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Estimating Ground Reaction Forces
from Inertial Sensors

B. Song, M. Paolieri, H. E. Stewart, L. Golubchik, J. L. McNitt-Gray, V. Misra, D. Shah

Abstract— Objective: Our aim is to determine if data
collected with inertial measurement units (IMUs) during
steady-state running could be used to estimate ground
reaction forces (GRFs) and to derive biomechanical vari-
ables (e.g., contact time, impulse, change in velocity) us-
ing lightweight machine-learning approaches. In contrast,
state-of-the-art estimation using LSTMs suffers from pro-
hibitive inference times on edge devices, requires expen-
sive training and hyperparameter optimization, and re-
sults in black box models. Methods: We proposed a novel
lightweight solution, SVD Embedding Regression (SER),
using linear regression between SVD embeddings of IMU
data and GRF data. We also compared lightweight solutions
including SER and k-Nearest-Neighbors (KNN) regression
with state-of-the-art LSTMs. Results: We performed exten-
sive experiments to evaluate these techniques under multi-
ple scenarios and combinations of IMU signals and quanti-
fied estimation errors for predicting GRFs and biomechani-
cal variables. We did this using training data from different
athletes, from the same athlete, or both, and we explored
the use of acceleration and angular velocity data from
sensors at different locations (sacrum and shanks). Conclu-
sion: Our results illustrated that lightweight solutions such
as SER and KNN can be similarly accurate or more accurate
than LSTMs. The use of personal data reduced estimation
errors of all methods, particularly for most biomechanical
variables (as compared to GRFs); moreover, this gain was
more pronounced in the lightweight methods. Significance:
The study of GRFs is used to characterize the mechanical
loading experienced by individuals in movements such as
running, which is clinically applicable to identify athletes at
risk for stress-related injuries.

Index Terms— Ground Reaction Force, Inertial Measure-
ment Unit, Sensors, Singular Value Decomposition, Neural
Networks

I. INTRODUCTION

Ground reaction force (GRF), the force exerted by the
ground on a body during contact, is a key measurement
used in biomechanics to study the whole body dynamics of
human movement. It characterizes the mechanical loading of
the body, which contributes to the stress response of bone
and soft tissue [1]. Analysis of GRFs has been proposed as
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a means to identify factors that lead to bone stress injuries
for runners [2]–[7]. Determining the cause of running-related
injuries continues to be challenging in part because of the
inability to account for the mechanical loading experienced
by an individual during multiple foot contacts within and
across training sessions. Despite conflicting findings [8], recent
studies [9] continue to explore the role of GRFs in iden-
tifying mechanisms contributing to lower extremity injuries.
Understanding GRF characteristics is important for improving
performance (e.g., greater net impulse translates to greater
changes in body momentum) and may provide insights into
mechanisms like bending moments imposed on the lower
extremity during ground contact, which could help further
identify combinations of factors leading to injury. To this
end, domain experts find that the GRF waveform and the
biomechanical variables derived from it, such as contact time,
impulse, and change in center of mass velocities provide mean-
ingful context for understanding how GRFs cause observed
body movements and contribute to stress responses [5], [10]–
[12].

Direct measurement of GRFs is typically performed us-
ing force plates or instrumented treadmills in a laboratory
environment [13]–[15]. Wearable GRF sensors have been
proposed [16] but there is a lack of reliable sensors on the
market. For instance, authors in [17] note that overall validity
and reliability of these devices appears to be system, location,
and speed dependent. Machine learning methods can mitigate
the challenges and costs associated with direct data collection
by estimating signals of interest from other signals more
readily accessible and from cost-effective sources.

Our study evaluates machine learning approaches to es-
timate GRFs from inertial measurement unit (IMU) signals
collected on regular treadmills. Given the high cost of in-
strumented treadmills, this approach can provide more people
with valuable biomechanical data about their performance at
a much lower cost, thus enabling similar studies with more
frequent data collections while lowering barriers for athletes,
coaches, and researchers. This data can help elucidate the
relationship between GRFs and performance to advance the
overall understanding of biomechanics and potential injury
interventions.

The estimation of GRFs from IMU sensor data is considered
in previous works [18]–[22] to overcome the difficulty of
direct GRF measurement. State-of-the-art approaches use deep
learning to estimate GRFs; for example, [19] uses convolu-
tional neural networks to estimate GRFs from acceleration
and angular velocity waveforms (collected using low-cost
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wearable IMUs), while [22] uses LSTM neural networks to
estimate GRFs from acceleration waveforms (collected on reg-
ular treadmills). Drawbacks of these approaches include their
often prohibitive inference times on edge devices, requirement
of expensive resources to support long training times and
hyperparameter optimization, and the black box nature of the
resulting models, which provide limited insights for the study
of the relationship between IMUs and GRFs, or to identify
and remove bad training data (this is defined by provenance
as explained in Section V-D).

In this work, we address these limitations by exploring
lightweight alternatives to deep-learning methods to facilitate
training and inference on devices with limited computing
power. We also analyze the improvements resulting from
the use of training data collected for the target athletes at
multiple body locations. Specifically, we compare state-of-
the-art approaches based on LSTM neural networks with two
lightweight approaches: SVD Embedding Regression (SER),
our proposed approach to estimate GRFs through linear regres-
sion between singular value decomposition (SVD) embeddings
of IMU data (input) and GRF data (output); and k-Nearest
Neighbors (KNN) regression. We evaluate the errors of these
techniques in estimating GRFs and derived biomechanical
variables when using training data collected (1) from different
athletes, (2) from the same athlete, (3) or both. In each
scenario, we explore the use of acceleration and angular
velocity data from sensors positioned at different locations
(sacrum, left and right shanks which are positioned directly
above the left and right lateral malleolus). This data can be
easily collected given the wide availability of wearable IMUs
measuring linear acceleration, angular velocity, and magnetic
fields concurrently.

To evaluate the efficacy of different machine learning meth-
ods under a variety of scenarios and input sensors, we use an
existing set of deidentified data collected by domain experts
working with collegiate distance runners in the NCAA Pac-12
conference. Details on the data collection and preprocessing
are described in Section II, while the different estimation tasks
and metrics are defined in Section III.

Our work provides the following contributions.
1) We propose SER, a novel approach to estimate GRFs

from IMU measurements (Section IV-A), as an alterna-
tive to KNN (Section IV-B) and LSTM neural networks
(Section IV-C).

2) Through our experimental results (Section V), we show
that simple machine learning methods such as SER and
KNN can be similarly accurate or more accurate than
LSTM neural networks, requiring fewer computing re-
sources and energy, while allowing much faster training
times and hyperparameter optimization.

3) By carrying out the evaluation of all machine learning
methods in all scenarios using only acceleration, only
angular velocity, or both, we allow a direct comparison
on the same dataset and show that angular velocity
measurements (collected by IMU sensors) reduce GRFs
estimation error when combined with acceleration mea-
surements.

4) We show that GRF estimation error is reduced when

Fig. 1: Example of signals measured during running from the
respective sensors. (Right) 3 components of GRFs, i.e., the
x, y, z axes (mediolateral, anterior-posterior, vertical, respec-
tively), measured from instrumented treadmills. (Left, Top)
magnitude of IMU signals including acceleration and angular
velocity from the sacrum. (Left, Bottom) magnitude of IMU
signal acceleration and angular velocity from the left and right
shanks

using sensors at both sacrum and shanks, especially with
LSTM.

5) We illustrate how personal training data significantly
reduces GRF estimation error of KNN and SER for all
combinations of input sensors.

Notably, when personal training data are available, SER and
kNN achieve rRMSE lower than 5% for vertical GRF; as a
reference, 6% rRMSE is considered to be acceptable for the
study of whole body dynamics in [23].

II. NOTATION AND DATASET

We use an existing Pac-12 dataset consisting of 44 com-
petitive collegiate distance runners (25 female and 19 male)
from University of Colorado Boulder, University of Oregon,
and Stanford University in accordance with the Institutional
Review Board for research involving human participants.1 The
dataset includes 114 collections (1–6 per participant) where
participants ran on instrumented treadmills at multiple speeds:
male participants ran at 7, 6.5, and 5 min/mi (3.8, 4.1, 5.4 m/s)
and female participants ran at 7 and 5.5 min/mi (3.8, 4.9 m/s);
GRF data was collected by the treadmills at 1,000 Hz, while
wearable IMU sensors collected acceleration and angular ve-
locity data at the sacrum, left shank, and right shank with 500
Hz frequency. Including all athletes, collections, and running
speeds, the dataset provides 276 running intervals, each with
at least 60 steps (approximately 15 seconds). Examples of our
collected signals are shown in Fig. 1.

We synchronize data using events from various sensors to
divide each running interval into individual foot contacts. To
minimize noise commonly found in IMU and GRF data [22],
we employ a 4th order Butterworth low-pass filter. This filter
has a cutoff frequency of 20 Hz for acceleration and angular
velocity signals, and 30 Hz for GRF signals. Applying the
same filters allows us to make a fair quantitative comparison

1This study is approved by the University of Oregon on April 27, 2021,
protocol number 05162017.019. A subset of this dataset is used in [21].
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Acronym Input Signals Description

ALL ∥a⃗s(t)∥, ∥a⃗lr(t)∥, ∥ω⃗s(t)∥, ∥ω⃗lr(t)∥ L2 norm of all acceleration and angular velocity signals
ACC ∥a⃗s(t)∥, ∥a⃗lr(t)∥ L2 norm of acceleration signals (sacrum, left/right shanks)
ANG ∥ω⃗s(t)∥, ∥ω⃗lr(t)∥ L2 norm of angular velocity signals (sacrum, left/right shanks)
SACRUM ∥a⃗s(t)∥, ∥ω⃗s(t)∥ L2 norm of acceleration and angular velocity at the sacrum
SHANKS ∥a⃗lr(t)∥, ∥ω⃗lr(t)∥ L2 norm of acceleration and angular velocity at left/right shanks
SAC/ACC3D a⃗s(t) x, y, z components of acceleration signal at the sacrum
SAC/ACC ∥a⃗s(t)∥ L2 norm of acceleration signal at the sacrum

TABLE I: Combinations of input signals for the estimation tasks

with related work. A detailed description of data preprocessing
is provided in Appendix I.

The integration of the data from all athletes and their data
collections at different speeds resulted in a dataset of 16,000
steps (after splitting the IMU/GRF signals using 400 ms
windows aligned using cross-correlation). Each step is charac-
terized by 15 time-series signals including the 3 components
(x, y, z) of the GRFs g⃗(t), sacrum acceleration a⃗s(t), sacrum
angular velocity ω⃗s(t), left or right shank acceleration a⃗lr(t),
and left/right shank angular velocity ω⃗lr(t). Each signal is
sampled at 500 Hz with a fixed 400 ms time window (which
results in 200 time points per window and a single step per
window).

III. ESTIMATION TASKS AND METRICS

A. Estimation Tasks and Hyperparameter Selection

We consider different data scenarios for the estimation of
GRF data: similarly to related work [22] using leave-one-
subject-out for evaluation, we estimate GRFs of a target athlete
using subject-independent training data collected only from
other athletes (we refer to this scenario as “OTHERS”); in
addition, we consider subject-dependent scenarios where train-
ing data from the target athlete is used exclusively (scenario
“PERSONAL”) or in conjunction with data from other athletes
(scenario “EVERYONE”). For each scenario, we consider dif-
ferent input signal cases to estimate GRFs as listed in Table I.

Data scenarios, input signal cases, and machine
learning methods are used to define estimation tasks,
each identified by a tuple (scenario, sensors,method) with
scenario ∈ {OTHERS, PERSONAL, EVERYONE}, sensors ∈
{ALL, ACC, ANG, SACRUM, SHANKS, SAC/ACC3D, SAC/ACC},
and method ∈ {SER, KNN, LSTM}.

To allow error comparisons across estimation tasks, we
select 10 athletes with the largest amount of data and use
their last collections (including multiple running speeds) as
test data. Specifically, let Testi, i = 1, . . . , 10 represent the
last collections of these athletes, Traini their other collections,
and TrainREST the data of the remaining athletes.

• In the OTHERS scenario, we leave out one of the Testi, i =
1, . . . , 10 as testing set and use all Trainj and Testj
with j ̸= i, and TrainREST as training set to select
hyperparameters (with k-fold cross validation; each fold
has the data of 8 of the 43 remaining athletes), resulting
in 10 different models.

• In the PERSONAL scenario, we leave out one of the
Testi, i = 1, . . . , 10 as testing set and use only Traini as
training set to select hyperparameters (with k-fold cross
validation; each fold has the data of 1 collection of the
athlete), also resulting in 10 different models.

• In the EVERYONE scenario, we leave out all of Testi, i =
1, . . . , 10 as testing set and use all of Traini, i = 1, . . . , 10
and TrainREST as training set to select hyperparameters
(with k-fold cross validation; each fold has the data of
20 collections), resulting in a single model.

For each estimation task, after hyperparameter optimization
with k-fold cross validation, the entire training set is used for
training. Reported estimation error is the average obtained by
models i = 1, . . . , 10 on Testi in the OTHERS and PERSONAL
scenarios, or by the single model of EVERYONE on Testi, i =
1, . . . , 10. Note that test data of a model is never used
for training nor hyperparameter selection; data with multiple
running speeds is included during training and hyperparameter
optimization, and also during testing. For LSTM training and
hyperparameter optimization, we use early stopping with 30-
epoch patience (i.e., select the best parameters observed during
training, which continues until no improvements in validation
error are observed for 30 epochs).

We also present results for an additional scenario of interest
for the LSTM method, where hyperparameter selection and
training are carried out as in the OTHERS scenario, but the
resulting models are then fine-tuned using Traini (as in the
PERSONAL scenario, using k-fold cross validation to select
the number of fine-tuning epochs) before evaluating their
estimation error on Testi; this scenario, which results in a
model for each athlete, is particularly common for neural
networks with many parameters, where using a pretrained
model mitigates the issue of data scarcity.

B. Error Metrics for Estimated GRF Waveforms

The proposed machine learning methods estimate, for each
step, the components of the GRFs g⃗(t) =

(
gx(t), gy(t), gz(t)

)
at each time point t = 1, . . . , T . We indicate the estimations by
ĝx(t), ĝy(t), and ĝz(t), respectively, and we evaluate the Root
Mean Squared Error (RMSE) and the Relative Root Mean
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Athlete 1

Athlete n

Step 1 (L) Step 2 (R) step SStep S Step 1 (L) Step 2 (R) Step 1 (L) Step 1 (L)step S step SStep 2 (R)Step 2 (R)

(a) AIMU

Athlete 1

Athlete n

step 1 (L) step 1 (L)step 2 (R) step 2 (R) step 1 (L) step 2 (R)step S step S step S

(b) AGRF

Fig. 2: Organization of input (IMU) and output (GRF) matrices for the SER method. Each row includes data for multiple
left/right steps and multiple signals; data of an athlete can span multiple rows.

Squared Error (rRMSE) for each component d ∈ {x, y, z}:

RMSE(gd, ĝd) =

√∑T
t=1[gd(t)− ĝd(t)]2

T
(1)

rRMSE(gd, ĝd) =
RMSE(gd, ĝd)

[RANGE(gd) + RANGE(ĝd)]/2
(2)

where RANGE(v) = maxt=1,...,T v(t) − mint=1,...,T v(t).
We compute the average of these error metrics across es-
timated steps. For reference, related literature has reported
RMSE(gz, ĝz) in the range of 0.14 BW (i.e., N/kg) to
0.21 BW [19], [24] for vertical GRF estimations and
rRMSE(gz, ĝz) in the range of 6% to 14% [20], [23]; we
note that the differences in results are partly due to differences
in participants, sensors, and data curation between the datasets
used in related works. Note also that GRFs are normalized by
body weight in our dataset; even when omitted, RMSE errors
are relative to body weights of the athletes.

C. Error Metrics for Estimated Biomechanical Variables
GRF waveforms measured during foot contact are fre-

quently used by domain experts to calculate discrete biome-
chanical variables representing different characteristics of a
running step. We consider the biomechanical variables Load-
ing Rate, Contact Time, Braking Time, Braking Percentage,
Active Peak, Average Vertical Force, Vertical Impulse, and
A/P Velocity Change (defined in [1] and Appendix II). We
evaluate each biomechanical variable f from the estimated
GRF waveforms ĝx(t), ĝy(t), ĝz(t) and from their actual val-
ues gx(t), gy(t), gz(t) for t = 1, . . . , T , and we compute the
mean absolute percentage error (MAPE), i.e., the mean of
|f(ĝx, ĝy, ĝz) − f(gx, gy, gz)|/|f(gx, gy, gz)| across different
steps. In addition to these metrics, we also study the effects
of different estimation models on the resulting waveforms and
their interpretability in Section V.

IV. METHODS

A. SVD Embedding Regression (SER)
As a lightweight alternative to deep learning methods for

the estimation of GRFs from IMU signals (acceleration and
angular velocity at different body locations), we propose the
use of linear regression between SVD embeddings of input
(IMU) and output (GRF) data; to reconstruct the GRF signals

from the predicted output embedding (the pre-image problem),
we use the right singular vectors of the training data. This
approach (which can be viewed as a natural generalization of
Principal Component Regression at a high dimension [25]) is
similar to transduction of structured data [26], but pre-image
calculation is very fast, providing a lightweight alternative to
deep learning methods.

1) SVD Embedding of IMU and GRF Signals: We organize
our training data into two matrices, AIMU Fig. 2a and
AGRF Fig. 2b. Each row of these matrices corresponds to
a different batch of S consecutive running foot contacts from
a measurement (i.e., steps of an athlete running at a given
speed); for each running step in a batch and time point t
(200 per step), the columns of AIMU include the IMU signals
(e.g., the L2 norm of acceleration and angular velocity signals
∥a⃗s(t)∥, ∥a⃗lr(t)∥, ∥ω⃗s(t)∥, ∥ω⃗lr(t)∥ in the ALL case), while
the columns of AGRF include the components of the GRFs,
i.e., gx(t), gy(t), gz(t).

To obtain low-dimensional embeddings of the training data,
we compute the SVD decomposition of the matrices AIMU ∈
Rn×m and AGRF ∈ Rn×p, i.e.,

AIMU = UIMUΣIMUV
T
IMU

AGRF = UGRFΣGRFV
T
GRF

(3)

where: UIMU ∈ Rn×n and UGRF ∈ Rn×n are orthogonal
matrices (with left singular vectors as columns); ΣIMU ∈
Rn×m and ΣGRF ∈ Rn×p are rectangular diagonal matrices
(with singular values in ascending order on the diagonal);
VIMU ∈ Rm×m and VGRF ∈ Rp×p are orthogonal matrices
(with right singular vectors as columns).

We obtain low-rank approximations by keeping only the
first r singular values of the SVD decomposition, i.e., the
first r columns of the U and V matrices, and the first
r rows/columns of Σ:

AIMU ≈ U IMUΣIMUV
T

IMU

AGRF ≈ UGRFΣGRFV
T

GRF

(4)

with U IMU ∈ Rn×rIMU , ΣIMU ∈ RrIMU×rIMU , V IMU ∈
Rm×rIMU and UGRF ∈ Rn×rGRF , ΣGRF ∈ RrGRF×rGRF ,
V GRF ∈ Rp×rGRF . On our dataset, we use ranks rIMU =
rGRF = 6, which retain at least 95% of the energy of ΣIMU

and ΣGRF , respectively (i.e., the sum of the squares of the
retained singular values is at least 95% of the sum of the
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Fig. 3: RMSE of vertical GRF estimated with SER and KNN
for different numbers of steps S in a batch

squares of all the singular values). The rank 6 approximation of
GRFs has an average RMSE of 0.079 BW or rRMSE of 2.1%;
the same accumulative energy is also chosen in the literature
[27], [28]. We also select the number of steps per row S ∈
{2, 3, 5, 6, 10, 12, 15, 20, 30, 60}, using a validation set. Larger
ranks rIMU and rGRF work similarly well, while the method
is sensitive to S, as illustrated in Fig. 3.

2) Training and Estimation using SVD Embeddings: After
low-rank approximation, each row of matrices U IMU and
UGRF is a vector with rIMU and rGRF components represent-
ing the embeddings (i.e., the features) of IMU (input) and GRF
(output) signals, respectively, for a batch of S running steps
in the training set. We train a predictor for each component of
the GRF embedding using least squares regression with elastic
net regularization, i.e., we select, for each j = 1, . . . , rGRF ,
the parameters βj ∈ RrIMU and αj ∈ R minimizing the loss

n∑
i=1

[
(UGRF )ij −

(
(U IMU )i∗βj + αj

)]2
+ λ2∥βj∥22 + λ1∥βj∥1

where (U IMU )i∗ ∈ RrIMU represents the ith row of U IMU

and (UGRF )ij ∈ R represents component j of the GRF
embedding for the ith training example. The regularization
weights λ1 ≥ 0 and λ2 ≥ 0 are selected for each estimation
task using a validation set.

Given the IMU signals x ∈ R1×m of a new sequence of
S steps, we estimate the GRF signals y ∈ R1×p by (Fig. 4):

1) Calculating the embedding x̃ ∈ R1×rIMU of the new
IMU signals as x̃ = xV IMUΣ

−1

IMU ;
2) Predicting the embedding ỹ ∈ R1×rGRF of the corre-

sponding GRF signals as (ỹ)j = x̃βj + αj for each
j = 1, . . . , rGRF ;

3) Reconstructing the estimated GRF signals y ∈ R1×p as
y = ỹΣGRFV

T

GRF .

B. k-Nearest Neighbors Regression
As a lightweight baseline, we apply k-Nearest Neighbors re-

gression (KNN), where the GRFs are estimated by combining

IMU Feature Space

GRF Feature Space

IMU Signal Space

GRF Signal Space

Fig. 4: Estimating GRFs with SVD-based output-Embedding
Regression

the GRF signals of the k training examples with most similar
IMU signals. Specifically, given the IMU signals x ∈ R1×m

for a new sequence of S steps, we estimate its GRF signals
y ∈ R1×p by:

1) Sorting the sequences of S steps of the training set, xi ∈
R1×m for i = 1, . . . , n, by their Euclidean distances
d(x, xi) = ∥x− xi∥2;

2) Selecting the indices K ⊆ {1, . . . , n} of the k training
sequences with lowest distances;

3) Estimating y ∈ R1×p as

y =

∑
i∈K d(x, xi) yi∑
i∈K d(x, xi)

where yi ∈ R1×p are the GRF signals associated with
the IMU signals xi in the training set, for i = 1, . . . , n.

For each estimation task, we select the number of neighbors
k and the number of consecutive steps S in a sequence using
a validation set. While k has a minor effect on estimation
error (additional neighbors after k = 10 have lower weights
and provide minor improvements, as illustrated in Fig. 5), S
can have an important effect for some estimation tasks, as
illustrated in Fig. 3.

C. Long Short-term Memory Networks

As a deep learning baseline, we adapt the state-of-the-art
long short-term memory (LSTM) neural network of [22] to
estimate all components of the GRFs (instead of the only
vertical component estimated in [22]). The model estimates
g⃗(t) =

(
gx(t), gy(t), gz(t)

)
from the IMU signals in the

time window [t − W, t] of size W > 0 (e.g., in the ALL
case, ∥a⃗s(u)∥, ∥a⃗lr(u)∥, ∥ω⃗s(u)∥, ∥ω⃗lr(u)∥ for u ∈ [t−W, t]).
Similarly to [22], we also provide the mean, standard deviation
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Fig. 6: LSTM model architecture. The input are mean, stan-
dard deviation, and range calculated from IMU signals (ALL
as shown in the figure) for a time window, in addition to
the weight and running speed of the athlete; a bidirectional
LSTM layer is followed by dropout regularization and three
fully connected layers.

and range of IMU signals over the window [t−W, t] as inputs,
together with the running speed and the weight of the athlete.

The architecture of the network is depicted in Fig. 6: after a
bidirectional LSTM layer with tanh activations and dropout (a
regularization approach), we use three fully-connected layers
with ReLU activations. The model is trained using the Adam
optimizer as a standard choice and the mean square error as
loss function. We select the number of units of each layer,
batch size, learning rate, and dropout rate using a validation
set; the search space is reported in Table II. Notably, this
machine learning approach has much higher training times
than SER and KNN (up to 1 hour for each combination
of hyperparameters) and the largest search space (18,000
combinations of hyperparameters). Due to memory limitations
of the GPUs used for training (NVIDIA Titan X, 12 GB of
RAM [29]), we were not able to train models with more than
1000 LSTM units, although hyperparameter selection suggests
that a higher number of LSTM units could be beneficial,
although quite costly.

V. RESULTS AND DISCUSSION

A. Estimation of the Normal GRF Waveform
First, we focus on the estimation of RMSE and rRMSE for

the vertical GRF, i.e., RMSE(gz, ĝz) and rRMSE(gz, ĝz),

Hyperparameter Values

LSTM Units 125, 250, 300, 500, 800, 1000
Layer 1 Neurons 5, 10, 20, 35, 50
Layer 2 Neurons 10, 20, 35, 50
Layer 3 Neurons 5, 10, 20, 35, 50
Batch Size 8, 16, 32
Learning Rate 0.0001, 0.0003, 0.0005, 0.0007, 0.001
Dropout Rate 0.2, 0.4

TABLE II: LSTM Hyperparameter Search Space

obtained by different machine learning methods for each set of
input signals and scenario. The vertical component of the GRF
is particularly important for the study of stress response in
bone and soft tissue [2], [3] and provides the information used
to compute several discrete biomechanical variables (discussed
in Section V-C). Results are reported in Tables III and IV,
while input signals and scenarios of different estimation tasks
are summarized in Tables I and VI, respectively. Although
limited to our dataset, this evaluation allows us to make the
following observations regarding the use of machine learning
methods for the estimation of GRFs from IMU signals.

1) Use of Acceleration and Angular Velocity Signals: We
observe that, in all scenarios and for all machine learning
methods, the use of both acceleration and angular velocity
signals is preferable, since RMSE and rRMSE are similar or
significantly lower. In particular, using only acceleration (case
ACC) or angular velocity signals (case ANG) is generally worse
than using both (case ALL). Since most IMU sensors collect
both signals, these improvements can be obtained without
additional costs of the data collection process, despite the
focus of related work on the exclusive use of acceleration
signals [22].

2) Sensor Locations: We observe that, in all scenarios
and for all machine learning methods, the use of sensors at
both sacrum and left/right shank (case ALL) is preferable,
since RMSE and rRMSE are either similar or significantly
lower than when each sensor location is used exclusively
(cases SACRUM and SHANK, respectively). While expected
for deep learning methods (LSTM), this result highlights that
lightweight machine learning methods such as SER and KNN
can also provide effective estimation models for complex IMU
data collected from multiple locations.

3) Use of Multidimensional Acceleration at the Sacrum:
Since related literature [21], [22] focuses on acceleration
signals collected using sensors located at the sacrum, we
explore the benefits of a multidimensional acceleration signal
a⃗s(t) (SAC/ACC3D) to estimate GRFs, instead of its L2 norm
∥a⃗s(t)∥ (case SAC/ACC). We observe that, in all scenarios
and for all machine learning methods, the use of a multi-
dimensional acceleration signal at the sacrum is preferable
to its L2 norm, since RMSE and rRMSE are either similar
or significantly lower. We also note that, when limited to
the sacrum location, the use of multidimensional acceleration
signals (SAC/ACC3D) is preferable to the use of the L2 norm
of both acceleration and angular velocity (SACRUM), and even
to the use of the L2 norm of only acceleration signals at the
sacrum and left/right shanks (ACC). Our experiments indicate
that the increase in the model computation cost is negligible.
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Scenario OTHERS Scenario EVERYONE Scenario PERSONAL

Input Signals SER KNN LSTM SER KNN LSTM (FINE-TUNED) SER KNN LSTM

ALL 0.197 0.180 0.126 0.187 0.118 0.124 (0.117) 0.130 0.122 0.134
ACC 0.220 0.197 0.177 0.210 0.125 0.175 (0.151) 0.127 0.127 0.143
ANG 0.197 0.187 0.183 0.190 0.130 0.183 (0.180) 0.133 0.132 0.171

SHANK 0.215 0.210 0.206 0.205 0.149 0.209 (0.190) 0.139 0.134 0.188
SACRUM 0.217 0.210 0.289 0.205 0.129 0.286 (0.270) 0.136 0.137 0.184

SAC/ACC3D 0.194 0.181 0.171 0.185 0.122 0.177 (0.160) 0.128 0.132 0.178
SAC/ACC 0.198 0.190 0.187 0.190 0.130 0.206 (0.177) 0.129 0.133 0.193

TABLE III: RMSE (in body weight units, BW, i.e., N/kg) of vertical GRF estimations RMSE(gz, ĝz) for different input
signals, data scenarios, machine learning methods (results highlighted in blue are optimal or less than 0.010 from optimal for
a scenario and set of input signals)

Scenario OTHERS Scenario EVERYONE Scenario PERSONAL

Input Signals SER KNN LSTM SER KNN LSTM (FINE-TUNED) SER KNN LSTM

ALL 6.5 6.0 4.2 6.2 3.9 4.2 (3.9) 4.2 4.0 4.3

ACC 7.4 6.6 6.0 7.0 4.1 5.9 (5.2) 4.1 4.1 4.8

ANG 6.5 6.2 6.1 6.3 4.3 6.0 (6.0) 4.3 4.3 5.9

SHANK 7.2 7.0 7.0 6.8 4.9 7.0 (6.7) 4.5 4.4 6.5

SACRUM 7.2 6.9 10.1 6.8 4.2 9.8 (9.6) 4.4 4.5 6.3

SAC/ACC3D 6.4 6.0 5.8 6.2 4.0 5.9 (5.4) 4.1 4.3 6.0

SAC/ACC 6.6 6.3 6.3 6.3 4.3 6.9 (6.1) 4.2 4.4 6.5

TABLE IV: rRMSE (%) of vertical GRF estimations rRMSE(gz, ĝz) for different input signals, data scenarios, machine
learning methods (results highlighted in blue are optimal or less than 0.5% from optimal for a scenario and set of input
signals)

Scenario OTHERS Scenario EVERYONE Scenario PERSONAL

Input Signals SER KNN LSTM (GPU) SER KNN LSTM (GPU) SER KNN LSTM (GPU)

ALL 0.001 2.256 4.221 (0.497) 0.001 2.088 3.219 (0.472) 0.001 0.042 4.922 (0.558)
ACC 0.003 1.165 4.325 (0.521) 0.002 1.089 3.251 (0.473) 0.001 0.022 5.139 (0.586)
ANG 0.004 1.161 4.605 (0.543) 0.0004 1.064 3.180 (0.474) 0.001 0.025 4.179 (0.516)

SHANK 0.005 1.165 4.014 (0.503) 0.002 1.062 3.216 (0.476) 0.001 0.021 4.739 (0.554)
SACRUM 0.004 1.156 4.557 (0.545) 0.0004 1.067 3.295 (0.480) 0.001 0.023 4.945 (0.563)

SAC/ACC3D 0.001 1.716 3.132 (0.439) 0.002 1.574 5.160 (0.579) 0.001 0.030 0.784 (0.248)
SAC/ACC 0.005 0.518 3.221 (0.450) 0.002 0.411 3.153 (0.461) 0.001 0.013 0.862 (0.272)

TABLE V: Average inference time (in seconds) to estimate 3D GRFs of a collection (120-180 steps) for an athlete. Inference
time is measured on an Intel i7-6800K CPU; for LSTM we also report average inference time using a TITAN X GPU.

Acronym Training Data of the Scenario

OTHERS IMU and GRF data of other athletes
PERSONAL IMU and GRF data of the same athlete
EVERYONE IMU and GRF data of all athletes

TABLE VI: Scenarios for the estimation tasks

4) Use of Lightweight Machine Learning Methods: While
state-of-the-art approaches [22] adopt deep learning methods
based on LSTM neural networks, we observe that lightweight
approaches can provide similar or lower error of the estimated
GRFs for specific scenarios and input signals. In the scenario
EVERYONE, KNN is preferable to LSTM and SER, as it pro-

vides much lower RMSE and rRMSE for most combinations
of input signals; in the scenario PERSONAL, both SER and
KNN are preferable to LSTM, for all combinations of input
signals. Notably, in the setting of [22] (scenario OTHERS,
signals SAC/ACC3D), KNN and LSTM perform very similarly
on our dataset (rRMSE of 6.0% and 5.8%, respectively; as a
reference, LSTM incurred an RMSE of 6.4% in [22]).

We attribute the improved performance of KNN in the sce-
narios EVERYONE and PERSONAL to the inclusion of historical
running data collected for the target athlete in the training
set: KNN is able to exploit the patterns specific to the target
athlete, while ignoring data from other athletes; in contrast,
LSTM obtains similar estimation error in the OTHERS and
EVERYONE scenarios, but obtains lower error when used with
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sensors at multiple body locations (this observation holds in
the fine-tuned results). Finally, SER is able to model the GRFs
of an athlete very accurately in the PERSONAL scenario. We
observe that the estimation error of a machine learning method
in a specific scenario depends on multiple factors, including
the total amount of available data (which is significantly
lower in the PERSONAL scenario, possibly resulting in higher
estimation error), the lack of personal data (which may result
in higher estimation error in the OTHERS scenario), and the
ability of an algorithm to hone in on personal data when it is
mixed with that of other athletes (as in the EVERYONE case).

Note that our dataset is relatively small (as is common in
this field) and not all gait patterns are well-represented; esti-
mation error improvements from the inclusion of personal data
indicate that linear models can achieve greater specializations,
rather than a lack of generalization to the broader population.

5) Resource and Energy Utilization: We observe that the up-
front training cost of LSTM models is more than three orders of
magnitude higher than that of SER, which drastically reduces
GPU hours, carbon footprint, and cloud or on-premise comput-
ing costs. In our study, training of LSTM models (including ar-
chitecture search and hyperparameter tuning) required parallel
processing on 13 TITAN X GPUs for 30 days, while training
of SER models (including exhaustive hyperparameter search)
required only 5 hours on a single commodity CPU. Our wall-
plug measurements of power consumption indicated 200 W
for each GPU (rated at 250 W by Nvidia [30]; utilization
was 90%) and only 90 W for an Intel i7-6800K CPU (rated at
140 W by Intel [31]), resulting in an energy cost of 1.9 Million
Watt-Hours for LSTM compared to 450 Watt-Hours for SER,
giving a reduction in energy consumption by a factor of 4,160.
Moreover, there is a substantial dollar cost when training
LSTMs in the cloud. We estimate approximately over $9,000 to
train the LSTMs (e.g., using an AWS g4dn.metal instance with
an on-demand hourly rate of $7.8 [32] for 9,360 GPU hours)
and only $36 to train SER (e.g., using an AWS hpc7a.12xlarge
instance with an on-demand hourly rate of $7.20 [33] for 5
hours).

At the same time, the estimation error improvements due
to LSTM are only significant in one scenario (2% rRMSE
improvement when training on all IMU signals in the OTHERS
scenario, while in all other cases the rRMSE improvement is
at most 0.6%). Therefore, although the initial training time
is a one-time cost, given that LSTM models provide limited
benefits, their additional cost in terms of time, energy, and
dollar expenditure is a significant drawback.

6) Efficient Inference for Near Real-Time Applications: Con-
sidering inference latency for batch estimation, SER has the
shortest inference time in all scenarios (Table V) using CPUs.
The inference time of LSTM (using CPU or GPU) depends on
the size of the model (i.e., number of parameters, layers, etc),
which is determined through hyper-parameter search, whereas
KNN’s inference time depends on the size of training dataset.

We note that, while SER does not offer real-time inference,
after the initial delay for the collection of 2-5 running steps (1-
2 seconds) for inference, SER’s 0.3 ms inference latency (for

estimating 20 steps2) is well-suited for near real-time analysis
performed entirely on an edge device such as a mobile phone.
This is in contrast with LSTM model inference which would
require approximately 15 seconds (to estimate 20 steps) on the
same mobile device (during which time an athlete would run
at least another 30 steps). In order to achieve near real-time
analysis (with some initial delay), inference time needs to be
less than the running time for the steps being analyzed, or the
analysis needs to skip some steps during inference. Another
approach might be to process batches of steps. However, due to
memory constraints, LSTM inference time for batch analysis
grows linearly with the batch size. Yet another approach to
reducing LSTM inference latency on mobile devices is to
use quantization. Our experiments with quantization indicated
a reduction in LSTM’s inference time down to 4 seconds,
which is still more than 4 orders of magnitude higher than
the inference latency of SER without quantization. However,
this reduction in inference latency comes at the cost of an
increase in RMSE; our experiments indicated an average of
≈ 10% increase in RMSE, with a worst case increase of over
34% in the case of using SAC/ACC 3D as input signal. Thus,
LSTMs are less suitable for near real-time analysis on edge
devices.

We note that, to achieve 0.5 or 4 seconds inference latency
for LSTM reported in Table V requires use of cloud GPUs
or CPUs, respectively. Note also that on-device prediction
facilitates preservation of data privacy. The reduced cost
and energy consumption of simpler methods such as SER
also facilitates development of GRF estimation methods on
embedded components which can be integrated into treadmills
in an inexpensive manner (e.g., using embedded CPUs). This
opens the way to integration of estimation techniques into
standard (inexpensive) treadmills receiving data from IMU
sensors, providing an affordable alternative to instrumented
treadmills while allowing broader data collection.

As an application scenario (where such near real-time pre-
diction on embedded devices would be useful), we consider a
coach making suggestions to a group of (e.g., a dozen) distance
runners training on treadmills. Given SER’s fast inference, the
coach can simultaneously monitor GRFs and biomechanical
variables (e.g, on a tablet) for the entire group of athletes and
adjust their running styles based on recent steps (estimation
is available after every step with SER as opposed to after
a few minutes with LSTM). For example, the coach can
identify fatigue from GRFs [34] and adjust the athlete’s pace
to maintain good running form as a means to prevent injuries.

To quantitatively motivate such applications, we deployed
the GRF estimation methods presented in our paper on a
Samsung S20 smartphone (Exynos CPU, 2.73 GHz, using a
Mongoose M5 core) and measured latency and memory usage
during inference for 10 steps (this is the minimum possible
number of steps for the LSTM models). On average, LSTM
inference required 14.9 seconds, while SER required only
0.3 ms and KNN required 36 ms; memory usage was 180 MB
for LSTM, 170 MB for KNN for OTHERS and EVERYONE

2We report the latency for 20 steps, to make a meaningful comparison to
LSTM, which uses 20 steps as in related literature.
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Fig. 7: Comparing estimations (blue) and measurements (orange) of bodyweight normalized vertical GRF gz(t) for selected
athletes and combinations of input signals. In each subgraph, we present the different scenarios (columns OTHERS, EVERYONE,
PERSONAL) and machine learning methods (rows SER, KNN, LSTM).

models and 9 MB for PERSONAL, and only 4 MB for SER.
When integration on mobile or embedded devices is not

required, limited networking and privacy requirements also
pose challenges to the use of cloud resources needed by
LSTMs. Even when using cloud resources is an option, their
cost would be orders of magnitude lower for KNN and SER.

B. Artifacts in Estimated Waveforms

We observe that each machine learning method can result
in different anomalies in the estimated GRFs, which are
significant for its evaluation by domain experts.

For example, the estimations in Fig. 7a are for a runner who
initiates ground contact with their heel (rearfoot strike) which
leads to a pronounced impact peak in the vertical component
of the GRF. In the scenario OTHERS, only LSTM estimates
a pronounced impact peak, while KNN and SER estimate
smoother waveforms due to the averaging of data from midfoot
and forefoot runners (initiating ground contact with their mid
or forefoot) with less pronounced impact peaks. Both LSTM

and KNN are able to use data of rearfoot strike runners in the
scenarios EVERYONE and PERSONAL, while SER accurately
estimates this feature only in the scenario PERSONAL.

In Fig. 7b, we report the GRF of a runner who initiates
contact with the front of their foot (forefoot strike) which
results in no impact peak in the vertical GRF. In the scenarios
OTHERS and EVERYONE, KNN and SER introduce a change
in slope not present in the measured GRF; in contrast, LSTM
introduces a change in slope in the scenario PERSONAL. When
athletes have a minor impact peak as in Fig. 7c, KNN and
SER tend to produce more representative waveforms, in all
scenarios.

Finally, the athlete of Fig. 7d also has a pronounced impact
peak. While KNN and SER estimate a smoother waveform
resulting from the average of these patterns, LSTM tries to
capture both the impact peak and also the active peak, resulting
in inaccurate waveforms in the OTHERS and EVERYONE
scenarios. The same phenomenon is observed when using only
acceleration signals at the sacrum (Fig. 7e); when using mul-
tidimensional acceleration signals (ACC3D), similar anomalies
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Scenario OTHERS Scenario EVERYONE Scenario PERSONAL

Biomechanical Variable SER KNN LSTM SER KNN LSTM
LSTM

FINE-TUNED SER KNN LSTM

Loading Rate 19.4 19.6 11.6 19.4 6.5 13.6 8.1 7.2 4.9 10.0

Contact Time 9.9 10.9 8.8 12.1 4.7 6.4 4.8 4.3 4.1 4.7

Braking Time 3.9 3.5 5.9 5.9 2.0 4.3 3.4 3.1 1.7 4.5

Braking Percentage 9.5 7.4 8.6 9.2 3.9 5.1 6.0 4.6 4.3 5.2

Active Peak 5.6 4.7 1.6 5.3 2.8 1.3 2.2 2.9 2.6 2.6

Average Vert. Force 5.9 4.9 3.2 6.2 2.5 3.1 3.2 2.4 2.2 2.8

Net Vertical Impulse 10.5 8.3 5.6 10.6 4.3 5.6 6.1 4.1 4.3 8.4

A/P Velocity Change 12.8 11.1 11.4 10.0 5.4 9.3 6.1 7.3 6.4 8.7

TABLE VII: MAPE (%) of discrete biomechanical variables estimated from ALL input signals for different scenarios and machine
learning methods (results highlighted in blue are optimal or less than 0.5% from optimal for a scenario and biomechanical
variable)

are produced by SER (cases OTHERS and EVERYONE).

C. Estimation of Discrete Biomechanical Variables
Finally, we use the estimated GRF waveform to eval-

uate discrete biomechanical variables (defined precisely in
Appendix II), which are of interest to domain experts for
the detection of running anomalies that may lead to stress-
responses in bone and soft tissue. MAPE values with respect
to the measured GRFs are reported in Table VII for GRF
estimations using ALL input signals, for different scenarios
and machine learning methods.

In the scenario OTHERS, LSTM achieves substantially lower
MAPE for most biomechanical variables (except braking time
and braking percentage), in line with the lower RMSE and
rRMSE values of the estimated GRF waveform (Tables III
and IV, row ALL). In contrast, in the scenario EVERYONE,
LSTM achieves substantially higher MAPE than KNN, despite
their similar RMSE and rRMSE values in Tables III and IV.
Even with fine-tuning, where LSTM has a marginally lower
RMSE, LSTM still achieves higher MAPE than KNN except
for one variable (i.e.: Active Peak).

In the scenario PERSONAL, KNN and SER achieve sub-
stantially lower MAPE than LSTM for several biomechanical
variables, e.g., loading rate and net vertical impulse, as ex-
pected. Notably, while the best RMSE and rRMSE achieved
by KNN in the scenario PERSONAL (Tables III and IV, row
ALL) are worse than those of the scenario EVERYONE, its
MAPE values are substantially lower for most biomechanical
variables; unexpected MAPE reductions are observed in the
scenario PERSONAL also for LSTM (e.g., for loading rate and
contact time). In general, similarly to related work [22], MAPE
values are significantly higher for biomechanical variables that
depend on sensitive features of the GRF waveform, e.g., the
loading rate, which depends on rate of change of the vertical
GRF.

This analysis shows that RMSE and rRMSE of the estimated
GRFs are not always useful estimates of the error of the
derived biomechanical variables (which depend on specific
features of the GRF waveform), and that personal data is
especially useful when biomechanical variables are of interest.
The presence of various types of artifacts in the estimations

from OTHERS’ data, despite achieving a low RMSE, highlights
the potential for further improvements.

D. Provenance
Given the linear nature of SER, it provides greater inter-

pretability of GRF estimation than a highly non-linear model
such as LSTM. Moreover, SER also allows tracing each part
of the GRF estimation back to the training IMU/GRF data
through the model parameters (KNN does this for the entire
GRF estimation). This is often referred to as provenance,
e.g., as in [35]. Ability to determine provenance is useful for
both biomechanics research (to study the relationship between
IMU data and GRFs) and practical applications (e.g., to detect
which training data is causing model deterioration once it has
been deployed in the field for a while). We are not aware
of any provenance results in the literature for LSTM models,
possibly because of the complex relationship between inputs
and outputs due to long-term and short-term memory as well
as the stochastic nature of the training process.

We also note that provenance is different from sensitivity
analysis of the model outputs around specific inputs during
inference, e.g., as in [36]. Although such sensitivity analysis
could potentially be adapted to LSTMs (no such work exists
to our knowledge), it does not provide a relationship between
training data and inference outputs.

VI. RELATED WORK

Similarly to the SER method proposed in this paper, the
approach of [40] uses the general idea of transduction [26]
between the embeddings of input IMU data and output GRF
data. We observe the following critical differences between
SER and [40]:

• SER uses a different organization of the training data,
where the running steps and their IMU and GRF signals
are split into batches, as shown in Fig. 3. Batch size is a
critical hyperparameter to consider intra-step interactions
(optimized with a validation set), while using a single
step without differentiating left and right foot (as in [40])
results in higher estimation error. This suggests that the
biomechanics of one leg may be different from that of
the other.
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Paper GRF Measurement Sensors Type Sensor Locations Estimation Model
RMSE (BW) rRMSE (%)

x y z x y z

[22] Instrumented treadmill,
multiple speeds and slopes

IMU
(acceleration)

Sacrum LSTM — — 0.16 — — 6.4

[37] In-sole sensors,
multiple speeds

IMU
(acceleration)

Left/right shanks MLP — — 0.15 — — —

[19] Force plate, multiple speeds IMU
(acceleration,
angular velocity)

Sacrum, right
thigh, shank, foot

Simulation +
CNN

— — — — 2 6

[20] Instrumented force plates
and treadmills

Video, IMU
(acceleration)

Sacrum, left/right
shanks, thighs

CNN — — — 21.6 17.1 13.9

[38] Instrumented treadmill,
multiple speeds

Video, IMU
(acceleration)

Sacrum, left/right
shanks

MLP — — 0.27 — — —

[39] Instrumented treadmill,
heel strike runners

IMU
(acceleration)

Feet, (proximal)
tibias, thighs,
pelvis, and trunk

Physical model 0.05 0.07 0.18 10.8 7.8 6.6

Ours
Instrumented treadmill,
multiple speeds

IMU
(acceleration,
angular velocity)

Sacrum, left/right
shanks

SER (PERSONAL) — 0.05 0.13 — 5.0 4.2

KNN (EVERYONE) — 0.05 0.12 — 4.6 3.9

LSTM (OTHERS) — 0.06 0.13 — 7.1 4.2

TABLE VIII: Comparison with state-of-the-art studies on GRF estimation. Results are reported for each of our methods (SER,
KNN, LSTM) when using ALL input signals in their best scenarios of application (PERSONAL, EVERYONE, OTHERS, respectively);
other studies consider the OTHERS scenario.

• SER uses SVD instead of PCA (used in [40]), i.e., it does
not normalize each input variable of IMU or GRF time
series across the entire dataset. This difference allows us
to preserve the patterns of the step signals over time.

• SER uses least squares regression to predict the output
embedding instead of neural networks (used in [40]); in
our experiments, neural networks (with up to 5 layers
and 100 neurons per layer) resulted in higher estimation
error and slower training, due to the limited available
data and additional hyperparameter optimization. For
instance, using signal input ALL, neural networks pre-
dicting output embedding achieve RMSE of 0.220 BW
for OTHERS (0.023 BW higher than least squares regres-
sion), 0.189 BW for EVERYONE (0.002 BW higher), and
0.190 BW for PERSONAL scenario (0.060 BW higher).

Notably, SER performs better than [40] when applied in the
same scenario (OTHERS), with much lower training times.

Other related works consider different types of model
inputs or outputs. In [22], [41], IMU signals are used to
estimate only the vertical GRF, while our study estimates
also the anterior-posterior GRF. This enables the derivation
of biomechanical variables such as anterior-posterior loading
rate (as emphasized in [42]), in addition to anterior-posterior
braking time and A/P velocity change (evaluated in Table VII).
A higher number of IMU sensors is used in [39] and [38]
(8 and 17 IMUs, respectively). In [39], a physical model
shows performance superior to machine learning approaches
in estimating vertical GRF of rearfoot strike runners. The
use of motion capture cameras is explored in [24], while
[43] uses insole plantar pressure sensors. Notably, our study

offers insights into the error reductions obtained from different
combinations of input IMU signals.

In Table VIII, we report a summary of state-of-the-art
studies on GRF estimation, their settings, and estimation
errors.

VII. CONCLUSIONS

GRF waveforms measured during foot contact and their
derived biomechanical variables can be accurately estimated
from acceleration and angular velocity signals collected using
wearable IMU sensors. To this end, depending on the training
data and input signals, simple machine learning methods such
as SER and KNN are similarly accurate or more accurate than
LSTM neural networks, using fewer computation resources or
energy and with much faster inference time on edge devices,
training times and hyperparameter optimization, as illustrated
by our evaluation.

Notably, SER and KNN produce more accurate estimations
of the GRF waveform when personal training data (i.e., GRF
and IMU measurements for an athlete) are available; in this
case, the error of the estimated biomechanical variables is
greatly improved with respect to LSTM neural networks. We
also observed that all machine learning methods benefit from
the use of both acceleration and angular velocity, and from
the use of all components of the sacrum acceleration (instead
of its L2 norm).

In future work, we plan to evaluate the use of estimated GRF
waveforms and biomechanical variables for the detection of
running anomalies leading to injuries. We are also interested
in a deeper exploration of provenance to understand which



12 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXX 2024

training data determined different events and characteristics of
the estimated GRF, which we hope will also aid in anomaly
detection.

APPENDIX I
ALIGNING SIGNALS FROM DIFFERENT LOCATIONS BY

REFERENCE EVENTS

To estimate GRFs from IMUs, timestamps and gait events
need to match consistently across different signals and loca-
tions. For a model that estimates the entire stance in GRFs
from signals of an entire stance in IMU signals, training the
model would require supplying signals aligned by their cor-
responding steps. Similarly for models estimating one sample
point at a time based on samples of other signals at the same
time point, signals at different locations need to synchronize.
Given acceleration and angular velocity measurements of a
IMU sensor are synchronized, we manually aligned data from
IMU sensors at different locations and GRF data from the
treadmills (which was downsampled to 500 Hz to match the
IMU frequency and normalized by the body weight of the
athlete).

In our dataset, IMU sensors at different locations (sacrum
and shanks) and GRFs measured from force plates are sampled
by individual clocks. Although we do not observe any severely
non-linear drifts, linear drifts and time delays are significantly
affecting the alignment of gait events.

To align all gait events over a series of continuous running
steps, the dataset includes reference events where the athlete
jumps in-place before and after continuously running on
an instrumented treadmill. Wearing all sensors, the athlete
jumping in-place creates a unique signal pattern across all
sensors with a sharp edge marking the time instance when
both feet strike the ground after flight. An example of aligned
signals at the jump reference is shown in Fig. 8a. We align
both reference events before and after a run by shifting and
linearly stretching the signals to correct time delays and linear
drifts. We use magnitude of GRFs as the referencing signal
and edit IMU signals to align with GRFs. After aligning both
reference events, signals for each running steps between the
references are also aligned.

After aligning data from different sensors, each running
measurement is automatically split into steps by identifying
the maxima of the correlation between the L2 norm of shank
acceleration and a reference signal (a triangular signal with
100 ms duration followed by a zero signal of 100 ms,
mimicking the patterns observed in acceleration signals). Steps
of a running measurement are aligned by maximizing their
pairwise correlation; then, a fixed delay is applied to all the
steps in a measurement to maximize their mean correlation
with the reference signal, in order to align them with steps
of other measurements (i.e., at different running speeds or for
different athletes). We manually check the alignment of signals
for each foot contact by overlapping all steps from each run
(an example of such view is shown in Fig. 8b.). Aligning these
signals by the start and end points shows time drifts between
signals are only linear and the overlapped view shows gait
events within each steps are aligned similarly. While there is
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Fig. 8: Examples of overlapping the magnitude of GRFs with
the magnitude of acceleration signals from shanks and sacrum.
Blue is from left shank, green is from right shank, orange
is from sacrum, and grey is from GRFs. a) Aligned jump
reference. b) Consecutive left steps under a constant speed.

no guarantee for each sample point across all signal types
is aligned perfectly, models looking at an entire stance or a
windowed signals greater or equal to a stance should have a
consistent amount of information.

APPENDIX II
DISCRETE BIOMECHANICAL VARIABLES

We consider the following discrete biomechanical variables
(or gait metrics) from [1], [22] to evaluate our GRF esti-
mations. Let gx, gy and gz be the components of the GRFs
of a step (after a 50 Hz low-pass filter and normalized by
body weight, with unit denoted as BW ); the start time Ts

(in seconds) is the time when the vertical GRF reaches 50 N,
i.e., Ts = min{ t | BW · gz(t) > 50 }, while the end time
Te is the time when the vertical GRF drops below 50 N, i.e.,
Te = min{ t > Ts | BW · gz(t) < 50 }.

• Loading Rate (BW · s−1): Average slope of the vertical
GRF during the first 25 ms of the stance after reaching
the 50 N threshold [44], i.e.,

Loading Rate =
gz(Ts + 0.025)− gz(Ts)

0.025
.

• Contact Time (s): Time during which the vertical GRF is
above 50 N, i.e., Tc = Te − Ts.

• Braking Time (s): Time during which the vertical GRF
signal is above the threshold and the A/P GRF component
is negative, i.e.,

Tb = |{Ts ≤ t ≤ Te | gy(t) < 0}| .

• Braking Percentage: Percentage of contact time spent in
braking, i.e., Tb/Tc.

• Active Peak (BW ): Maximum vertical GRF between 30-
100% of the stance (to exclude the impact peak), i.e.,
max{ gz(t) | t > Ts + 0.3Tc }.

• Average Vertical Force (BW ): Average value of the
vertical GRF, i.e., 1

Tc

∫ Te

Ts
gz(t) dt.

• Net Vertical Impulse (BW · s): Area under the ver-
tical GRF reduced by the body weight unit, i.e.,( ∫ Te

Ts
gz(t) dt

)
− 1.

• A/P Velocity Change (m ·s−1): Change in velocity along
the A/P force direction, i.e., 9.81 · (A/P Impulse), where
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Scenario OTHERS Scenario EVERYONE Scenario PERSONAL

Input Signals SER KNN LSTM SER KNN LSTM SER KNN LSTM

ALL 0.07 0.06 0.06 0.06 0.05 0.06 0.05 0.05 0.06
ACC 0.07 0.06 0.08 0.07 0.05 0.07 0.05 0.05 0.07
ANG 0.07 0.06 0.07 0.07 0.05 0.07 0.05 0.05 0.07

SHANK 0.07 0.06 0.08 0.07 0.05 0.07 0.05 0.05 0.07
SACRUM 0.08 0.07 0.12 0.07 0.05 0.10 0.05 0.05 0.08

SAC/ACC3D 0.07 0.06 0.07 0.07 0.05 0.07 0.05 0.05 0.08
SAC/ACC 0.07 0.07 0.08 0.07 0.05 0.08 0.05 0.05 0.11

TABLE IX: RMSE (in body weight units, BW, i.e., N/kg) of anterior/posterior GRF estimations RMSE(gy, ĝy) for different
input signals, data scenarios, machine learning methods

Scenario OTHERS Scenario EVERYONE Scenario PERSONAL

Input Signals SER KNN LSTM SER KNN LSTM SER KNN LSTM

ALL 6.8 5.9 7.1 6.5 4.6 7.1 5.0 4.9 7.2

ACC 6.9 6.2 9.2 6.7 4.7 8.9 4.9 4.7 8.0

ANG 7.0 6.2 8.9 6.7 4.7 8.2 5.2 5.0 8.0

SHANK 7.1 6.4 9.2 7.0 5.1 8.4 5.3 4.9 8.5

SACRUM 7.5 7.4 16.3 7.3 4.9 13.1 5.2 5.0 9.3

SAC/ACC3D 7.1 6.4 9.0 6.9 4.6 8.9 4.8 4.8 9.8

SAC/ACC 7.2 6.8 9.6 6.9 4.9 9.7 5.0 5.0 15.5

TABLE X: rRMSE (%) of anterior/posterior GRF estimations rRMSE(gy, ĝy) for different input signals, data scenarios,
machine learning methods

the A/P Impulse (BW · s) is the area between the A/P
GRF component and the zero line, i.e.,

∫ Te

Ts
gy(t) dt.

APPENDIX III
RMSE AND RELATIVE RMSE OF

ANTERIOR/POSTERIOR GRF

This appendix reports the estimation errors for anterior-
posterior GRF (y direction) in Tables IX and X, while es-
timation errors for the vertical GRF (z direction) are reported
in Tables III and IV of the main text. The GRFs along both
vertical and anterior-posterior directions are used to compute
biomechanical variables in Table VII.
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[37] S. Tedesco, E. Pérez-Valero, D. Komaris, L. Jordan, J. Barton,
L. Hennessy, B. O’Flynn, Wearable motion sensors and artifi-
cial neural network for the estimation of vertical ground reac-
tion forces in running, in: IEEE Sensors, IEEE, 2020, pp. 1–4.
doi:10.1109/SENSORS47125.2020.9278796.

[38] F. J. Wouda, M. Giuberti, G. Bellusci, E. Maartens, J. Reenalda, B.-
J. F. Van Beijnum, P. H. Veltink, Estimation of vertical ground reaction
forces and sagittal knee kinematics during running using three inertial
sensors, Frontiers in Physiology 9 (2018) 218.

[39] B. L. Scheltinga, J. N. Kok, J. H. Buurke, J. Reenalda, Estimating 3d
ground reaction forces in running using three inertial measurement units,
Frontiers in Sports and Active Living 5 (2023) 1176466.

[40] M. Pogson, J. Verheul, M. A. Robinson, J. Vanrenterghem, P. Lisboa, A
neural network method to predict task-and step-specific ground reaction
force magnitudes from trunk accelerations during running activities,
Medical Engineering & Physics 78 (2020) 82–89.

[41] S. R. Donahue, M. E. Hahn, Estimation of gait events and kinetic
waveforms with wearable sensors and machine learning when running
in an unconstrained environment, Scientific Reports 13 (1) (2023) 2339.

[42] C. D. Johnson, J. Outerleys, I. S. Davis, Relationships between tibial
acceleration and ground reaction force measures in the medial-lateral and
anterior-posterior planes, Journal of biomechanics 117 (2021) 110250.

[43] E. C. Honert, F. Hoitz, S. Blades, S. R. Nigg, B. M. Nigg, Estimating
running ground reaction forces from plantar pressure during graded
running, Sensors 22 (9) (2022) 3338.

[44] J. R. Yong, A. Silder, K. L. Montgomery, M. Fredericson, S. L. Delp,
Acute changes in foot strike pattern and cadence affect running param-
eters associated with tibial stress fractures, Journal of biomechanics 76
(2018) 1–7.


