pw and conv2d_dw for PyTorch Mobile) between Fig. 15a

and Fig. 15c because separate latency predictors are trained for each kernel; no Winograd kernel is used on Adreno

640 and 616 with TFLite due to the rules of kernel selection presented in Section 3.2.2. Overall, GBDT achieves

accurate end-to-end prediction across all six GPUs, with worst MAPE of 8.2% on Exynos 9820 for TFLite and 10.9%

on A12 Bionic for PyTorch Mobile.

15
For clarity of presentation, we omit some outliers (<9% data points for 1 large and 2 medium cores of Exynos 9820, and <4% data points for

all other configurations), and report plots with all data points in Fig. A.34 of the Appendix.

16
In our approach, we do not explicitly model background jobs; in practice, they depend on user activities and so are different at runtime.

14

PowerVR
GE8320

Adreno
616

Adreno
640

Mali
G76

A12 A10

Devices

0%
10%
20%
30%
40%
50%

M
AP

E

NTrain = 900, Conv2D
NTrain = 900, Winograd

(a) Convolution (TFLite)

PowerVR
GE8320

Adreno
616

Adreno
640

Mali
G76

A12 A10

Devices

0%
5%

10%
15%
20%
25%
30% NTrain = 900, Float

(b) End-to-end (TFLite)

Adreno
616

Adreno
640

Mali
G76

A12

Devices

0%
10%
20%
30%
40%

M
AP

E

NTrain = 900, conv2d
NTrain = 900, conv2d_pw
NTrain = 900, conv2d_dw

(c) Convolution (PyTorch)

Adreno
616

Adreno
640

Mali
G76

A12

Devices

0%

10%

20%

30%

40% NTrain = 900, Float

(d) End-to-end (PyTorch)

Figure 15: Predictions of GBDT on GPUs (Synthetic NAs)

[0, 5] (5, 10] (10, 20](20, 30](30, 40](40, 50](50, inf]
Latency Range (ms)

0%

20%

40%

60%

80%

%
 o

f E
nd

-to
-e

nd
 L

at
en

cy

Real-world
Synthetic

(a) Contribution to End-to-end (TFLite)

[0, 5] (5, 10] (10, 20](20, 30](30, 40](40, 50](50, inf]
Latency Range (ms)

0%

20%

40%

60%

80%

M
AP

E

Real-world
Synthetic

(b) Predictions using Lasso (TFLite)

[0, 1] (1, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, inf]
Latency Range (ms)

0%

20%

40%

60%

80%

%
 o

f E
nd

-to
-e

nd
 L

at
en

cy

Real-world
Synthetic

(c) Contribution to End-to-end (PyTorch)

[0, 1] (1, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, inf]
Latency Range (ms)

0%

10%

20%

30%

40%

M
AP

E

Real-world
Synthetic

(d) Predictions using Lasso (PyTorch)

Figure 16: Convolution Operations with Different Latency Ranges (Helio P35 for TFLite, Snapdragon 855 for PyTorch Mobile)

5.3. Case Study: Neural Architecture Diversity
Next, we evaluate our framework on diverse neural architectures: we consider a scenario where training data

include candidates sampled at the early stages of NAS, while test data are highly accurate neural architectures gen-

erated at the end of NAS. In our evaluation, we use 1000 synthetic neural architectures as training data and 102

real-world neural architectures (from existing literature) as test data. The two sets of neural architectures have

different distributions (i.e., we introduce a dataset shift): we observe that the latency of convolution operations in

real-world neural architectures is generally lower than in synthetic neural architectures. Figs. 16a and 16c show

the percentage of end-to-end latency attributed to convolution operations (split by range) on Helio P35 with TFLite,

and on Snapdragon 855 with PyTorch Mobile: convolutions with higher latency dominate end-to-end latency in our

synthetic neural architectures, while faster convolutions contribute more to real-world neural architectures.

Figs. 17a and 17c show the average MAPE across six devices for the real-world neural architectures on CPUs. For

most ML approaches trained on synthetic neural architectures, prediction errors are higher for real-world neural

architectures than synthetic neural architectures (Fig. 12) that are generated from the same distribution as the train-

ing data. The only exception is Lasso, which achieves better predictions on real-world neural architectures, with

end-to-end MAPE on CPUs (5.4% in TFLite and 10.4% in PyTorch Mobile). We attribute this anomaly to the better

accuracy of Lasso predictions on fast operations (< 50 ms in Fig. 16a, and < 10 ms in Fig. 16c) due to higher weights

assigned to these operations in Eq. (1), which we observe in both synthetic and real-world architectures (Figs. 16b

and 16d). Since real-world architectures include a larger proportion of fast operations (in this specific dataset shift),

average accuracy of Lasso is better on real-world architectures than synthetic neural architectures.

Figs. 17b and 17d presents predictions on mobile GPUs. We observe that, for some small real-world neural

architectures, the overhead of TFLite is significant. Since the overhead has high runtime variability (in particular,

on PowerVR GE8320 and Mali G76), it can affect the accuracy of end-to-end latency predictions, especially for neural

architectures with low latency such as MobileNets.

5.4. Case Study: ML Framework Optimizations
Next, we illustrate the improvements of GPU predictions from accounting for ML framework optimizations such

as kernel fusion and kernel selection.

Kernel Fusion. In Section 3.2.1, we show that kernel fusion considerably reduces the number of kernels and leads

to improvements in end-to-end latency. Fig. 18a shows that, after following Algorithm B.2 to estimate which kernels

will be fused in TFLite (Section 3.2.1), we obtain a number of kernels close to actual measurements collected on 102

real-world neural architectures.
17

Figs. 18b and 18c illustrate that on both frameworks, we obtain substantial error

reduction in end-to-end latency prediction with respect to ML models which do not consider kernel fusion (labeled

as “w/o Fusion”).

17
The fusion rules of PyTorch Mobile are very simple, as described in Section 3.2.1; thus, we omit the prediction results for the number of

15

Conv DW-Conv Mean End-to-end
Predictions

0%
10%
20%
30%
40%
50%
60%
70%
80%

M
AP

E

5.2%5.1%5.5%5.1% 7.1%6.6%5.3%
11.2%

70.6%

38.0%38.0%

17.5%

5.4%6.1%6.0%
11.6%

Lasso
RF
GBDT
MLP

(a) CPU, One Large Core (TFLite)

Conv GroupedConv DW-Conv End-to-end
Predictions

0%
5%

10%
15%
20%
25%
30%
35%

7.1% 5.7%
8.1% 8.2% 9.8%

15.2%14.9%

32.1%

8.5%
5.4% 4.4%

9.8%
7.9% 6.8% 7.0% 8.7%

Lasso
RF
GBDT
MLP

(b) GPU (TFLite)

Conv DW-Conv Pool End-to-end
Predictions

0%

10%

20%

30%

40%

9.2%7.0%6.2%4.9%

15.5%
9.9%

7.0%

13.2%

31.7%

40.2%

14.9%16.3%
10.4%

7.7%6.6%7.0%

Lasso
RF
GBDT
MLP

(c) CPU, One Large Core (PyTorch)

conv2d conv2d_pw conv2d_dw End-to-end
Predictions

0%
5%

10%
15%
20%
25%
30%
35%
40%

8.7%8.3%9.3%10.1% 10.1%
6.8%7.0%8.9% 7.7%

5.1%
8.3%

39.1%

8.2%7.5%8.8%
10.2%

Lasso
RF
GBDT
MLP

(d) GPU (PyTorch)

Figure 17: Predictions of ML Models (Real-World NAs)

0 100 200 300
Measurement

0

100

200

300

Pr
ed

ict
io

n w/ Fusion

(a) # of Kernels (TFLite)

Lasso RF GBDT MLP
Methods

0%
20%
40%
60%
80%

M
AP

E
w/ Fusion
w/o Fusion

(b) MAPE on PowerVR GE8320 (TFLite)

lasso RF GBDT mlp
Methods

0%
30%
60%
90%

120%
150%

M
AP

E

w/ Fusion
w/o Fusion

(c) MAPE on Adreno 640 (PyTorch)

Figure 18: Effectiveness of Kernel Fusion on Predictions

Kernel Selection. As introduced in Section 3.2.2, a convolution operation can be executed as different kernel imple-

mentations compatible with the its configuration and the target device. We deduce the kernels that ML frameworks

select for convolution operations and train separate predictors for each (since they exhibit different performance

characteristics). Fig. 19a shows the considerable error reduction achieved by accounting for kernel selection of

TFLite on PowerVR GE8320, for real-world neural architectures that support Winograd kernels; Fig. 19b confirms

that this reduction is due to more accurate predictions of the latency of Winograd kernels. Fig. 19c represents the

effects of considering kernel fusion in PyTorch Mobile, where Lasso achieves more significant improvement than

other ML approaches. We attribute this difference to the fact that the kernel selection in PyTorch Mobile is rela-

tively simple: As shown in Algorithm B.1, the choice of kernel is only dependent on one or two features, which the

non-linear ML models can capture. The linear model Lasso shows limited potential to represent such relations; for

example, we observed that the depthwise convolutions with kernel size 7x7 are substantially slower than the ones

with kernel size 3x3 or 5x5 due to lack of support for efficient implementations in PyTorch Mobile.

5.5. Case Study: Limited Training Data
The high cost of collecting sufficient training data is a common criticism of ML approaches to predict the latency

of neural architectures during NAS [21]. In this section, we study the effects of training set size on different ML

approaches, illustrating the benefits of a simple model when training data is limited.

5.5.1. Comparison of ML Approaches
Fig. 20 show prediction errors of different ML approaches for varying training set sizesNTrain, on synthetic neural

architectures (presented in Section 5.1) and real-world neural architectures (presented in Section 5.3), respectively

(errors are average MAPE across 6 platforms).
18

Predictions of Lasso are less sensitive to the size of training data,

while other more complex approaches achieve higher errors when the training set size is decreased from 900 to 30.

Consequently, when training data is limited, e.g., in Figs. 20a, 20b, 20e and 20f for training size of 30, a simple model

such as Lasso achieves similar or better accuracy than some complex models; Lasso is also more robust when test and

training datasets have different distributions, even for large amounts of training data, e.g., when training on synthetic

NAs but testing on real-world NAs in Figs. 20c, 20d, 20g and 20h. Complex models (GBDT, RF and MLP) are similarly

accurate when sufficient training data is available and there is no dataset shift (i.e., training and testing datasets have

similar distributions), e.g., in Figs. 20a, 20b, 20e and 20f for training set size of 900. In the case of data shift (Figs. 20c

and 20d), MLP achieves the worst predictions on TFLite with a training set of size 100. This is due to severe prediction

errors on concatenation/split operations: on Pixel 4 (one large CPU core), MAPEs on concatenation/split operations

kernels.

18
MAPEs for each platform are reported in Tables C.4 to C.7 of the Appendix.

16

Lasso RF GBDT MLP
Methods

0%
8%

16%
24%
32%

M
AP

E

w/ Kernel Selection
w/o Kernel Selection

(a) End-to-end Latency (TFLite)

Lasso RF GBDT MLP
Methods

0%
20%
40%
60%
80%

100%
w/ Kernel Selection
w/o Kernel Selection

(b) Winograd Kernel (TFLite)

lasso RF GBDT mlp
Methods

0%
10%
20%
30%
40% w/ Kernel Selection

w/o Kernel Selection

(c) End-to-end Latency (PyTorch)

lasso RF GBDT mlp
Methods

0%
10%
20%
30%
40% w/ Kernel Selection

w/o Kernel Selection

(d) Convolution Kernels (PyTorch)

Figure 19: Prediction Error Reduction on PowerVR GE8320 by Accounting for Kernel Selection

Lasso RF GBDT MLP
ML Models

2%
5%
8%

10%
12%
15%
18%
20%

M
AP

E

11.2%11.0%11.2% 11.3%

6.2%

2.8%

8.1%
5.1%

2.4%

10.0%

4.5%
2.8%

NTrain = 30
NTrain = 100
NTrain = 900

(a) CPU, Synthetic NAs (TFLite)

Lasso RF GBDT MLP
ML Models

4%
5%
6%
7%
8%
9%

10%
11%
12%

10.6%10.5%
9.4% 9.3%

7.0%

5.5%

8.6%

6.9%

5.2%

7.1% 6.7%

5.1%

NTrain = 30
NTrain = 100
NTrain = 900

(b) GPU, Synthetic NAs (TFLite)

Lasso RF GBDT MLP
ML Models

6%
8%

10%
12%
14%
16%

6.5% 6.1% 5.4%

15.3%

10.1%

6.2%

12.9%

9.6%

5.7%

12.7%
14.3%

12.5%

NTrain = 30
NTrain = 100
NTrain = 900

(c) CPU, Real-World NAs (TFLite)

Lasso RF GBDT MLP
ML Models

6%
7%
8%
9%

10%
11%
12%
13%

8.3% 8.5%
8.0%

9.8%

7.8%
7.0%

10.1%

7.5%
6.7%

9.1% 9.4%
8.6%

NTrain = 30
NTrain = 100
NTrain = 900

(d) GPU, Real-World NAs (TFLite)

Lasso RF GBDT MLP
ML Models

0%

10%

20%

30%

40%

M
AP

E

30.8%29.3%27.5%

37.5%

16.9%

4.2% 6.2% 3.9% 2.6%

10.7%

3.8% 2.0%

NTrain = 30
NTrain = 100
NTrain = 900

(e) CPU, Synthetic NAs (PyTorch)

Lasso RF GBDT MLP
ML Models

0%
10%
20%
30%
40%

23.5%22.0%21.5%

38.3%

18.4%

5.9%
8.8%

5.7% 4.8%
9.0% 6.3% 4.4%

NTrain = 30
NTrain = 100
NTrain = 900

(f) GPU, Synthetic NAs (PyTorch)

Lasso RF GBDT MLP
ML Models

0%
5%

10%
15%
20%
25%

11.5%10.7%10.4%

15.6%
13.7%

7.7%

12.6%
8.7%

6.6%

11.9%
8.1% 7.0%

NTrain = 30
NTrain = 100
NTrain = 900

(g) CPU, Real-World NAs (PyTorch)

Lasso RF GBDT MLP
ML Models

0%
5%

10%
15%
20%
25%

9.6% 8.7% 8.2%

22.4%

11.9%

7.5%

25.6%

11.9%
8.8%

19.6%20.2%

10.2%

NTrain = 30
NTrain = 100
NTrain = 900

(h) GPU, Real-World NAs (PyTorch)

Figure 20: Prediction Errors on Synthetic or Real-World NAs for Different Synthetic Training Set Sizes

are 56.7%, 1400.4% and 1068.7%, after training on 30, 100 and 900 neural architectures, respectively. This anomaly is

due to the very small amount of training data (only 5, 25 and 312 concatenation/split operations from training data

of 30, 100 and 900 neural architectures, respectively). Instead, for convolution operations with sufficient data, MLP

prediction errors are 7.8%, 5.1% and 4.6% for training sets of size 30, 100 and 900, respectively, on the same platform.

Notably, for real-world neural architectures, using only 30 training examples, Lasso considerably outperforms

other ML approaches on CPUs with a large core, with an average MAPE across six platforms of 6.5% in TFLite

(Fig. 20c) and 11.5% in PyTorch Mobile (Fig. 20g). As pointed out by prior work [21], the cost of profiling only

30 neural architectures on each target device is negligible compared to measuring latencies of all candidate neural

architectures (e.g., thousands) during NAS.

5.5.2. Lasso Predictions with Limited Training Data
Next, we thoroughly evaluate the predictions of Lasso with a limited training set size (i.e., 30 neural architectures)

on real-world neural architectures, across a broad range of scenarios for hardware heterogeneity.

Fig. 21 shows the prediction error of Lasso on real-world neural architectures, across various combinations of

cores and data representations.
19

Generally, the trend of prediction errors for homogeneous and heterogeneous

clusters is similar to the results in Fig. 13. The maximum MAPE for combinations of homogeneous cores is 22.9%

on Exynos 9820, 13.5% on Snapdragon 855, 9.6% on Helio P35, and 9.5% on A12 Bionic for TFLite; 22.3% on Exynos

9820, 16.2% on Snapdragon 855, 20.4% on Helio P35, and 9.9% on A12 Bionic for PyTorch Mobile. We attribute the

large prediction errors on Exynos 9820 to the noise of measurements collected with many small cores, which is due

to background tasks and can affect the quality of training data for this limited dataset. For example, by adding more

training data, MAPEs can be reduced to less than 14.8% in Fig. 21b. Fig. 22 shows the predictions of Lasso across

multiple mobile GPUs. The maximum MAPE is 11.0% on Mali G76 for TFLite and 12.6% on A12 Bionic for PyTorch

Mobile.

Since all the features are standardized, we use the magnitude of weights in the Lasso model to analyze the

importance of different features. In general, on all devices of both frameworks, using either CPUs or GPUs, we find

the most critical features (those with largest weights) of convolution operations to be FLOPs and kernel size, which

are strongly correlated with the costs of computation and memory access, respectively
20

, except the following. For

19
For clarity of presentation, we omit some outliers (<4% data points per configuration) and report plots with all data points in Fig. A.35 of the

Appendix.

20
However, as noted in Section 1, FLOPs alone is not an accurate proxy metric for the actual latency.

17

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
5%

10%
15%
20%
25%
30%
35%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8

(a) Snapdragon 855 (TFLite)

1L 2L 1M 2M 1S 2S 3S 3S 4S 4S 1L2M
Cores

0%
10%
20%
30%
40%
50%
60%
70% NTrain = 30, Float

NTrain = 30, Int8
NTrain = 1000, Float
NTrain = 1000, Int8

(b) Exynos 9820 (TFLite)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25%
30%

NTrain = 30, Float
NTrain = 30, Int8

(c) Helio P35 (TFLite)

1L 2L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25% NTrain = 30, Float

NTrain = 30, Int8

(d) A12 Bionic (TFLite)

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
10%
20%
30%
40%
50%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8

(e) Snapdragon 855 (PyTorch)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
10%
20%
30%
40%
50%
60% NTrain = 30, Float

NTrain = 30, Int8

(f) Exynos 9820 (PyTorch)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%
10%
20%
30%
40%
50% NTrain = 30, Float

NTrain = 30, Int8

(g) Helio P35 (PyTorch)

1L 2L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25%
30%
35% NTrain = 30, Float

NTrain = 30, Int8

(h) A12 Bionic (PyTorch)

Figure 21: Predictions of Lasso on Multicore CPUs (Real-World NAs)

PowerVR
GE8320

Adreno
616

Adreno
640

Mali
G76

A12 A10

Devices

0%
10%
20%
30%
40%
50%
60%
70%

M
AP

E

NTrain = 30, Conv2D
NTrain = 30, Winograd

(a) Convolution (TFLite)

PowerVR
GE8320

Adreno
616

Adreno
640

Mali
G76

A12 A10

Devices

0%
10%
20%
30%
40%
50%

NTrain = 30, Float

(b) End-to-end (TFLite)

Adreno
616

Adreno
640

Mali
G76

A12

Devices

0%
10%
20%
30%
40%
50%
60%
70%

M
AP

E

NTrain = 30, conv2d
NTrain = 30, conv2d_pw
NTrain = 30, conv2d_dw

(c) Convolution (PyTorch)

Adreno
616

Adreno
640

Mali
G76

A12

Devices

0%
10%
20%
30%
40% NTrain = 30, Float

(d) End-to-end (PyTorch)

Figure 22: Predictions of Lasso on GPUs (Real-World NAs)

CPUs on PyTorch Mobile, the most critical features of convolutions are FLOPs and output size, as PyTorch Mobile

implements a caching allocator for CPU memory [80] which saves the cost of rewriting kernel weights into memory

over multiple inference runs; consequently, the feature correlated to memory access is the output size rather than

the kernel size for CPUs on PyTorch Mobile. In contrast, the two most critical features of depthwise convolution

operations are FLOPs and input size. Input size can dominate the cost of memory access for depthwise convolutions

since their kernel sizes are substantially smaller than those of standard convolutions.

5.6. Comparison with Related Work
Lastly, we quantitatively compare our results with the state-of-the-art inference latency predictor nn-Meter [22]

and conduct evaluations on the existing NAS benchmark dataset NATSBench [38].

5.6.1. Predictors: nn-Meter
As noted in Section 1, nn-Meter [22] is a state-of-the-art technique for predicting inference latency on mobile

devices; it uses a black-box model to estimate the rules of kernel fusion on a target device and predicts the latency

of each kernel using Random Forest Regression. We first compared our results with those of nn-Meter using the

pre-trained predictors provided by nn-Meter; however, nn-Meter’s predictors failed to achieve accurate predictions

on our dataset because they were trained on measurements collected using different compile options of TFLite,

as detailed in Appendix C. Therefore, to achieve a fair comparison, we ran the source code of nn-Meter [81] to

train a predictor with the same data used by our approach: (1) we first used nn-Meter to detect the rules of kernel

fusion on four Android devices from Table 1;
21

(2) then, we trained kernel-level latency predictors on our synthetic

dataset (including our latency measurements), but using the features and the hyperparameters of the Random Forest

Regression model specified by nn-Meter.

Fig. 23 compares nn-Meter predictions (the average MAPE across four Android platforms) to those of our ap-

proach (using different ML models); as can be seen, our approach outperforms nn-Meter on both 102 real-world

NAs and 100 NAs from our synthetic dataset across different sizes of training data. An important reason is that our

approach considers a broader set of features for operations. For example, nn-Meter does not distinguish grouped

convolutions from standard convolutions; a grouped convolution splits the input tensor into multiple groups of

21
In nn-Meter, rule detection requires benchmarking NAs on actual devices; nn-Meter does not support this for iOS devices.

18

CPU
NTrain = 1000

CPU
NTrain = 30

GPU
NTrain = 1000

GPU
NTrain = 30

0%

10%

20%

30%

40%

M
AP

E

8.5%
5.7%6.6%6.3%

12.7%

23.1%

6.9%

17.0%
14.2%13.1%

41.5%

8.8%7.6%7.6%9.4%

37.6%

9.1%10.7%10.2%8.3%

nn-Meter
Ours (Lasso)
Ours (RF)
Ours (GBDT)
Ours (MLP)

(a) Real-world NAs

CPU
NTrain = 900

CPU
NTrain = 30

GPU
NTrain = 900

GPU
NTrain = 30

0%

10%

20%

30%

40%

14.1%
11.7%

2.8%2.4%3.2%

14.8%
11.7%11.5%

8.0%9.0%

24.9%

11.0%
6.7%6.3%6.1%

23.0%

12.1%10.8%10.8%
8.4%

nn-Meter
Ours (Lasso)
Ours (RF)
Ours (GBDT)
Ours (MLP)

(b) Synthetic NAs

Figure 23: Comparison with nn-Meter

Lasso RF GBDT MLP
ML Models

0%
20%
40%
60%
80%

100%

M
AP

E

6.6% 8.1% 3.2%

88.1%

3.3%

56.2%

6.9%
20.6%

Synthetic (Ours)
NATSBench

(a) CPU

Lasso RF GBDT MLP
ML Models

0%
20%
40%
60%
80%

7.3%

28.1%

5.6%

73.6%

5.1%

57.7%

8.7%

44.9%

Synthetic (Ours)
NATSBench

(b) GPU

Figure 24: Predictions on 44 Real-world NAs w/o DW-Conv

small tensors and conducts convolutions on each tensor, leading to a significant reduction in FLOPs. Consequently,

nn-Meter mispredicts 14 real-world NAs with grouped convolutions (e.g., errors of 31.2% and 157.1% on the CPU

and GPU of Helio P35, respectively). Notably, nn-Meter predictions are less accurate on GPUs for the following

reasons: (1) nn-Meter does not account for kernel selection on GPUs, e.g., it neglects the fact that various kernels

with distinct performance characteristics (such as Winograd) can be applied to the same convolution operation on

different platforms (as evaluated in Section 5.4); (2) nn-Meter ignores the effects of ML framework overhead, which

can be significant on GPUs (in particular, on PowerVR GE8320 and Mali G76, as shown in Section 5.3).

5.6.2. NAS Benchmark: NATSBench
Evaluated in related work [14, 22], the NATSBench [38] dataset includes NAs sampled from Topology Search

Space (St) and Space Search Space (Ss). In St, each NA consists of operations with predefined configurations (e.g.,

number of channels) and different topology (i.e., interconnections between operations); in Ss, the topology is fixed

and the number of channels is chosen from 8 candidates. For both datasets, we select 1000 NAs with the highest

test accuracy on CIFAR-100 [82]; we observe that the diversity of operation configurations in these NAs is very

limited. For example, there are only 11 and 239 unique configurations of convolution operations in the NAs from

St and Ss respectively (compared to 6608 configurations in our synthetic dataset). In the NAS space of such limited

configurations, building look-up tables by measuring the latencies of all possible configurations of each building

block is sufficient to estimate the end-to-end latency of candidate NAs; in contrast, our NAS space covers over

2× 107 configurations of convolution operations (i.e., with different number of input/output channels, kernel size,

and group size), which makes look-up tables very costly to build and is better suited for inference latency prediction

approaches during NAS.

In addition, the limited data diversity results in NATSBench being less representative of real-world NAs; for

example, among 102 real-world NAs in our study, 58 contain depthwise convolutions, which are not present in

NATSBench NAs (therefore, a prediction model cannot be trained for this type of operation). Fig. 24 compares

prediction errors on the remaining 44 real-world NAs based on training with 1000 NAs from Ss (which includes a

broader set of configurations than St) and from our synthetic dataset. As can be seen, more complex ML models are

less accurate when trained with Ss, due to its limited diversity.

5.7. Discussion and Threats to Validity
Hardware heterogeneity and ML frameworks optimizations are the main threats to validity for our work, as

described next.

Due to hardware heterogeneity, ML frameworks may select entirely different kernel implementations on differ-

ent devices (e.g., Winograd kernels as discussed in Section 3.2.2). As a result, using latency measurements collected

on one device to obtain latency predictions on a different device may be inaccurate when different kernels and oper-

ations are executed. Even when the executed kernels are the same, the different hardware architectures (including

19

CPU/GPU frequency, number of cores, memory bandwidth, and cache sizes) may result in different performance

characteristics. To make predictions for a new hardware platform without collecting latency measurements, a model

would need to account for kernel selection and for the parameters of the hardware architecture. We are exploring

the development of more general cross-device prediction models as future work.

In addition, changes to the implementation of kernels within ML frameworks may affect their performance,

requiring new data collection and retraining of latency predictors. Such changes typically occur when optimized

building blocks of NAs are proposed and integrated into ML frameworks. For example, recent advancements in

Vision Transformer motivated the introduction of optimized implementations of multi-head attention layers in ML

frameworks. Our approach requires new latency measurements to train predictors for these new operations.

6. Related Work

As observed in Section 1, related work has only limited consideration of the following challenges.

Limited consideration of hardware heterogeneity. Most existing work aims at latency predictions of training or infer-

ence tasks on cloud GPUs [14, 18, 20, 19, 17, 25, 26, 27] or embedded GPUs [23, 24], where Nvidia GPUs dominate

the market for ML workloads. Instead, our paper studies multiple mainstream mobile platforms from different man-

ufacturers, and tackles hardware heterogeneity across these platforms. Some recent works [21, 22, 15] focus on

performance prediction on mobile CPUs, but are limited only to a single core with floating-point representation.

Instead, our work evaluates inference latency of mobile CPUs across a broad range of realistic scenarios, including

the utilization of multiple heterogeneous CPU cores, and both floating-point and integer representations.

Limited consideration of ML framework optimizations. The majority of existing work [18, 20, 15] proposes to pre-

dict latency based on the features extracted from neural architectures and hardware, but neglects the effects of ML

framework optimizations. As identified by our results, accounting for these optimizations results in significant im-

provements of the predictions for real-world neural architectures across multiple ML approaches. Since ML frame-

work optimizations cannot be analyzed on Nvidia cloud and edge GPUs (cuDNN is not open-source [83]), recent

work [22] proposes a black-box approach to learn their policies (i.e., the algorithms for kernel fusion). In contrast,

on mobile platforms, ML frameworks use open-source algorithms and custom kernels to support a broad range of

heterogeneous GPUs; we highlight the optimizations in both TFLite and PyTorch Mobile, accurately inferring the

actual kernels used after compilation without deploying and compiling NN models on actual devices.

Next, different approaches exist in the literature to model inference latency. Some works [14, 17, 16] adopt ML

approaches to predict end-to-end latency of neural architectures by encoding the entire neural architecture as a sin-

gle vector of input features; this approach, however, requires complicated ML techniques as well as large amounts

of training data. In contrast, we make latency predictions for each component of the neural architecture, allowing

simple ML algorithms that require less training data and are easier to interpret (e.g., in the case of Lasso) for under-

standing and development. Similarly to our work, component-wise approaches are used by [22, 15] and analytical

performance models of computation and memory access also exist in the literature [25, 26, 27], but both lines of

work have limited consideration of hardware heterogeneity and ML framework optimizations, as described above.

Finally, while our paper predicts latency of NAs that are static during inference (a common scenario in practice),

dynamic neural networks (or adaptive neural networks) disable parts of the NA based on the complexity of the specific

input example [84, 85], to ensure that inference latency is sufficiently low for a target application. In this case,

performance bottlenecks may depend on the input data, requiring performance testing [86]. Our approach can, in

principle, be extended to dynamic NAs by predicting latency of individual blocks selected at runtime. In this context,

our approach of estimating latency for individual blocks is beneficial in contrast to end-to-end black-box models that

would be difficult to adapt to this scenario. We plan to explore these settings in future work.

7. Conclusions

Using measurements collected on 6 mobile devices for a number of neural architectures (1000 synthetic NAS

architectures and 102 real-world architectures), we showed the impact of different factors on inference latency, in-

cluding optimizations applied by ML frameworks for mobile GPUs (kernel fusion and kernel selection), scheduling

20

over heterogeneous subsets of CPU cores and integer representations after quantization, often neglected by related

work. Based on this experimental evaluation, we proposed an approach to estimate end-to-end inference latency by

training ML models to predict latency of each component type of neural architectures. Our approach can accurately

predict latency of novel neural architectures on a given device using limited profiling data (e.g., from 30 architec-

tures); notably, we achieve good accuracy also when the test dataset has different characteristics from training data

(a common scenario in NAS) and for different ML frameworks (TFLite and PyTorch Mobile). In future work, we plan

to extend our evaluation and prediction approach to other efficiency metrics (e.g., power consumption), to different

classes of specialized hardware accelerators for inference tasks (e.g., Apple Neural Engine).

Acknowledgments

This work was supported in part by the NSF CNS-1816887, CCF-1763747, and IIS-1833137 awards.

References

[1] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, H. Adam, Searching for

MobileNetV3, in: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

[2] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q. V. Le, MnasNet: Platform-Aware Neural Architecture Search for Mobile,

in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[3] M. Tan, Q. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, in: International conference on machine learning,

PMLR, 2019, pp. 6105–6114.

[4] B. Zoph, Q. V. Le, Neural Architecture Search with Reinforcement Learning, in: International Conference on Learning Representations,

ICLR, 2017.

[5] M. Lin, P. Wang, Z. Sun, H. Chen, X. Sun, Q. Qian, H. Li, R. Jin, Zen-nas: A zero-shot nas for high-performance image recognition, in:

Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 347–356.

[6] J. Mellor, J. Turner, A. Storkey, E. J. Crowley, Neural architecture search without training, in: International Conference on Machine Learning,

PMLR, 2021, pp. 7588–7598.

[7] H. Tanaka, D. Kunin, D. L. Yamins, S. Ganguli, Pruning neural networks without any data by iteratively conserving synaptic flow, Advances

in neural information processing systems 33 (2020) 6377–6389.

[8] X. Tang, S. Han, L. L. Zhang, T. Cao, Y. Liu, To bridge neural network design and real-world performance: A behaviour study for neural

networks, Proceedings of Machine Learning and Systems 3 (2021) 21–37.

[9] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable architectures for scalable image recognition.

[10] N. Ma, X. Zhang, H.-T. Zheng, J. Sun, ShuffleNet v2: Practical guidelines for efficient cnn architecture design, in: Proceedings of the European

conference on computer vision (ECCV), 2018, pp. 116–131.

[11] H. Cai, C. Gan, T. Wang, Z. Zhang, S. Han, Once-for-All: Train One Network and Specialize it for Efficient Deployment, in: International

Conference on Learning Representations, ICLR, 2019.

[12] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan, Y. Hu, Y. Wu, Y. Jia, P. Vajda, M. Uyttendaele, N. K. Jha, ChamNet: Towards

Efficient Network Design Through Platform-Aware Model Adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2019.

[13] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, K. Keutzer, FBNet: Hardware-Aware Efficient ConvNet Design

via Differentiable Neural Architecture Search, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2019.

[14] S. Abbasi, A. Wong, M. J. Shafiee, MAPLE: Microprocessor a Priori for Latency Estimation, in: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, 2022.

[15] H. Cai, L. Zhu, S. Han, ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, in: International Conference on

Learning Representations, ICLR, 2019.

[16] L. Dudziak, T. Chau, M. Abdelfattah, R. Lee, H. Kim, N. Lane, BRP-NAS: Prediction-based NAS using GCNs, in: Advances in Neural

Information Processing Systems, Vol. 33, 2020, pp. 10480–10490.

[17] Y. Gao, X. Gu, H. Zhang, H. Lin, M. Yang, Runtime Performance Prediction for Deep Learning Models with Graph Neural Network, Tech.

rep., Technical Report MSR-TR-2021-3. Microsoft (2021).

[18] X. Y. Geoffrey, Y. Gao, P. Golikov, G. Pekhimenko, Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural

Network Training, in: USENIX Annual Technical Conference, 2021, pp. 503–521.

[19] U. U. Hafeez, A. Gandhi, Empirical Analysis and Modeling of Compute Times of CNN Operations on AWS Cloud, in: 2020 IEEE International

Symposium on Workload Characterization (IISWC), IEEE, 2020, pp. 181–192.

[20] D. Justus, J. Brennan, S. Bonner, A. S. McGough, Predicting the Computational Cost of Deep Learning Models, in: 2018 IEEE International

Conference on Big Data (Big Data), 2018, pp. 3873–3882.

[21] B. Lu, J. Yang, W. Jiang, Y. Shi, S. Ren, One proxy device is enough for hardware-aware neural architecture search, Proceedings of the ACM

on Measurement and Analysis of Computing Systems 5 (3) (2021) 1–34.

[22] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, Y. Liu, nn-Meter: towards accurate latency prediction of deep-learning model inference

on diverse edge devices, in: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, 2021,

pp. 81–93.

21

[23] H. Bouzidi, H. Ouarnoughi, S. Niar, A. A. E. Cadi, Performance prediction for convolutional neural networks on edge GPUs, in: Proceedings

of the 18th ACM International Conference on Computing Frontiers, 2021, pp. 54–62.

[24] N. Bouhali, H. Ouarnoughi, S. Niar, A. A. El Cadi, Execution Time Modeling for CNN Inference on Embedded GPUs, in: Proceedings of the

2021 Drone Systems Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools Proceedings, 2021, pp. 59–65.

[25] H. Qi, E. R. Sparks, A. Talwalkar, Paleo: A Performance Model for Deep Neural Networks, in: Proceedings of the International Conference

on Learning Representations, 2017.

[26] J. Li, R. Ma, V. S. Mailthody, C. Samplawski, B. Marlin, S. Chen, S. Yao, T. Abdelzaher, Towards an Accurate Latency Model for Convolutional

Neural Network Layers on GPUs, in: MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM), IEEE, 2021, pp. 904–909.

[27] S. Lym, D. Lee, M. O’Connor, N. Chatterjee, M. Erez, DeLTA: GPU performance model for deep learning applications with in-depth memory

system traffic analysis, in: 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), IEEE, 2019, pp.

293–303.

[28] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao,

B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, P. Zhang, Machine learning at Facebook:

Understanding inference at the edge, in: 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), IEEE,

2019, pp. 331–344.

[29] X. Zhang, X. Zhou, M. Lin, J. Sun, ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[30] Google, Tensorflow lite: Ml for mobile and edge devices, https://www.tensorflow.org/lite (2022).

[31] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi, R. Sarokin, A. Kulik, M. Grundmann, On-Device Neural Net Inference

with Mobile GPUs, arXiv preprint arXiv:1907.01989 (2019).

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., PyTorch: An imperative

style, high-performance deep learning library, Advances in neural information processing systems 32 (2019).

[33] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, T. Mitra, High-throughput CNN inference on embedded ARM Big.LITTLE

multicore processors, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 (10) (2019) 2254–2267.

[34] W. Niu, J. Guan, Y. Wang, G. Agrawal, B. Ren, DNNFusion: accelerating deep neural networks execution with advanced operator fusion,

in: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, 2021, pp.

883–898.

[35] A. Lavin, S. Gray, Fast Algorithms for Convolutional Neural Networks, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[36] M. Syed, A. A. Srinivasan, Generalized Latency Performance Estimation for Once-For-All Neural Architecture Search, arXiv preprint

arXiv:2101.00732 (2021).

[37] P. Bryzgalov, T. Maeda, Y. Shigeto, Predicting How CNN Training Time Changes on Various Mini-Batch Sizes by Considering Convolution

Algorithms and Non-GPU Time, in: Proceedings of the 2021 on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn STrategy,

2021, pp. 11–18.

[38] X. Dong, L. Liu, K. Musial, B. Gabrys, NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size, IEEE transactions

on pattern analysis and machine intelligence 44 (7) (2021) 3634–3646.

[39] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen, T. Blankevoort, A white paper on neural network quantization,

arXiv preprint arXiv:2106.08295 (2021).

[40] Z. Li, M. Paolieri, L. Golubchik, Predicting Inference Latency of Neural Architectures on Mobile Devices, in: Proceedings of ICPE 2023,

ACM, 2023, pp. 99–112. doi:10.1145/3578244.3583735.

[41] J. H. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics 29 (5) (2001) 1189–1232.

[42] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological) 58 (1)

(1996) 267–288.

[43] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications, arXiv preprint arXiv:1704.04861 (2017).

[44] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[45] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, MobileNetV2: Inverted Residuals and Linear Bottlenecks, in: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[46] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D. Kalenichenko, Quantization and Training of Neural Networks for

Efficient Integer-Arithmetic-Only Inference, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2018.

[47] Apple, Prioritize work at the task level, https://developer.apple.com/library/archive/documentation/Performance/
Conceptual/power_efficiency_guidelines_osx/PrioritizeWorkAtTheTaskLevel.html, accessed: 2022-10-10 (2016).

[48] W. Brendel, M. Bethge, Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet, arXiv preprint

arXiv:1904.00760 (2019).

[49] S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, in: Proceedings of

the 32nd International Conference on Machine Learning, Vol. 37, PMLR, 2015, pp. 448–456.

[50] G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, Densely Connected Convolutional Networks, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

[51] S. Zagoruyko, N. Komodakis, DiracNets: Training very deep neural networks without skip-connections, arXiv preprint arXiv:1706.00388

(2017).

[52] F. Yu, D. Wang, E. Shelhamer, T. Darrell, Deep Layer Aggregation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[53] Z. Qin, Z. Zhang, X. Chen, C. Wang, Y. Peng, Fd-MobileNet: Improved mobilenet with a fast downsampling strategy, in: 2018 25th IEEE

22

International Conference on Image Processing (ICIP), IEEE, 2018, pp. 1363–1367.

[54] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, C. Xu, Ghostnet: More features from cheap operations, in: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2020.

[55] P. Chao, C.-Y. Kao, Y.-S. Ruan, C.-H. Huang, Y.-L. Lin, HarDNet: A Low Memory Traffic Network, in: Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision (ICCV), 2019.

[56] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang, W. Liu, B. Xiao, Deep high-resolution representation

learning for visual recognition, IEEE transactions on pattern analysis and machine intelligence 43 (10) (2020) 3349–3364.

[57] R. J. Wang, X. Li, C. X. Ling, Pelee: A real-time object detection system on mobile devices, Advances in neural information processing

systems 31 (2018).

[58] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, in: Computer Vision–ECCV 2016: 14th European Conference,

Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, Springer, 2016, pp. 630–645.

[59] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, P. Dollar, Designing Network Design Spaces, in: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2020.

[60] S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, Aggregated Residual Transformations for Deep Neural Networks, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[61] J. Hu, L. Shen, G. Sun, Squeeze-and-Excitation Networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2018.

[62] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, D. Marculescu, Single-Path NAS: Designing Hardware-Efficient

ConvNets in Less Than 4 Hours, in: Machine Learning and Knowledge Discovery in Databases, Springer, Cham, 2020, pp. 481–497.

[63] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters

and <0.5 MB model size, arXiv preprint arXiv:1602.07360 (2016).

[64] Y. Lee, J.-w. Hwang, S. Lee, Y. Bae, J. Park, An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection,

in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019.

[65] Sandbox for training deep learning networks, https://github.com/osmr/imgclsmob (2021).

[66] Google, TensorFlow Lite: Multithreading for Depthwise Convolutions, https://github.com/tensorflow/tensorflow/blob/v2.
9.0/tensorflow/lite/kernels/internal/optimized/depthwiseconv_multithread.h#L173, accessed: 2022-08-05 (2022).

[67] Google, TensorFlow Lite: Multithreading for Convolutions with the Ruy Library, https://github.com/google/ruy/blob/38a926/
ruy/trmul.cc#L390, accessed: 2022-08-05 (2022).

[68] PyTorch, Caffe2: ThreadPool Implementation, https://github.com/pytorch/pytorch/blob/v2.0.0/caffe2/utils/
threadpool/ThreadPool.cc#L201, accessed: 2023-09-20 (2023).

[69] Mobile ML Benchmark, https://github.com/qed-usc/mobile-ml-benchmark/, accessed: 2024-03-08 (2024).

[70] QNNPACK: Quantized Neural Networks PACKage, https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/
native/quantized/cpu/qnnpack, accessed: 2023-09-20 (2023).

[71] Google, XNNPACK: High-efficiency floating-point neural network inference operators for mobile, server, and Web, https://github.
com/google/XNNPACK, accessed: 2023-09-20 (2023).

[72] Google, TensorFlow Lite: Kernel Fusion Implementation, https://github.com/tensorflow/tensorflow/blob/v2.9.0/
tensorflow/lite/delegates/gpu/common/gpu_model.cc#L421, accessed: 2022-08-05 (2022).

[73] Google, PyTorch Mobile: Vulkan Backend Optimization, https://github.com/pytorch/pytorch/blob/v2.0.0/torch/csrc/
jit/passes/vulkan_rewrite.cpp#L344, accessed: 2024-04-29 (2023).

[74] Z. Li, M. Paolieri, L. Golubchik, A Benchmark for ML Inference Latency on Mobile Devices, in: Proceedings of EdgeSys 2024, ACM, 2024,

pp. 31–36. doi:10.1145/3642968.3654818.

[75] K. P. Murphy, Machine learning: a probabilistic perspective, MIT press, 2012.

[76] Google, Tflite model benchmark tool, https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/
benchmark, accessed: 2022-07-12 (2022).

[77] Google, Tensorflow lite: Profile time for opencl kernels, https://github.com/tensorflow/tensorflow/blob/v2.9.0/
tensorflow/lite/delegates/gpu/cl/inference_context.cc#L792, accessed: 2022-10-12 (2022).

[78] Apple, Discover metal debugging, profiling, and asset creation tools, https://developer.apple.com/videos/play/wwdc2021/
10157, accessed: 2022-10-06 (2021).

[79] PyTorch, Kineto pytorch profiler, https://github.com/pytorch/kineto, accessed: 2023-09-26 (2023).

[80] PyTorch, Pytorch cpu caching allocator, https://github.com/pytorch/pytorch/blob/main/c10/mobile/
CPUCachingAllocator.h, accessed: 2023-09-26 (2023).

[81] M. R. nn Meter Team, nn-Meter: Towards Accurate Latency Prediction of Deep-Learning Model Inference on Diverse Edge Devices, https:
//github.com/microsoft/nn-Meter (2021).

[82] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images (2009).

[83] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, cudnn: Efficient primitives for deep learning, arXiv

preprint arXiv:1410.0759 (2014).

[84] T. Bolukbasi, J. Wang, O. Dekel, V. Saligrama, Adaptive Neural Networks for Efficient Inference, in: Proceedings of ICML 2017, Vol. 70 of

Proceedings of Machine Learning Research, PMLR, 2017, pp. 527–536.

[85] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, Y. Wang, Dynamic Neural Networks: A Survey, IEEE Trans. Pattern Anal. Mach. Intell. 44 (11)

(2022) 7436–7456. doi:10.1109/TPAMI.2021.3117837.

[86] S. Chen, M. Haque, C. Liu, W. Yang, DeepPerform: An Efficient Approach for Performance Testing of Resource-Constrained Neural Net-

works, in: Proceedings of ASE 2022, ACM, 2022, pp. 31:1–31:13. doi:10.1145/3551349.3561158.

23

A. Supplementary Data

In this appendix, we include supplementary data from our measurements and prediction results. This data is pro-

vided here for completeness and includes measurements and predictions on two additional platforms (Snapdragon

710 and A10 Fusion) as well as the full set of outliers that were omitted in some of the figures of the main text for

clarity of presentation.

Figs. A.25 to A.28 present the measurements on Snapdragon 710 and A10 Fusion, which are omitted in Figs. 2 to 5

(Section 3) for clarity of presentation; correspondingly, the predictions on these platforms are reported in Figs. A.29

and A.30, which are omitted in Figs. 13 and 21 (Section 5). Fig. A.31 depicts end-to-end latency of real-world NAs on

six platforms for different multi-core configurations, including the outliers omitted in Fig. 2 for clarity of presentation

(Section 3.1.1). Figs. A.32 and A.33 present the speedup of kernel fusion on end-to-end latency and on each type of

operations, respectively, including the small set of outliers omitted in Figs. 6b and 7 (Section 3.2.1).

Tables C.4 to C.7 report the complete MAPEs of end-to-end latency predictions on each hardware platform,

for synthetic and real-world neural architectures, on TFLite and PyTorch Mobile, respectively, across different ML

approaches, with varying training set sizes. This detailed data corresponds to the results in Fig. 20 in the main text

where these errors were averaged across hardware platforms. For predictions on different CPU core combinations

and with both floating-point and integer representations, Fig. A.34 shows the end-to-end latency predictions of

GBDT for synthetic neural architectures on various core combinations, including the small set of outliers omitted in

Fig. 13 (Section 5.2); Fig. A.35 presents the end-to-end latency predictions of Lasso for real-world neural architectures

on various core combinations, including the small set of outliers omitted in Fig. 21 (Section 5.5.2).

B. Details of Kernel Fusion and Kernel Selection

In this section, we elaborate the algorithms of kernel fusion (Section 3.2.1) and kernel selection (Section 3.2.2) in

PyTorch Mobile and TFLite. Algorithm B.1 shows the implementation details of Vulkan kernel selection in PyTorch

Mobile: when the convolution layer satisfies the criteria for depthwise convolutions (i.e., the group size is equal

to input channels), a depthwise kernel can be applied based on kernel shape; also, a special pointwise kernel is

implemented for convolutions with kernel shape 1x1.

Algorithm B.2 presents the implementation details of kernel fusion in TFLite GPU Delegate: two operations of

the computational graph are fused when (1) the first operation has only one output tensor (Line 5), (2) the second

operation is the only operation in the graph using this output tensor (Line 14), (3) the second operation uses this

output tensor as its first input and produces a single output (Line 22), and (4) the next operation has a compatible

type (Line 24).

Algorithm B.3 summarizes the criteria used by TFlite to enable the use of the Winograd algorithm for convo-

lution operations on GPUs: when the input tensor and kernel size of a convolution operation both satisfy certain

hardware-dependent criteria (i.e., CheckWinograd), the kernel of Winograd is selected for the operation. For exam-

ple, Table B.3 presents three convolution operations in ResNet16, which all have only one convolution group, kernel

size 3x3 and stride 1. For convolution (1), src_depth and dst_depth fail to satisfy the conditions for Adreno GPUs

(Line 17), but meet the requirements for Mali and PowerVR GPUs (Line 21). For convolution (2), total_tiles is too

small for Adreno 600-level GPUs (Line 24), but large enough for Mali and PowerVR GPUs (Line 28). Convolution (3)

cannot be implemented using the Winograd algorithm in either GPU because of the small total_tiles (Line 28).

Another operation allowing optimized implementations in TFLite is grouped convolution, which consists of

three stages: (1) splitting the input tensor over channel size, (2) performing a convolution on each resulting tensor

1S 2S 3S 4S 5S 6S 1L 2L 1L1S 2L1S
Cores

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

La
te

nc
y

(s
)

(a) Snapdragon 710 (TFLite)

1L 2L
Cores

0.00
0.05
0.10
0.15
0.20
0.25

(b) A10 Fusion (TFLite)

1S 2S 3S 4S 5S 6S 1L 2L 1L1S 2L1S
Cores

0.0
0.2
0.5
0.8
1.0
1.2
1.5
1.8

La
te

nc
y

(s
)

(c) Snapdragon 710 (PyTorch)

1L 2L
Cores

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

(d) A10 Fusion (PyTorch)

Figure A.25: Effects of Multicore on End-to-end Latency

24

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Sp
ee

du
p 2 Large

(a) Snapdragon 710 (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0.5
1.0
1.5
2.0 2 Large

(b) A10 Fusion (TFLite)

Conv DW-
Conv

FC Mean Pool Concat/
Split

Add/
Mul

Operations

0.8
1.0
1.2
1.4
1.6
1.8
2.0

Sp
ee

du
p 2 Large

(c) Snapdragon 710 (PyTorch)

Conv DW-
Conv

FC Mean Pool Concat/
Split

Add/
Mul

Operations

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

2 Large

(d) A10 Fusion (PyTorch)

Figure A.26: Effects of Homogeneous Multicore on Operation-wise Latency (Speedup over One Core)

1S 2S 3S 4S 5S 6S 1L 2L
Cores

0.8
1.0
1.2
1.5
1.8
2.0
2.2
2.5

Sp
ee

du
p Int8

(a) Snapdragon 710 (TFLite)

1L 2L
Cores

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6 Int8

(b) A10 Fusion (TFLite)

1S 2S 3S 4S 1L 2L
Cores

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p Int8

(c) Snapdragon 710 (PyTorch)

1L 2L
Cores

0.5
0.8
1.0
1.2
1.5
1.8
2.0
2.2
2.5

Int8

(d) A10 Fusion (PyTorch)

Figure A.27: Effects of Quantization on End-to-end Latency

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0
2
4
6
8

Sp
ee

du
p 1 Large, Int8

(a) Snapdragon 710 (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Pad Element-
wise

Operations

0
2
4
6
8

10
12

1

1 Large, Int8

(b) A10 Fusion (TFLite)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Add/
Mul

Operations

0
1
2
3
4
5
6
7
8

Sp
ee

du
p

1

1 Large, Int8

(c) Snapdragon 710 (PyTorch)

Conv DW-
Conv

FC Mean Concat/
Split

Pool Add/
Mul

Operations

0
1
2
3
4
5
6
7
8

1

1 Large, Int8

(d) A10 Fusion (PyTorch)

Figure A.28: Effects of Quantization on Operation-wise Latency

1L 2L 1S 2S 3S 4S 5S 6S
Cores

0%
2%
5%
8%

10%
12%
15%
18%
20%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(a) Snapdragon 710 (TFLite)

1L 2L
Cores

0%
2%
4%
6%
8%

10%
12%
14% NTrain = 900, Float

NTrain = 900, Int8

(b) A10 Fusion (TFLite)

1L 2L 1S 2S 3S 4S
Cores

0%
2%
4%
6%
8%

10%
12%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(c) Snapdragon 710 (PyTorch)

1L 2L
Cores

0%
2%
4%
6%
8%

10%
12%

NTrain = 900, Float
NTrain = 900, Int8

(d) A10 Fusion (PyTorch)

Figure A.29: Predictions of GBDT on CPUs (Synthetic NAs)

1L 2L 1S 2S 3S 4S 5S 6S
Cores

0%
5%

10%
15%
20%
25%
30%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8

(a) Snapdragon 710 (TFLite)

1L 2L
Cores

0%

5%

10%

15%

20% NTrain = 30, Float
NTrain = 30, Int8

(b) A10 Fusion (TFLite)

1L 2L 1S 2S 3S 4S
Cores

0%
10%
20%
30%
40%
50%
60%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8

(c) Snapdragon 710 (PyTorch)

1L 2L
Cores

0%
5%

10%
15%
20%
25%
30%
35%
40%

NTrain = 30, Float
NTrain = 30, Int8

(d) A10 Fusion (PyTorch)

Figure A.30: Predictions of Lasso on CPUs (Real-world NAs)

25

1S 2S 3S 4S 1M 2M 3M 1L 1L1M1L1S1M1S
Cores

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

La
te

nc
y

(s
)

(a) Snapdragon 855 (TFLite)

1S 2S 3S 4S 5S 6S 1L 2L 1L1S 2L1S
Cores

0.0
1.0
2.0
3.0
4.0
5.0

(b) Snapdragon 710 (TFLite)

1S 2S 3S 4S 1M 2M 1L 2L 1L1S 2L1S 2L2S
Cores

0.0
1.0
2.0
3.0
4.0

La
te

nc
y

(s
)

(c) Exynos 9820 (TFLite)

1S 2S 3S 4S 1L 2L 3L 4L 1L1S 2L1S
Cores

0.0
1.0
2.0
3.0
4.0
5.0
6.0

(d) Helio P35 (TFLite)

1S 2S 3S 4S 1L 2L
Cores

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(e) A12 Bionic (TFLite)

1L 2L
Cores

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

(f) A10 Fusion (TFLite)

1S 2S 3S 4S 1M 2M 3M 1L 1L1M1L1S1M1S
Cores

0.0
2.0
4.0
6.0
8.0

10.0
12.0

La
te

nc
y

(s
)

(g) Snapdragon 855 (PyTorch)

1S 2S 3S 4S 5S 6S 1L 2L 1L1S 2L1S
Cores

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

(h) Snapdragon 710 (PyTorch)

1S 2S 3S 4S 1M 2M 1L 2L 1L1S 2L1S 2L2S
Cores

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

La
te

nc
y

(s
)

(i) Exynos 9820 (PyTorch)

1S 2S 3S 4S 1L 2L 3L 4L 1L1S 2L1S
Cores

0.0
2.0
4.0
6.0
8.0

10.0
12.0

(j) Helio P35 (PyTorch)

1S 2S 3S 4S 1L 2L
Cores

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

La
te

nc
y

(s
)

(k) A12 Bionic (PyTorch)

1L 2L
Cores

0.0
0.2
0.4
0.6
0.8
1.0
1.2

(l) A10 Fusion (PyTorch)

Figure A.31: Effects of Multicore on End-to-end Latency

PowerVR
GE8320

Adreno
616

Adreno
640

Mali
G76

A12 A10

Platforms

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Sp
ee

du
p w/ Fusion

(a) TFLite

Adreno
616

Adreno
640

Mali
G76

Platforms

1.0
1.5
2.0
2.5
3.0
3.5

Sp
ee

du
p w/ Fusion

(b) PyTorch

Figure A.32: Effects of Kernel Fusion on End-to-end Latency

Conv DW-
Conv

FC Mean Concat/
Split

Pool Element-
wise

Operations

0
10
20
30
40
50
60

Sp
ee

du
p

1

w/ Fusion

(a) Adreno 640 (TFLite)

Conv Winograd DW-
Conv

FC Mean Concat/
Split

Pool Element-
wise

Operations

0
10
20
30
40
50
60

1

w/ Fusion

(b) A12 Bionic (TFLite)

Conv DW-
Conv

FC Mean Pool Add/Mul BN Activ

Operations

0
5

10
15
20
25
30

Sp
ee

du
p

1

w/ Fusion

(c) Adreno 640 (PyTorch)

Conv DW-
Conv

FC Mean Pool Add/Mul BN Activ

Operations

0
10
20
30
40

Sp
ee

du
p

1

w/ Fusion

(d) Adreno 616 (PyTorch)

Figure A.33: Effects of Kernel Fusion on Operation-wise Latency

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
10%
20%
30%
40%
50%
60%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(a) Snapdragon 855 (TFLite)

1L 2L 1S 2S 3S 4S 5S 6S
Cores

0%
10%
20%
30%
40%
50% NTrain = 900, Float

NTrain = 900, Int8

(b) Snapdragon 710 (TFLite)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
10%
20%
30%
40%
50%
60%
70%
80%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(c) Exynos 9820 (TFLite)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25%
30% NTrain = 900, Float

NTrain = 900, Int8

(d) Helio P35 (TFLite)

1L 2L 1S 2S 3S 4S
Cores

0%

10%

20%

30%

40%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(e) A12 Bionic (TFLite)

1L 2L
Cores

0%
5%

10%
15%
20%
25%
30% NTrain = 900, Float

NTrain = 900, Int8

(f) A10 Fusion (TFLite)

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
5%

10%
15%
20%
25%
30%
35%
40%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(g) Snapdragon 855 (PyTorch)

1L 2L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25% NTrain = 900, Float

NTrain = 900, Int8

(h) Snapdragon 710 (PyTorch)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
10%
20%
30%
40%
50%
60%
70%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(i) Exynos 9820 (PyTorch)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25% NTrain = 900, Float

NTrain = 900, Int8

(j) Helio P35 (PyTorch)

1L 2L 1S 2S 3S 4S
Cores

0%
2%
4%
6%
8%

10%
12%
14%
16%

M
AP

E

NTrain = 900, Float
NTrain = 900, Int8

(k) A12 Bionic (PyTorch)

1L 2L
Cores

0%
5%

10%
15%
20%
25%
30%
35%
40% NTrain = 900, Float

NTrain = 900, Int8

(l) A10 Fusion (PyTorch)

Figure A.34: Predictions of GBDT on CPUs (Synthetic NAs)

26

Index

Configurations Conditions in Algorithm B.3 If use Winograd

Input

channels

Output

channels

Output

height

src_depth dst_depth total_tiles Adreno Mali

(1) 64 64 56 16 16 196 No Yes

(2) 128 128 28 32 32 49 No Yes

(3) 256 256 14 64 64 16 No No

Table B.3: Applicability of TFLite Winograd Kernels to Convolutions in ResNet16 (1 group, 3x3 kernel, stride 1)

Algorithm B.1: Conv Kernel Selection in PyTorch Mobile Vulkan Backend

SelectConv2DKernel(op_info)
1 if op_info.is_transpose

2 return Kernel(conv2d)

3 if op_info.groups == op_info.input_channel and op_info.output_channel ̸= 1

4 if op_info.kernel_shape == 3x3

5 return Kernel(conv2d_dw_3x3)

6 else if op_info.kernel_shape == 5x5

7 return Kernel(conv2d_dw_5x5)

8 else
9 return Kernel(conv2d_dw)

10 if op_info.kernel_shape == 1x1

11 return Kernel(conv2d_pw)

12 return Kernel(conv2d)

(i.e., on each group), and (3) concatenating all output tensors. A naive implementation of grouped convolution

uses an independent convolution kernel for each group, and two kernels for the split and concatenation operations.

TFLite supports an optimized implementation of grouped_convolution_2d using only one kernel. Fig. B.36 illustrates

the performance improvement of the optimized grouped_convolution_2d kernel over a naive implementation; we

observe substantial improvements, e.g., 2.96x speedup for RegNetX004 on PowerVR GE8320.

C. Evaluations on nn-Meter

In this appendix, we report details of our quantitative comparison with related work, specifically nn-Meter.

Recall that in the main text we provided a quantitative comparison with nn-Meter on our dataset (Section 5.6.1).

Here, we provide details of why such a comparison was appropriate.

A natural approach to a quantitative comparison with nn-Meter would be to use nn-Meter’s pre-trained predic-

tors on Pixel4 Snapdragon 855 CPU (with a single thread) and Adreno 640 GPU (as provided in [81]), which is what

we did initially. However, this did not work out (and hence a, what we believe to be a more fair comparison, using

our data set in the main text) for the following reasons. Specifically, initially we evaluated our approach on the same

experimental setup as nn-Meter by using TFLite v2.1. Due to the lack of support for operations (e.g., grouped con-

volutions) on GPU delegate of TFLite v2.1, 17 real-world NAs failed to be fully executed on GPUs. As a result, in our

evaluations we selected only 85 real-world NAs and (re)generated 1000 synthetic NAs by removing grouped convo-

lutions in our NAS space. As depicted in Fig. B.37, which compares nn-Meter predictions to those of our approach

(with different ML models, all trained on 900 synthetic NAs), our approach achieves much better results (on Pixel

4) on both real-world and synthetic NAs. We believe that the main reason is that the ground truth measurements

used by nn-Meter to train the predictors are collected from their customized TFLite benchmark tool (also provided

in [81]), which was compiled without specifying the ARM64 architecture (because this argument was optional in

27

Algorithm B.2: Kernel Fusion in TFLite GPU Delegate

MergeNodes(nodes)
1 ready_tensors = []

2 for cur_node in nodes

3 for dst_tensor in cur_node.dst_tensors

4 ready_tensors.insert(dst_tensor)

5 if cur_node.dst_tensors.size() ̸= 1

6 continue
7 candidate_nodes = []

8 candidate_tensor_index = 0

9 for next_node in nodes

10 for k = 0 to next_node.src_tensors.size() - 1

11 if next_node.src_tensors[k] == cur_node.dst_tensors[0]

12 candidate_tensor_index = k

13 candidate_nodes.insert(next_node)

14 if candidate_nodes.size() ̸= 1 or candidate_tensor_index ̸= 0

15 continue
16 next_node = candidate_nodes[0]

17 if next_node.src_tensors[0] ∈ ready_tensors

18 and IsLinkable(next_node)

19 Merge(cur_node, next_node)

20 nodes.remove(cur_node)

21 return nodes

IsLinkable(node)
22 if node.output_tensors.size() ̸= 1

23 return False

24 if node.type ∈ [ACTIVATION, COPY, ADD, SUB, MUL, DIV, EXP, LOG, SQRT, SQUARE, ABS, NEG, POW, EQUAL,

GREATER, LESS, MAXIMUM, MINIMUM]

25 return True

26 return False

the earlier version of TFLite, but is now used by default)
22

. To better understand the poor predictions of nn-Meter in

Fig. B.37, we compared the measurements from their customized benchmark tool with those of the standard TFLite

benchmark tool (which we used to build our dataset, as noted in Section 4.3.1) and found that their customized

benchmark tool consistently showed worse performance. This leads to nn-Meter’s pre-trained predictors (trained

on the data collected by their tool) giving much poorer predictions on our dataset.

Thus, as noted above, to achieve a fairer comparison, in the main text we took the route of reproducing their

approach on our dataset (Section 5.6.1).

22
We communicated with the authors of nn-Meter and we were given this information.

28

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
10%
20%
30%
40%
50%
60%
70%
80%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8

(a) Snapdragon 855 (TFLite)

1L 2L 1S 2S 3S 4S 5S 6S
Cores

0%
10%
20%
30%
40%
50% NTrain = 30, Float

NTrain = 30, Int8

(b) Snapdragon 710 (TFLite)

1L 2L 1M 2M 1S 2S 3S 3S 4S 4S 1L2M
Cores

0%
25%
50%
75%

100%
125%
150%
175%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8
NTrain = 1000, Float
NTrain = 1000, Int8

(c) Exynos 9820 (TFLite)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%

20%

40%

60%

80%
NTrain = 30, Float
NTrain = 30, Int8

(d) Helio P35 (TFLite)

1L 2L 1S 2S 3S 4S
Cores

0%
10%
20%
30%
40%
50%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8

(e) A12 Bionic (TFLite)

1L 2L
Cores

0%
10%
20%
30%
40%
50% NTrain = 30, Float

NTrain = 30, Int8

(f) A10 Fusion (TFLite)

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
10%
20%
30%
40%
50%
60%
70%
80%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8

(g) Snapdragon 855 (PyTorch)

1L 2L 1S 2S 3S 4S
Cores

0%
10%
20%
30%
40%
50%
60%
70%
80% NTrain = 30, Float

NTrain = 30, Int8

(h) Snapdragon 710 (PyTorch)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
20%
40%
60%
80%

100%
120%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8

(i) Exynos 9820 (PyTorch)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%
10%
20%
30%
40%
50%
60%
70%
80% NTrain = 30, Float

NTrain = 30, Int8

(j) Helio P35 (PyTorch)

1L 2L 1S 2S 3S 4S
Cores

0%
10%
20%
30%
40%
50%

M
AP

E

NTrain = 30, Float
NTrain = 30, Int8

(k) A12 Bionic (PyTorch)

1L 2L
Cores

0%
10%
20%
30%
40%
50% NTrain = 30, Float

NTrain = 30, Int8

(l) A10 Fusion (PyTorch)

Figure A.35: Predictions of Lasso on CPUs (Real-world NAs)

regnetx004 regnetx008 regnetx016 regnety006 regnety008 resnext14
(32x4d)

resnext26
(32x4d)

Neural Architectures

0

10

20

30

40

La
te

nc
y

(m
s)

2.46x 2.27x

1.67x

1.97x
1.75x

1.21x

1.32x

w/ grouped_convolution
w/o grouped_convolution

(a) Snapdragon 855 (Adreno 640)

regnetx004 regnetx008 regnetx016 regnety006 regnety008 resnext14
(32x4d)

resnext26
(32x4d)

Neural Architectures

0
50

100
150
200
250
300
350

La
te

nc
y

(m
s)

2.96x
2.48x 1.33x

2.32x 1.82x 1.21x

1.27x

w/ grouped_convolution
w/o grouped_convolution

(b) Helio P35 (PowerVR GE8320)

Figure B.36: Effects of Using grouped_convolution_2d Kernels on End-to-end Latency in TFLite

nn-Meter Ours
(Lasso)

Ours
(RF)

Ours
(GBDT)

Ours
(MLP)

Methods

0%
20%
40%
60%
80%

M
AP

E 54.9%

75.1%

8.4% 12.3%
6.8% 11.7% 7.6% 9.7% 9.0% 10.9%

CPU, 1 Thread
GPU

(a) 85 Real-world NAs

nn-Meter Ours
(Lasso)

Ours
(RF)

Ours
(GBDT)

Ours
(MLP)

Methods

0%
20%
40%
60%
80%

44.9%

73.9%

12.1% 15.4%

2.0% 5.5% 1.9% 6.7% 2.4% 6.7%

CPU, 1 Thread
GPU

(b) 100 Synthetic NAs

Figure B.37: Comparison with the Pre-trained Predictors from nn-Meter on Pixel 4 (TFLite v2.1)

Approach Training Size

Snapdragon 855 Exynos 9820 Snapdragon 710 Helio P35 A12 Bionic A10 Fusion

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Lasso

30 12.84% 17.95% 9.08% 10.29% 8.85% 14.15% 15.90% 6.05% 9.28% 8.23% 11.49% 6.72%

100 12.93% 18.71% 8.87% 10.23% 8.72% 14.46% 14.88% 5.59% 8.93% 7.83% 11.48% 6.29%

900 13.26% 16.36% 8.90% 9.63% 9.33% 12.67% 15.09% 5.31% 8.96% 6.90% 11.48% 5.41%

RF

30 10.71% 13.68% 13.52% 9.99% 11.83% 12.97% 9.98% 6.49% 8.69% 6.71% 13.38% 5.74%

100 6.20% 9.43% 4.90% 8.58% 6.13% 11.47% 7.79% 3.83% 5.51% 4.77% 6.67% 3.78%

900 2.83% 7.33% 2.82% 8.34% 2.29% 8.30% 3.09% 2.74% 2.46% 2.95% 2.99% 3.09%

GBDT

30 7.91% 12.52% 7.76% 9.59% 7.10% 15.97% 9.08% 4.93% 9.11% 4.57% 7.57% 4.28%

100 3.97% 9.77% 4.36% 8.59% 4.73% 12.29% 5.45% 3.43% 5.79% 3.48% 6.61% 3.67%

900 2.12% 7.60% 1.92% 8.41% 2.01% 6.56% 3.71% 2.77% 1.87% 2.96% 2.72% 2.99%

MLP

30 9.11% 10.02% 7.94% 8.55% 8.21% 10.12% 10.71% 4.84% 11.22% 4.70% 12.91% 4.41%

100 4.03% 9.17% 3.84% 9.01% 3.07% 9.28% 6.61% 4.35% 4.72% 3.94% 4.71% 4.52%

900 2.30% 6.37% 2.44% 8.19% 2.03% 6.35% 6.09% 3.35% 1.59% 3.13% 2.59% 3.30%

Table C.4: End-to-end Predictions on Synthetic Neural Architectures on TFLite (CPU Stands For a Large Core)

29

Algorithm B.3: Conv Kernel Selection in TFLite GPU Delegate

SelectConv2DKernel(gpu_info, op_info)
1 if CheckGroupedConv2D(gpu_info, op_info)

2 return Kernel(GroupedConv2D, gpu_info, op_info)

3 else if CheckWinograd(gpu_info, op_info)

4 return Kernel(Winograd, gpu_info, op_info)

5 else return Kernel(Conv2D, gpu_info, op_info)

CheckGroupedConv2D(gpu_info, op_info)
6 src_group_size = op_info.input_channel

7 dst_group_size = op_info.output_channel / op_info.group

8 if op_info.group ̸= 1 and src_group_size % 4 == 0

9 and dst_group_size % 4 == 0

10 return True

11 return False

CheckWinograd(gpu_info, op_info)
12 if op_info.group ̸= 1 or op_info.kernel_shape ̸= 3x3

13 or op_info.stride ̸= 1

14 return False

15 src_depth = ⌈op_info.input_channel/4⌉
16 dst_depth = ⌈op_info.output_channel/4⌉
17 if gpu_info.type == Adreno and (src_depth < 32 or dst_depth < 32)

18 return False

19 else if gpu_info.type == AMD and (src_depth < 16 or dst_depth < 8)

20 return False

21 else if src_depth < 16 or dst_depth < 16

22 return False

23 total_tiles = ⌈op_info.output_height/4⌉ ∗ ⌈op_info.output_width/4⌉
24 if gpu_info.type == Adreno6xx and total_tiles < 128

25 return False

26 else if gpu_info.type == Adreno and total_tiles < 64

27 return False

28 else if total_tiles < 32

29 return False

30 return True

30

Approach Training Size

Snapdragon 855 Exynos 9820 Snapdragon 710 Helio P35 A12 Bionic A10 Fusion

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Lasso

30 9.77% 12.04% 5.83% 12.68% 6.40% 4.78% 5.51% 6.79% 4.20% 6.51% 7.00% 6.73%

100 8.23% 14.41% 4.85% 11.77% 7.08% 5.21% 4.87% 6.51% 4.36% 6.38% 7.46% 6.87%

900 7.29% 12.10% 5.24% 12.28% 5.27% 4.59% 4.65% 6.06% 3.66% 6.07% 6.24% 6.67%

RF

30 14.79% 14.77% 20.15% 13.23% 14.37% 7.99% 18.86% 6.81% 11.95% 8.23% 11.44% 8.08%

100 11.67% 9.94% 10.85% 11.24% 9.10% 5.72% 10.26% 7.19% 9.18% 7.00% 9.48% 5.95%

900 7.43% 7.24% 8.01% 11.39% 5.02% 5.60% 5.71% 6.01% 5.61% 6.74% 5.12% 4.80%

GBDT

30 12.20% 12.13% 16.57% 12.50% 11.92% 9.03% 16.11% 6.92% 11.46% 11.03% 8.90% 9.14%

100 12.32% 7.83% 10.28% 12.32% 7.38% 5.24% 10.19% 6.44% 8.72% 8.08% 8.53% 4.95%

900 6.38% 6.68% 7.86% 11.87% 4.79% 4.15% 4.80% 5.86% 5.45% 6.23% 4.70% 5.28%

MLP

30 14.87% 7.79% 13.18% 9.94% 11.35% 8.52% 13.01% 7.03% 11.39% 12.43% 12.12% 8.98%

100 18.31% 9.05% 16.61% 10.51% 12.35% 10.37% 12.25% 7.91% 15.09% 10.41% 11.22% 8.23%

900 14.48% 7.59% 14.23% 11.06% 16.59% 11.06% 10.22% 7.08% 10.71% 8.72% 8.55% 6.24%

Table C.5: End-to-end Predictions on Real-world Neural Architectures on TFLite (CPU Stands For a Large Core)

Approach Training Size

Snapdragon 855 Exynos 9820 Snapdragon 710 Helio P35 A12 Bionic A10 Fusion

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Lasso

30 27.46% 24.70% 29.15% 15.73% 43.22% — 26.23% 23.86% 26.23% 29.82% 33.27% —

100 29.02% 24.31% 25.88% 14.22% 43.17% — 23.13% 24.52% 24.80% 25.09% 30.44% —

900 27.52% 23.46% 24.51% 14.95% 38.25% — 22.16% 23.00% 23.36% 24.72% 29.93% —

RF

30 36.82% 44.52% 36.33% 33.06% 44.46% — 34.64% 43.85% 33.83% 31.70% 39.28% —

100 18.15% 20.57% 15.02% 15.11% 22.88% — 15.80% 19.33% 13.49% 18.51% 16.36% —

900 4.69% 5.90% 3.69% 4.36% 6.92% — 3.54% 3.01% 2.71% 10.39% 4.02% —

GBDT

30 6.29% 8.47% 5.08% 7.44% 9.06% — 6.23% 5.77% 4.49% 13.67% 6.04% —

100 4.33% 5.38% 3.19% 3.67% 6.06% — 3.76% 2.16% 2.52% 11.40% 3.82% —

900 2.79% 4.17% 2.33% 2.58% 4.02% — 2.16% 1.44% 1.66% 10.89% 2.88% —

MLP

30 6.97% 4.92% 3.76% 6.84% 35.74% — 5.31% 9.54% 3.48% 14.79% 9.09% —

100 4.38% 5.18% 3.30% 3.51% 5.14% — 3.11% 2.90% 3.08% 13.44% 4.25% —

900 2.27% 3.89% 1.81% 2.10% 2.49% — 1.90% 1.38% 1.29% 10.14% 2.83% —

Table C.6: End-to-end Predictions on Synthetic Neural Architectures on PyTorch Mobile (CPU Stands For a Large Core)

31

Approach Training Size

Snapdragon 855 Exynos 9820 Snapdragon 710 Helio P35 A12 Bionic A10 Fusion

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Lasso

30 11.76% 7.43% 10.82% 10.97% 20.37% — 8.45% 7.36% 7.69% 12.63% 9.38% —

100 11.68% 6.13% 9.09% 8.72% 19.17% — 7.59% 7.71% 7.22% 12.19% 9.33% —

900 11.27% 5.70% 8.34% 8.71% 19.49% — 7.07% 6.73% 6.77% 11.63% 9.40% —

RF

30 16.12% 21.68% 15.45% 29.49% 23.20% — 12.51% 23.28% 11.50% 14.98% 13.81% —

100 14.38% 10.65% 13.94% 11.66% 19.84% — 12.04% 11.88% 10.55% 13.57% 9.00% —

900 8.25% 6.87% 6.57% 7.21% 11.09% — 6.46% 5.23% 4.94% 10.65% 7.15% —

GBDT

30 11.64% 29.62% 12.08% 26.29% 20.55% — 10.75% 20.91% 7.23% 25.40% 7.39% —

100 8.44% 13.02% 8.24% 12.56% 11.35% — 9.15% 8.60% 6.16% 13.26% 5.56% —

900 5.86% 10.29% 5.03% 9.04% 5.60% — 4.73% 5.54% 4.65% 10.38% 5.55% —

MLP

30 9.31% 19.74% 12.13% 16.19% 22.72% — 11.03% 22.51% 7.59% 19.92% 7.93% —

100 8.86% 25.38% 5.43% 19.39% 10.75% — 5.66% 22.49% 7.45% 13.57% 7.21% —

900 6.04% 12.12% 5.86% 7.51% 9.71% — 6.25% 10.01% 4.57% 11.13% 6.04% —

Table C.7: End-to-end Predictions on Real-world Neural Architectures on PyTorch Mobile (CPU Stands For a Large Core)

32

