
A Study on Inference Latency for Vision
Transformers on Mobile Devices

Zhuojin Li , Marco Paolieri , and Leana Golubchik ⋆

University of Southern California, Los Angeles, California, USA
{zhuojinl,paolieri,leana}@usc.edu

Abstract. Given the significant advances in machine learning techniques
on mobile devices, particularly in the domain of computer vision, in
this work we quantitatively study the performance characteristics of 190
real-world vision transformers (ViTs) on mobile devices. Through a com-
parison with 102 real-world convolutional neural networks (CNNs), we
provide insights into the factors that influence the latency of ViT archi-
tectures on mobile devices. Based on these insights, we develop a dataset
including measured latencies of 1000 synthetic ViTs with representa-
tive building blocks and state-of-the-art architectures from two machine
learning frameworks and six mobile platforms. Using this dataset, we
show that inference latency of new ViTs can be predicted with sufficient
accuracy for real-world applications.

Keywords: Vision Transformers · Mobile · Inference · Latency

1 Introduction

Recent significant advances in machine learning (ML) techniques on mobile de-
vices, particularly in the domain of computer vision (CV), are enabling real-time
on-device processing that was once limited to powerful desktop or cloud servers.
The improvements in mobile hardware and optimized ML frameworks allow the
deployment of sophisticated neural architectures to serve complex vision tasks,
such as motion analysis and augmented reality.

Moreover, recent progress in Vision Transformers (ViTs) has revolutionized
CV, demonstrating outstanding ML accuracy across various CV tasks com-
pared to traditional convolutional neural networks (CNNs) [7]. However, the
self-attention mechanism used in ViTs (but not CNNs) is computationally ex-
pensive, posing challenges on mobile devices with limited computational and
memory resources. Thus, comprehensively analyzing the inference latency of
ViTs on mobile platforms is crucial for leveraging their advanced capabilities
while ensuring smooth user experience. Consequently, we focus on the perfor-
mance characteristics of ViTs on mobile devices which are insufficiently explored
in the existing literature; specifically, we highlight three key factors that distin-
guish our work from related efforts.

⋆ This work was supported in part by the NSF CNS-1816887, CCF-1763747, and IIS-
1833137 awards.

https://orcid.org/0000-0002-8308-0231
https://orcid.org/0000-0001-5110-203X
https://orcid.org/0000-0001-8353-5040


2 Li et al.

(1) Inference on Mobile Platforms: Most existing works evaluate the perfor-
mance of transformers during training on cloud GPUs [1,6,13] with substantial
computational power and scalability; in contrast, mobile platforms have limited
memory resources to support complex neural networks and the inference latency
is especially critical. Due to limited support for operations in real-world ViTs
on mobile GPUs by current ML frameworks, we focus on mobile CPUs in this
paper. Particularly, heterogeneous CPU cores on a mobile device exhibit dis-
tinct performance characteristics; for instance, after quantization, we observe
performance improvements on efficient cores but degradation on powerful cores.

(2) Evolving ViT Architectures: Related work focusing on mobile platforms
is typically restricted to CNNs [2, 27] or NLP Transformers [24], while state-
of-the-art (SOTA) ViTs have hybrid architectures with distinct performance
characteristics. Previous work [30] studied the performance of 9 ViTs, concluding
that ViTs were too expensive for mobile devices; specifically, the fastest ViT was
slower than any CNN analyzed. In contrast, we measure latency of 190 real-world
ViTs, incorporating novel efficient architecture design; for instance, the smallest
ViT evaluated in our work, EfficientViT [4], achieves lower latency than all the
CNNs in [30]. Through our study, we provide new insights on how memory
formats and activation functions affect inference latency.

(3) Effects of ML Frameworks: Existing work [24, 30] provides performance
analysis based on a single ML framework, i.e., TensorFlow Lite (TFLite). How-
ever, since most SOTA ViTs are implemented in PyTorch, we mainly study
the performance characteristics of ViTs on PyTorch Mobile, and also conduct
comparisons with TFLite. We note that distinct implementations across ML
frameworks can substantially impact inference latency; e.g., a convolution oper-
ation can exhibit significantly different latency on the same mobile device when
implemented by different ML frameworks.

In this paper, we characterize the factors that influence the latency of ViTs on
mobile platforms and develop a dataset including measured latencies of synthetic
ViTs with representative building blocks and SOTA architectures. Using this
dataset, we show that inference latency of ViTs can be predicted with sufficient
accuracy for many applications of interest, including:

(i) Neural Architecture Search (NAS) [34], which automates the design of
neural architectures to obtain good tradeoffs between accuracy and efficiency;
latency prediction can save the cost of deployment to mobile devices and ensure
that the selected neural architecture satisfies the latency constraints on a target
device. In line with the principle of NAS, we construct latency predictors trained
on synthetic ViTs and demonstrate their high accuracy on 100 candidate ViT
architectures sampled from the same search space.

(ii) Collaborative (or Split) Inference [14], which offloads partial model com-
putation to cloud servers with powerful computational resources while preserv-
ing privacy; latency prediction for each part of the model facilitates determin-
ing optimal model partition with tradeoff between the saved local computation
time and additional transmission cost. Accordingly, we evaluate our pre-trained



A Study on Inference Latency for Vision Transformers on Mobile Devices 3

models on 190 real-world ViTs, illustrating that our predictors can accurately
estimate latency of novel ViT architectures.

Our main contributions are summarized as follows:

– We quantitatively compare the performance characteristics of 190 real-world
ViTs and 102 CNNs on mobile platforms (Section 3.1), illustrating their
differences in latency, performance bottlenecks, and memory consumption.
Based on this comparison of performance characteristics, we develop insights
into the fundamental causes of latency patterns observed in ViTs (Sec-
tion 3.2), including the effects of memory formats, selection of activation
functions, and implementations provided by ML frameworks.

– Based on this thorough understanding of latency characteristics, we design a
search space to generate synthetic ViTs with representative building blocks
used in SOTA efficient ViTs (Section 4.1). We release the resulting ViT la-
tency dataset [16], containing profiling information for 1000 synthetic ViTs
and 190 real-world ViTs on 6 mobile platforms and 2 mainstream ML frame-
works, across different CPU core combinations and data representations,
which can be used by researchers and developers for performance analysis.

– To demonstrate the applicability of our dataset, we train ML latency pre-
dictors from measurements of 900 synthetic ViTs on 6 mobile devices. From
systematic evaluation of these predictors on both 100 synthetic (Section 4.4)
and 190 real-world ViTs (Section 4.5), we show that simple ML predictors
trained on our dataset are sufficiently accurate for practical applications such
as NAS (i.e., for synthetic ViTs, errors of 4.4% on PyTorch Mobile and 4.8%
on TFLite for mobile CPUs, and errors of 2.1% on PyTorch Mobile and
8.9% on TFLite for mobile GPUs) and collaborative inference (i.e., errors of
8.2% on PyTorch Mobile and 6.1% on TFLite for real-world ViTs on mobile
CPUs).

2 Background and Experimental Setup

2.1 Vision Transformers

Vision Transformers (ViTs) are a class of neural architectures intended for vision
tasks that leverage a self-attention mechanism, originally introduced by trans-
formers for NLP tasks [28]. Initially proposed in [7], ViTs have fundamentally
changed the domain of computer vision, emerging as an alternative to more
traditional CNNs.

At a high level, the architecture of ViTs consists of an encoder and a decoder,
as demonstrated in Fig. 1 for our synthetic ViT design (Section 4.4). The encoder
represents the input image as a set of embedding vectors and performs a series of
transformations; the results are passed to the decoder, which generates the final
output. Specifically, the encoder divides an input image into patches (e.g., 16x16
pixels [7]); each patch is then flattened into a 1D vector and projected to a high-
dimensional embedding space through linear transformation, as illustrated by the
patch embedding block in Fig. 1. Similarly to word embeddings (also known as



4 Li et al.

Input Block 𝑛 Output

Patch 
Em

bedding

Conv
𝑘!×𝑘!

DW-Conv
𝑘!×𝑘!

Conv
1×1

Block 1

Token Mixer MLPNorm Norm

Multi-Head 
Attention

Separable Convolution (SepConv) Spatial-Reduction Attention (SRA)

Spatial 
Reduction

Patch 
Em

bedding

Block 𝑖

Patch 
Em

bedding

𝐻×𝑊×3
𝐻
2 ×

𝑊
2 ×𝑐!

𝐻
2"
×
𝑊
2"
×𝑐"

𝐻
2#
×
𝑊
2#
×𝑐#

ℎ!×𝑤!×𝑐! ℎ!
𝑟!
×
𝑤!
𝑟!
×𝑐!

ℎ!×𝑤!×𝑐!

ℎ!×𝑤!×𝑒!𝑐! ℎ!×𝑤!×𝑒!𝑐!

ℎ!×𝑤!×𝑐! ℎ!×𝑤!×𝑐!
Key

Value

Query

Classification 
Head

Encoder Decoder

Fig. 1: Search Space Design for Synthetic ViTs

tokens) in NLP transformers, the embedding vectors for image patches are passed
through multiple multi-head self-attention [28] blocks, also known as a token
mixers (see Fig. 1). The general idea of the self-attention mechanism is to allow
each embedding vector (e.g., an image patch) to exchange information with other
embeddings; specifically, each embedding vector “pays attention” to others in the
input sequence based on their “relevance”. This is a key difference between ViTs
and CNNs: while ViTs consider global relationships between pairs of embeddings,
CNNs hierarchically process local spatial details (e.g., edge) before aggregating
into high-level features (e.g., shapes).

The multi-head self-attention block (1) performs linear transformations on
input embeddings to obtain query, key, and value matrices (Q,K, V ) with em-
bedding length ci, (2) computes attention scores QK⊤ (i.e., the relevance of
each embedding to others) and (3) outputs a weighted sum of values based on

attention weights: softmax(QK⊤
√
ci

)V . The latency of this block is primarily domi-

nated by the computation of linear transformations and matrix multiplications.
Specifically, for an input sequence ofN tokens, each represented as an embedding
vector of length D, the computational complexity of the linear transformations
to obtain N ×D query, key, and value matrices (Q,K, V ) is O(ND2). Addition-
ally, in the multi-head attention layer, the computational complexity of matrix
multiplication, QK⊤, used to obtain N × N attention scores is O(N2D). This
quadratic cost is due to the need to compute scores for each pair of tokens in
the input sequence. Also, the matrix multiplication between the normalized at-

tention weights, softmax(QK⊤
√
ci

), and the value matrix, V , to produce an N ×D

output embedding matrix has a computational complexity of O(N2D). Conse-



A Study on Inference Latency for Vision Transformers on Mobile Devices 5

quently, as the number of tokens, N , increases, the complexity of an attention
block grows quadratically, which significantly impacts latency.

Notably, recent efficient ViT designs [33] tend to use convolution blocks alter-
natively in the early layers for feature extraction, such as Separable Convolution
(SepConv) [12] that significantly reduces the computational cost by decomposing
a standard convolution operation into depthwise convolution (DWConv, where
each filter is applied to a separate input channel rather than all input channels
in a standard convolution) and pointwise convolution (convolution with 1 × 1
filter). In addition, similarly to the hierarchical structures in CNNs, recent real-
world ViTs [19,29] commonly process features at multiple scales across different
blocks. Specifically, the patch embedding [7] divides the input feature map of
shape h× w into patches of size 2× 2, yielding h

2 × w
2 embedding vectors, with

increasing embedding lengths in deeper blocks. The decoder (or neck) of a ViT
can be configured for a specific task, such as classification head for image clas-
sification or detection head for object detection.

2.2 Deployment of ViTs on Mobile Platforms

Compared to cloud servers, mobile devices are equipped with limited RAM
(e.g., 6 GB on iPhone 15 instead of 80 GB GPU memory on Nvidia H100).
Thus, deployment of complex ViTs becomes challenging due to their substan-
tial memory requirement during inference. For instance, the object detection
ViT model DETR-ResNet101 [5] consumes 5.0 GB mobile memory for a single
image of 512 × 1333 pixels, and higher input resolutions require more memory
(Section 3.1). Additionally, memory access plays an important role in inference
latency (Section 3.1), which is crucial for mobile platforms with demanding user
experience but constrained resources.

To systematically study the critical factors of inference latency, we collect
190 real-world ViTs from Timm [31] and HuggingFace’s Transformers [32], and
convert these models into PyTorch Mobile format to facilitate deployment across
6 mobile platforms summarized in Table 1. Specifically, we deploy all the ViTs on
mobile CPUs because many common operations in ViTs are currently unavail-
able in ML frameworks for mobile GPUs, e.g., the roll operation in Swin [19].
Following [17], for each ViT, we measure the latencies of a randomly initialized
image across various combinations of CPU cores, ensuring that each core has
a thread assigned to it. Additionally, we evaluate the effects of quantization,
a popular optimization approach to reducing computational cost and memory
consumption; we note that 64 of the 190 real-world ViTs cannot be quantized
due to operations unsupported by PyTorch Mobile. To investigate the impact of
ML frameworks on inference latency, we also deploy TensorFlow models in Ten-
sorFlow Lite (TFLite); we note that only 25 of the 190 ViTs have TensorFlow
implementations available.



6 Li et al.

Platform (SoC) CPU Cores GPU

Google Pixel 4
(Snapdragon 855)

1x Large (2.84 GHz),
3x Medium (2.32 GHz),

4x Small (1.80 GHz)
Adreno 640

Motorola One Fusion
(Snapdragon 710)

2x Large (2.20 GHz),
6x Small (1.70 GHz)

Adreno 616

Samsung Galaxy S10
(Exynos 9820)

2x Large (2.73 GHz),
2x Medium (2.31 GHz),

4x Small (1.95 GHz)
Mali G76

Samsung Galaxy A03s
(Helio P35)

4x Large (2.30 GHz),
4x Small (1.80 GHz)

PowerVR GE8320

Apple iPhone 12
(A14 Bionic)

2x Large (2.31 GHz),
4x Small (1.80 GHz)

Apple-designed (4 core)

Apple iPhone XS
(A12 Bionic)

2x Large (2.49 GHz),
4x Small (1.52 GHz)

Apple-designed G11P

Table 1: Mobile Platforms in Our Study

0 50 100 150 200 250 300
Model Size (MB)

0

20

40

60

FL
OP

S 
(G

) ViT
CNN

Fig. 2: Overview of Evaluated Architectures

3 Evaluation on Real-World ViTs

In this section, we study the performance characteristics of 190 real-world ViTs
from our dataset [16]. We begin by comparing with real-world CNNs (Section 3.1)
and provide insights into inference latency based on our findings (Section 3.2).

3.1 Comparison between CNNs and ViTs

Firstly, we analyze performance characteristics of real-world ViTs on PyTorch
Mobile through a comparison with 102 real-world CNNs studied in [17].

Latency Fig. 2 illustrates the distribution of the number of floating-point oper-
ations (FLOPs) and model sizes for common ViTs and CNNs. Generally, ViTs
exhibit higher FLOPs than CNNs, primarily due to fundamental architectural
differences: specifically, ViTs apply self-attention mechanisms that compute the



A Study on Inference Latency for Vision Transformers on Mobile Devices 7

0 1 2 3 4 5
FLOPS (G)

0

100

200

300

La
te

nc
y 

(m
s) ViT

CNN

Fig. 3: End-to-End Latency Comparison

Conv Linear Matmul Norm Element-
wise

Activ Pool/
Mean

Others

Operations

0%
20%
40%
60%
80%

100%

Pe
rc
en

ta
ge ViT

CNN

Fig. 4: Latency Breakdown Comparison

relevance between all pairs of patches in the input image, leading to a complexity
of O(H2W 2) for an image with dimensions H × W (Section 2.1); in contrast,
CNNs rely on convolution layers that apply fixed-size filters to each local re-
gion of the input, resulting in a lower complexity of O(HW ). We measure the
inference latency for CNNs and ViTs with comparable FLOPs (i.e., less than
5 GFLOPs); as presented in Fig. 3, where we fit linear regression models to in-
dicate the trend between FLOPs (estimated by ptflops [26]) and latency, ViTs
consistently exhibit longer inference times than CNNs with similar FLOPs; e.g.,
the ViT with 5.00 GFLOPs incurs 1.75x latency of the CNN with 4.95 GFLOPs.

To better understand inference latency performance, we profile the latency of
each type of operation and depict their contribution to overall latency in Fig. 4.
We observe two main differences between ViTs and CNNs: (1) While the major-
ity of end-to-end latency in CNNs is due to convolution operations, a significant
portion of the end-to-end latency in ViTs is due to linear operations, as these
are the crucial components of self-attention blocks. (2) A larger proportion of
the end-to-end latency in ViTs is attributed to activation operations, primarily
Gaussian Error Linear Unit (GELU) activations [11]. We observe that the com-
putation of GELU activation is approximated differently depending on its input
values, significantly affecting latency (as detailed in Section 3.2). The variability
in approximations makes the FLOPs estimation (which is calculated indepen-
dently of the input values) inaccurate to represent actual latency of ViTs.

Takeaway: ViTs generally exhibit higher latency than CNNs with similar
FLOPs, suggesting that ViTs may be less suitable for real-time applications on
mobile platforms where low latency is critical. Existing literature has demon-
strated that FLOPs is not an accurate latency proxy for CNNs [21], and it is
even less reliable for ViTs due to the variable latency of GELU activations for
different input values.



8 Li et al.

0.0

0.1

0.2

Fr
ac

tio
n ViT

0 10 20 30 40 50 60
Arithmetic Intensity

0.0

0.1

0.2

Fr
ac

tio
n CNN

Fig. 5: Histograms of Arithmetic Intensity

0.0

0.1

Fr
ac

tio
n ViT

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Latency Speedup

0.0

0.1

Fr
ac

tio
n CNN

(a) Memory Bandwidth Increase

0.0

0.2

0.4

Fr
ac

tio
n ViT

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Latency Speedup

0.0

0.2

0.4
Fr

ac
tio

n CNN

(b) CPU Clock Speed Increase

Fig. 6: Speedup Histograms Comparing Latency between (a) Highest and Lowest
Memory Bandwidth and (b) Fastest and Slowest CPU Clock Speed

Performance Bottleneck Existing literature [13,15] suggests that self-attention
blocks are typically less memory-efficient compared to convolutions. To confirm
this on mobile platforms, Fig. 5 compares their distributions of arithmetic inten-
sity [3] on Pixel 4, which is defined as the ratio of total number of floating-point
instructions divided by the amount of memory traffic (both reported by Perfor-
mance Monitoring Unit (PMU) counters on ARM processors). We observe that
arithmetic intensity of ViTs is generally lower than that of CNNs, indicating a
greater tendency for memory-bound performance on mobile devices.

To confirm this memory bottleneck, we conduct additional experiments by
varying (1) memory frequencies (including L3 cache, last-level cache controller,
and DDR RAM) controlled by Dynamic Voltage and Frequency Scaling (DVFS)
governors [25] or (2) CPU frequencies when running inference with 1 large and 3
medium cores on Pixel 4. As depicted in Fig. 6a, increasing memory frequencies
from the lowest to the highest results in a more substantial acceleration for ViTs
as compared to CNNs; for example, 75% of ViTs achieve speedups over 3.40x,
compared to only 28% of CNNs. On the other hand, as illustrated in Fig. 6b,
boosting CPU clock from the slowest (0.83 GHz) to the fastest (2.84 GHz) speed
provides less reduction in latency for ViTs as compared to CNNs; for example,
89% of ViTs show speedups less than 1.93x, compared to only 12% of CNNs.



A Study on Inference Latency for Vision Transformers on Mobile Devices 9

0 10 20 30 40 50 60
Model Size (MB)

0

200

400

600

M
em

or
y 

(M
B) ViT

CNN

Fig. 7: End-to-End Memory Requirement Comparison

Conv Linear Matmul Norm Element-
wise

Activ Pool/
Mean

Others

Operations

0%
20%
40%
60%
80%

100%

Pe
rc
en

ta
ge ViT

CNN

Fig. 8: Memory Breakdown Comparison

Takeaway: Both experiments suggest that ViTs are more likely to be memory-
bound than CNNs and therefore require higher memory bandwidth on mobile
platforms due to larger memory access demands.

Memory Consumption Fig. 2 shows that ViTs typically exhibit larger model
sizes than CNNs, because the self-attention blocks consist of more complex pa-
rameters than convolution layers. We measure the memory consumption of in-
termediate tensors during inference reported in PyTorch Mobile for ViTs and
CNNs with comparable model sizes (i.e., less than 65 MB); as depicted in Fig. 7,
the memory consumption is greater for ViTs.

Particularly, we also note different contributions to memory consumption
across various types of operations, as depicted in Fig. 8. In CNNs, element-wise
and pooling operations contribute to a minor portion of the end-to-end latency
(i.e., less than 1.9% on average) but to a higher portion of memory consumption
(e.g., 6.6% for pooling and 3.9% for add). In ViTs, linear operations account for
a smaller portion of memory use than latency; normalization, element-wise and
activation operations contribute to a significant amount of memory consumption
(e.g., 9.4% for GELU, 7.6% for add, 5.3% for layernorm, and 4.9% for softmax).
These operations are fundamental components of self-attention blocks.

In addition, we observe that memory consumption scales differently for ViTs
than CNNs with the increase of input resolution. For example, we study two
typical architectures of ViTs and CNNs: Vanilla ViT-S (with patch size 32) [7]
and ResNet-18 (with width scale 0.5) [10]. The memory consumption of Vanilla
ViT-S is 14% higher than ResNet-18 at an input resolution of 224x224 pixels,
but the difference grows to 43% at 512x512 pixels.

Takeaway: The memory requirements of ViTs generally exceed those of CNNs
with comparable model sizes, and this memory consumption scales more rapidly



10 Li et al.

100 150 200 250 300 350
Input Channels (C)

0

20

40

La
te

nc
y 

(m
s) NCHW (H=W=64)

NHWC (H=W=64)
NCHW (H=W=48)
NHWC (H=W=48)

Fig. 9: Effects of Memory Format

as ViT input resolution increases. Thus, careful consideration is required when
choosing ViTs over CNNs in memory-constrained environments.

3.2 Understanding ViT Inference Latency: Insights

Next, we elaborate on insights from our study of inference latency of ViTs, which
are taken into consideration in designing our synthetic ViTs (Section 4.1).

Memory Format In profiling latency of ViTs on PyTorch Mobile, we ob-
serve a significant number of transpose and reshape operations; this is attributed
to the difference in input shapes between convolution operations (requiring 4-
dimensional tensors) and self-attention blocks (expecting 3-dimensional tensors).
Specifically, PyTorch utilizes channel-first memory format for 4-dimensional ten-
sors (i.e., [N,C,H,W ] for batch size, number of channels, height and width in
an image). However, before forwarding to self-attention blocks, the image is di-
vided into multiple patches (i.e., small pixel groups) requiring (1) transpose and
reshape of the tensor into channel-last format, as [N,H ×W,C] and (2) division
into image patches of P 2 pixels, as [N, H×W

P 2 , P 2 × C]. Although the transpose
and reshape operations contribute to an insignificant portion of the end-to-end
latency, they can affect the execution time of a subsequent convolution operation
due to changing the memory format of the input tensor.

Fig. 9 presents the effects of memory format on the latency of convolution
operations in PyTorch Mobile. As can be seen, memory format can significantly
affect latency, leading to average speedups of 2.21x and 1.58x for input tensors in
channel-last format (NHWC, in blue) compared to channel-first format (NCHW,
in green) for tensor shapes of 64×64 and 48×48, respectively. This distinction is
due to the computing library XNNPACK [9] providing different implementations
of convolution based on the input and output memory formats.

Takeaway: Optimizing the memory format is crucial in the implementation
of ViTs, as leveraging an efficient memory format can significant improve the
latency of convolution layers. This underscores the importance of sampling syn-
thetic ViTs with different memory formats in our dataset (Section 4.1).

Activation Functions In Section 3.1, we identify GELU activation operations
as significant contributors to latency; here we further study the effects of input



A Study on Inference Latency for Vision Transformers on Mobile Devices 11

0 3 61.19 1.77 4.04 5.15 5.66
Input Values

0

2

4

La
te

nc
y 

(m
s)

SiLU
ReLU

GELU
GELU (approx)

Fig. 10: Latency of Activation Functions

64 96 128 160 192 224 256 288 320 352 384
Input Channels (C)

0

10

20

La
te

nc
y 

(m
s) H=W=72

H=W=64
H=W=56

(a) PyTorch Mobile

64 96 128 160 192 224 256 288 320 352 384
Input Channels (C)

0.5

1.0
H=W=72
H=W=64
H=W=56

(b) TFLite

Fig. 11: Latency of DWConv in Different ML Frameworks

values on GELU’s latency. Fig. 10 depicts latency measurements for common
activation operations used in vision models, based on a 56 × 56 input tensor
with variable input channels (indicated on the x axis); here, a clear discontinuity
can be observed for GELU (blue crosses), compared to SiLU [8] (green dots)
and ReLU (red dots). The GELU operation is defined in [11] as: GELU(x) =
x
2 [1 + erf(x/

√
2)], where the Gaussian error function erf is computed by the

standard C library libm (for basic mathematical functions). By inspecting the
source code, we find that erf is computed differently depending on its (absolute)
input values; the discontinuities observed in the figure correspond to the following
GELU input values {1.19, 1.77, 4.04, 5.66} found in the code. We observe that
this specific approximation leads to substantial differences in GELU’s latency;
for instance, the latency for an input value of 2 is 2.85x longer than that of
an input value of 1. PyTorch also provides an approximate implementation of
GELU based on tanh: GELU(x) ≈ x

2 (1+tanh(
√

2/π(x+0.044715x3))). However,
as depicted in Fig. 10, the latency of approximate GELU (green crosses) also
depends on input values, similarly due to the computation of tanh in libm.

Takeaway: Latency of the activation function in ViTs cannot be captured
by FLOPs; since the values in the input image and model weights influence the
inputs to the GELU activation functions, they affect inference latency of ViTs.

Effects of ML Frameworks Fig. 11a illustrates latency measurements for
depthwise convolution (DWConv) operations (with various input channels) in
PyTorch Mobile. Here, we observe a non-linear increase in latency, with spikes
occurring when the number of input channels is a multiple of 32. Notably, the
FLOPs of a DWConv operation with filter size k× k is H ×W ×C × k2, which
grows linearly with number of input channels C and thus does not serve as an



12 Li et al.

1 Med 2 Med 1 Large 1 Small 2 Small
Cores

0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

PyTorch
TFLite

(a) End-to-End Latency

Conv Linear Matmul Norm Activ
Operations

0
2
4
6
8

10
12

1

PyTorch
TFLite

(b) Operation (1 Large Core)

Fig. 12: Effects of Quantization (25 Real-World ViTs)

accurate proxy metric for inference latency [17]. Furthermore, the latency of in-
put shapes 64× 64 is surprisingly greater than that of input shapes 72× 72 for
the same number of input channels. By analyzing the source code of the comput-
ing library XNNPACK, we observe a significant cost associated with converting
memory formats before and after the convolution computation, due to the dif-
ferent formats between PyTorch Mobile and XNNPACK. As a comparison, in
Fig. 11b DWConv in TFLite is significantly faster and exhibits a linear increase
in performance with the number of input channels, because TFLite and its com-
puting library have the same memory format (i.e., no need to convert).

In addition, we study the effects of quantization in different ML frameworks,
a common technique for reducing latency and memory usage through lower pre-
cision of data representations. Fig. 12 compares the latency speedup on Pixel 4
achieved by quantization for 25 ViTs implemented in both PyTorch Mobile and
TFLite. As can be seen in Fig. 12a, after quantization in PyTorch Mobile, ViTs
achieve acceleration on small cores but not on large or medium cores. To under-
stand this behavior, Fig. 12b depicts the speedup for each type of operation on a
large core. Notably, there is a performance degradation of linear operations in Py-
Torch Mobile, due to the use of a different computing library QNNPACK [22] for
integer data representations. We observe that the library for floating-point com-
putation (XNNPACK) offers more efficient implementations for linear operations
based on Neon SIMD instructions, outperforming quantized implementations in
QNNPACK on powerful (large and medium) cores. Another difference between
ML frameworks is the activation function, which shows substantial performance
improvement in TFLite, but exhibits performance degradation in PyTorch Mo-
bile. In addition, we observe a significant performance drop for normalization
operations in both frameworks, due to the overhead of input scaling and lack of
efficient quantized implementations [18].

Takeaway: Various computing libraries within ML frameworks can lead to
significant variations in inference latency; this motivates the inclusion of latency
measurements from multiple ML frameworks in our dataset (Section 4.1).

4 Construction of a ViT Latency Prediction Dataset

In this section, we develop our methodology for constructing a search space for
sampling synthetic ViTs with representative building blocks (Section 4.1) and



A Study on Inference Latency for Vision Transformers on Mobile Devices 13

showcase latency measurements for 1000 synthetic ViTs (Section 4.2). We also
demonstrate the applicability of our dataset [16] by showing that simple ML
predictors (Section 4.3) trained on synthetic ViTs can lead to accurate latency
predictions on both synthetic (Section 4.4) and real-world (Section 4.5) ViTs.

4.1 Search Space Design

We sample synthetic ViTs with the hierarchical architecture depicted in Fig. 1,
for input image height H and width W chosen from the set {224, 256, 288, 384},
as commonly used in vision datasets; we incorporate six blocks (n = 6) in the
architecture so that the encoder outputs a tensor shape of H

64 × W
64 for the clas-

sification head. The embedding lengths {ci} of these blocks are in an increasing
pattern, enabling more detailed feature representations in the deeper blocks:
c1 ∈ [16, 32], c2 ∈ [32, 80], c3 ∈ [64, 192], c4 ∈ [192, 384], c5 ∈ [256, 768], c6 ∈
[384, 1024]. In order to reduce the computational cost and sample more config-
urations, we merge the first k ∈ [2, 4] blocks by removing the first k − 1 blocks
and assigning patch size of 2k × 2k for the k-th block, such that the input res-
olutions over the rest of the blocks remain the same. Following the trend of
hybrid building blocks [33], we select either SepConv or Attention as the to-
ken mixer (as illustrated in Section 2.1); this design also allows the synthetic
ViTs to incorporate tensors with different memory formats (Section 3.2). The
choices of parameters in each block include: (1) batchnorm or layernorm as
the normalization, both commonly applied in the literature; (2) GELU or SiLU
as the activation function, exhibiting distinct performance characteristics (Sec-
tion 3.2); (3) the MLP expansion ratios in the six blocks are sampled from ranges
[1, 4], [2, 10], [2, 10], [1, 4], [1, 4], [1, 2] in that order, allowing various dimensions of
the intermediate tensors within the attention block. In addition, for SepConv
blocks, the convolution filter shape is selected from sets {1, 3, 5, 7}; the num-
ber of input channels to DWConv is selected using expansion ratios of up to
ei = 8, 8, 8, 8, 4, 2, respectively. For Attention blocks, we use up to 12 attention
heads; we use Spatial-Reduction Attention (SRA) [29] in the first three blocks
to save computational cost by reducing the input scale to multi-head attention,
with sequence reduction ratios sampled from ranges [2, 16], [1, 4], [1, 2].

4.2 Latency Breakdown for CPU and GPU Execution

Based on our search space design, we sample 1000 synthetic ViTs in addition to
the 190 real-world ViTs in our dataset, with measurements across 2 ML frame-
work on 6 mobile devices. Mobile GPUs are widely utilized for inference tasks;
however, from our experiments, most real-world ViTs are currently unavailable
on mobile GPUs due to limited support of operations in ML frameworks. In-
stead, constructing synthetic ViTs facilitates latency measurements on mobile
GPUs by substituting unsupported operations in the implementation. In Sec-
tions 4.4 and 4.5, we further validate the representativeness of our synthetic ViTs
by demonstrating that simple ML predictors trained on these synthetic ViTs can
accurately predict the latency of real-world ViTs.



14 Li et al.

Conv Linear Matmul Norm Element-
wise

Activ Reshape/
Permute

Operations

0%

20%

40%

60%

80%

Pe
rc
en

ta
ge

CPU
GPU

Fig. 13: Latency Breakdown for Synthetic ViTs (PyTorch Mobile)

Fig. 13 compares the latency breakdown for 1000 synthetic ViTs between
CPU and GPU on Pixel 4. Notably, the convolution operations contribute to a
smaller portion of end-to-end latency on GPU, benefiting from the implementa-
tions of various efficient Vulkan kernels. Additionally, the layernorm operations
account for a larger portion of end-to-end latency since multiple Vulkan kernels
of element-wise operations are dispatched within this operation, incurring more
dispatching overhead. Besides, the latency of reshape and permute operations
increases on mobile GPU due to the cost of memory copy from layout transfor-
mation [23], while their CPU implementations only update the view of memory
format without explicitly memory copy.

4.3 Prediction Methodology

In order to illustrate the applicability of our dataset [16], we train latency pre-
dictors on the synthetic ViTs and evaluate their accuracy on both synthetic and
real-world ViTs. Similarly to the ML predictors in [18] developed for latency
prediction of CNNs, we construct latency predictors for each type of operation.
Specifically, we focus on common operations in both synthetic and real-world
ViTs, including convolution, linear, matmul, element-wise, pooling, normaliza-
tion, and activation operations. Notably, we train separate predictors for convolu-
tion with different memory formats (i.e., channel-first and channel-last) because
of their distinct performance characteristics (as described in Section 3.2). Each
predictor generates latency prediction for an operation based on the features
in [18] describing the operation configurations; these features can represent both
computational aspects (e.g., FLOPs) and memory access costs (e.g., input and
output shapes). The end-to-end latency is estimated by summing the latency pre-
dictions of all operations within a model. We compare predictions obtained by
three ML methods: Lasso, Random Forest (RF) and Gradient Boosted Decision
Trees (GBDT), using a loss function of Mean Average Percent Error (MAPE).

4.4 Prediction on Synthetic ViTs

We begin by evaluating our latency prediction on synthetic ViTs, showcasing
the applicability of inference estimation for candidate ViT architectures during
the NAS process. Specifically, we divide the dataset of 1000 synthetic ViTs into
900 for training and 100 for testing.



A Study on Inference Latency for Vision Transformers on Mobile Devices 15

Dataset,
Framework

Method
Operation MAPE End-to-End

MAPE
Conv Linear Activ

Synthetic,
PyTorch

Lasso 17.90% 10.69% 5.79% 15.84%

RF 4.31% 4.83% 4.50% 4.10%

GBDT 3.93% 4.88% 4.34% 4.44%

Synthetic,
TFLite

Lasso 4.75% 4.50% 15.97% 11.85%

RF 1.98% 1.97% 7.97% 4.51%

GBDT 2.04% 1.81% 7.73% 4.84%

Real-world,
PyTorch

Lasso 22.06% 12.58% 11.27% 16.78%

RF 12.99% 11.98% 9.77% 7.35%

GBDT 13.70% 10.74% 9.77% 8.15%

Real-world,
TFLite

Lasso 6.19% 6.94% 12.46% 9.31%

RF 5.17% 6.07% 14.66% 6.30%

GBDT 6.82% 5.50% 13.26% 6.14%

Table 2: Mean Average Percentage Errors of CPU Predictions (NTrain = 900)

Dataset,
Framework

Method
Operation MAPE End-to-End

MAPE
Conv Linear Activ

Synthetic,
PyTorch

Lasso 10.23% 9.33% 45.00% 27.87%

RF 3.30% 1.69% 1.63% 2.32%

GBDT 2.06% 2.45% 7.95% 2.12%

Synthetic,
TFLite

Lasso 17.61% 9.14% 17.19% 21.35%

RF 8.73% 4.93% 9.12% 8.57%

GBDT 9.30% 7.12% 10.48% 8.88%

Table 3: Mean Average Percentage Errors of GPU Predictions

Comparison of ML Methods We compare the three ML methods (intro-
duced in Section 4.3) first in a floating-point data representation setting on a
large CPU core. Table 2 summarizes prediction errors (i.e., MAPEs averaged
over six mobile platforms in Table 1) for both end-to-end latency and for three
operations significantly contributing to end-to-end latency. Notably, non-linear
ML approaches (RF and GBDT) achieve similarly accurate predictions for both
convolution and linear operations (i.e., maximum error of 4.9%), and thus end-to-
end latency (i.e., maximum error of 4.8%) across PyTorch Mobile and TFLite.
We observe that the errors of convolution operations on PyTorch Mobile are
higher than on TFLite, due to the complexity of performance characteristics (as
described in Section 3.2). For this reason, the simple linear method Lasso ex-
hibits significant errors (17.9% for convolution operations) on PyTorch Mobile
due to its limited expressiveness. In addition, the errors on activation operations
are higher, primarily because of mispredictions of GELU operations that behave



16 Li et al.

FLOPs Output
Size

Output
Width

Output
Height

Input
Size

Filter
Size

Features

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e Conv (NCHW)
Conv (NHWC)

Fig. 14: Feature Importance in GBDT Trees

differently depending on the value of input data (as introduced in Section 3.2);
hence, our ML predictors based on operation configurations (regardless of input
values) can hardly capture this behavior and exhibit higher errors. Neverthe-
less, since activation operations contribute to a smaller portion of end-to-end
latency (compared to convolution and linear operations), our end-to-end latency
predictions are still highly accurate.

In addition, we conduct experiments on mobile GPUs to illustrate the high
accuracy of our predictions for heterogeneous hardware accelerators. Due to
out-of-GPU-memory issues, it was not possible to collect measurements for our
synthetic ViTs using PyTorch Mobile Vulkan backend on Mali G76 and Helio
P35. Hence, we only present average prediction errors of two Android GPUs
using PyTorch Mobile and four Android GPUs using TFLite in Table 3. As with
CPU results, all non-linear models (RF and GBDT) obtain comparable accurate
end-to-end latency predictions, with maximum error of 2.1% on PyTorch Mobile
and 8.6% on TFLite; we attribute the higher errors in TFLite to its more diverse
implementations of GPU kernel (e.g., using high-performance algorithms to ac-
celerate convolution) [18]. The linear model Lasso exhibits worse predictions due
to the limited capability to capture non-linear relationships between the latency
of convolution and the operation features (e.g., kernel size, FLOPs).

Due to lack of space, the rest of this section will focus only on GBDT, because
it achieves similarly accurate predictions to RF when there is a larger amount of
training data and substantially outperforms RF in the case of limited training
data, as discussed in Section 4.6.

Feature Importance Analysis Next, we study the importance of various
GBDT features to understand critical factors of latency. Specifically, we use a
common metric, Mean Decrease of Impurity (MDI) [20], for feature importance
evaluation. Fig. 14 depicts the features with high importance for convolution
operations with different memory formats on Snapdragon 855. Notably, the la-
tency of convolution operations in channel-last format (NHWC) is essentially
determined by FLOPs, while the latency convolution operations in channel-first
format (NCHW) is additionally influenced by the sizes of input and output due
to the cost of memory copy and reformatting before and after the computation
(as detailed in Section 3.2).



A Study on Inference Latency for Vision Transformers on Mobile Devices 17

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
2%
4%
6%
8%

10%
12%

Er
ro

r

NTrain = 900, Float
NTrain = 900, Int8

(a) Snapdragon 855 (PyTorch)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
5%

10%
15%
20%
25% NTrain = 900, Float

NTrain = 900, Int8

(b) Exynos 9820 (PyTorch)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%

5%

10%

15%

20%

Er
ro

r

NTrain = 900, Float
NTrain = 900, Int8

(c) Helio P35 (PyTorch)

1L 2L 1S 2S 3S 4S
Cores

0%
2%
4%
6%
8%

10% NTrain = 900, Float
NTrain = 900, Int8

(d) A12 Bionic (PyTorch)

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
2%
4%
6%
8%

10%
12%
14%

Er
ro

r

NTrain = 900, Float
NTrain = 900, Int8

(e) Snapdragon 855 (TFLite)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
5%

10%
15%
20%
25% NTrain = 900, Float

NTrain = 900, Int8

(f) Exynos 9820 (TFLite)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%
2%
4%
6%
8%

10%
12%

Er
ro

r

NTrain = 900, Float
NTrain = 900, Int8

(g) Helio P35 (TFLite)

1L 2L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25% NTrain = 900, Float

NTrain = 900, Int8

(h) A12 Bionic (TFLite)

Fig. 15: MAPE of GBDT Predictions for Multicore CPUs (Synthetic)

Comprehensive Predictions with GBDT Now, we thoroughly investigate
prediction results of GBDT across a broad range of practical scenarios, includ-
ing various data representations and CPU core combinations. As illustrated in
Fig. 15, GBDT predictions are accurate across all scenarios, with maximum
MAPEs of 8.2% on Snapdragon 855, 12.5% on Exynos 9820, 6.9% on Snap-
dragon 710, 9.1% on Helio P35, 10.6% on A12 Bionic, and 11.1% on A14 Bionic.
Notably, the worst prediction results typically occur when utilizing a large num-
ber of cores, especially heterogeneous cores (e.g., 1 large and 2 medium cores
on Exynos 9820 in Fig. 15b). This is because using more cores leads to higher
resource contention with background jobs on mobile devices, affecting quality of
measurements; in particular, multithreading on hybrid cores suffers from over-
head due to inter-cluster communication and thread synchronization, resulting
in significant prediction errors [18]. In addition, we observe that the prediction
errors are generally lower for integer representations after quantization than
floating-point representations, e.g., A12 Bionic in TFLite (Fig. 15h), due to mis-
predictions on GELUs that account for a larger portion of end-to-end latency in



18 Li et al.

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%
5%

10%
15%
20%
25%

Er
ro

r

NTrain = 900, Float
NTrain = 900, Int8

(a) Snapdragon 855 (PyTorch)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
5%

10%
15%
20%
25%
30% NTrain = 900, Float

NTrain = 900, Int8

(b) Exynos 9820 (PyTorch)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

Er
ro

r

NTrain = 900, Float
NTrain = 900, Int8

(c) Helio P35 (PyTorch)

1L 2L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25% NTrain = 900, Float

NTrain = 900, Int8

(d) A12 Bionic (PyTorch)

1L 1M 2M 3M 1S 2S 3S 4S 1L1M
Cores

0%

5%

10%

15%

20%

Er
ro

r

NTrain = 900, Float
NTrain = 900, Int8

(e) Snapdragon 855 (TFLite)

1L 2L 1M 2M 1S 2S 3S 4S 1L2M
Cores

0%
5%

10%
15%
20%
25%
30% NTrain = 900, Float

NTrain = 900, Int8

(f) Exynos 9820 (TFLite)

1L 2L 3L 4L 1S 2S 3S 4S
Cores

0%
2%
5%
8%

10%
12%
15%
18%

Er
ro

r

NTrain = 900, Float
NTrain = 900, Int8

(g) Helio P35 (TFLite)

1L 2L 1S 2S 3S 4S
Cores

0%
5%

10%
15%
20%
25%
30%
35% NTrain = 900, Float

NTrain = 900, Int8

(h) A12 Bionic (TFLite)

Fig. 16: MAPE of GBDT Predictions for Multicore CPUs (Real-World)

floating-point as compared to integer representations in TFLite, as indicated by
the substantial performance improvement for activation functions in Fig. 12b.

4.5 Predictions on Real-World ViTs

Next, we conduct experiments applying our ML predictors, trained on synthetic
ViTs, to real-world ViTs (described in Section 4.4), demonstrating that these
predictors can be used to predict latency for SOTA ViT architectures in practical
applications such as collaborative inference.

Similarly to the previous setup, we compare the performance of different ML
methods on 190 real-world ViTs in PyTorch Mobile and 25 ViTs in TFLite. As
summarized in Table 2, non-linear methods exhibit higher errors on real-world
ViTs than synthetic ViTs, because of the different distribution of operation
configurations (i.e., a dataset shift between training and testing). Specifically,
RF and GBDT exhibit accurate end-to-end predictions on real-world ViTs, with
errors lower than 8.2% on PyTorch Mobile and 6.3% on TFLite.



A Study on Inference Latency for Vision Transformers on Mobile Devices 19

Dataset,
Framework

NTrain
Method

Lasso RF GBDT

Synthetic,
PyTorch

30 16.45% 11.89% 7.63%

100 16.02% 7.16% 4.52%

900 15.84% 4.10% 4.44%

Synthetic,
TFLite

30 13.18% 9.54% 6.26%

100 12.39% 5.88% 4.79%

900 11.85% 4.51% 4.84%

Real-world,
PyTorch

30 17.52% 13.36% 10.61%

100 16.85% 9.29% 8.94%

900 16.78% 7.35% 8.15%

Real-world,
TFLite

30 9.73% 11.59% 10.43%

100 9.53% 7.04% 6.19%

900 9.31% 6.30% 6.14%

Table 4: MAPE of CPU Predictions using Different Training Dataset Sizes

Additionally, we note that the end-to-end latency prediction error is smaller
than that of convolution and linear operations in PyTorch. This is because the
MAPE of linear operations is skewed by the mispredictions on certain ViTs that
have a few small linear operations (which do not significantly contribute to end-
to-end latency); for instance, if we only keep the ViTs in which linear operations
account for more than 5% of end-to-end latency, the MAPE of linear operations
is 6.5% and 6.4% for RF and GBDT, respectively. We comprehensively evaluate
GBDT predictions across diverse scenarios; as shown in Fig. 16, the maximum
MAPEs are 11.0% on Snapdragon 855, 13.3% on Exynos 9820, 13.7% on Snap-
dragon 710, 14.2% on Helio P35, 13.6% on A12 Bionic, and 14.9% on A14 Bionic.
These results illustrate that our pre-trained predictors can be effectively applied
to unseen ViT architectures, achieving accurate latency predictions.

4.6 Effects of Training Dataset Size

We now study prediction errors as a function of the training dataset size, i.e., the
number of ViT architectures in the training data. As reported in Table 4, non-
linear methods (RF and GBDT) benefit from a larger training data size, while
the linear method, Lasso, achieves similar results regardless of training data size
due to its simple structure with fewer parameters. In the case of very limited
training data (30 ViTs), GBDT outperforms other methods on synthetic ViTs
with low errors (7.6% on PyTorch Mobile and 6.3% on TFLite), demonstrat-
ing its applicability to NAS. The cost of profiling only 30 ViTs and construct-
ing GBDT predictors is small, compared with comprehensive measurements for



20 Li et al.

thousands of candidate architectures during the search. On the other hand, on
real-world ViTs including many unseen operation configurations, Lasso achieves
the lowest error (9.7%) on TFLite when trained on only 30 ViTs, because Lasso
only requires small amounts of training data and is more robust to dataset shift;
however, for PyTorch Mobile, the non-linearity of performance characteristics
(illustrated in Fig. 11a) limits the effectiveness of Lasso, resulting in a high error
of 17.5%.

4.7 Discussion of Limitations

We note that inference latency prediction can be hindered by the interference
of background tasks running on the mobile platforms. In practice, background
tasks such as software updates, location services, and network services can con-
sume computing and memory resources on the mobile platforms unpredictably,
leading to the increase of latency of ML inference jobs. These dynamics can af-
fect the accuracy of ML-based latency prediction techniques, since the training
data is typically collected under controlled conditions and thus may not account
for the existence of background tasks. We are exploring prediction models for
characterizing the inference latency under background tasks as part of future
work. Our initial experiments indicate that this is a challenging problem due to
the need to capture the impact of thermal throttling, memory management, and
task scheduling across computational units on mobile platforms.

5 Conclusion

We provide quantitative analysis on performance characteristics of 190 real-world
ViTs on mobile devices through a comparison with 102 real-world CNNs. Some of
our main findings include the following: (1) ViTs generally exhibit higher latency
than CNNs with similar FLOPs, (2) ViTs exhibit a greater tendency for memory-
bound performance compared to CNNs, and (3) the memory requirements of
ViTs generally exceed those of CNNs with comparable model sizes. In addition,
we provided insight into factors affecting inference latency of ViTs: (a) leveraging
an efficient memory format can significantly improve the computational latency
of convolution layers, (b) the values in the input image and model weights affect
the latency of GELU activation functions, and (c) various computing libraries
within ML frameworks can lead to significant variations in inference latency.

Based on these insights, we developed a dataset [16] of 190 real-world ViTs
and 1000 synthetic ViTs with representative building blocks and with measure-
ments from 2 ML frameworks on 6 mobile platforms, across various core com-
binations and data representations. From our dataset, we constructed accurate
latency predictors for both synthetic and real-world ViTs, demonstrating the
applicability to practical problems such as NAS and collaborative inference. Fu-
ture work includes exploration of predictions on additional accelerators, such as
Neural Processing Units (NPUs) and Digital Signal Processors (DSPs), when
more operations of SOTA ViTs are supported by ML frameworks.



A Study on Inference Latency for Vision Transformers on Mobile Devices 21

References

1. Andoorveedu, M., Zhu, Z., Zheng, B., Pekhimenko, G.: Tempo: Accelerating
transformer-based model training through memory footprint reduction. NeurIPS
2022 35, 12267–12282 (2022)

2. Baller, S.P., Jindal, A., Chadha, M., Gerndt, M.: DeepEdgeBench: Benchmarking
deep neural networks on edge devices. In: IC2E 2021. pp. 20–30. IEEE (2021)

3. Boroumand, A., et al.: Google neural network models for edge devices: Analyzing
and mitigating machine learning inference bottlenecks. In: PACT 2021. pp. 159–
172. IEEE (2021)

4. Cai, H., Li, J., Hu, M., Gan, C., Han, S.: EfficientViT: Multi-scale linear attention
for high-resolution dense prediction. arXiv preprint arXiv:2205.14756 (2022)

5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: ECCV 2020. pp. 213–229. Springer
(2020)

6. Cheng, S., Lin, J.L., Emani, M., Raskar, S., Foreman, S., Xie, Z., Vishwanath,
V., Kandemir, M.T.: Thorough characterization and analysis of large transformer
model training at-scale. POMACS 8(1), 1–25 (2024)

7. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

8. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural net-
work function approximation in reinforcement learning. Neural Networks 107, 3–11
(2018)

9. Google: XNNPACK: High-efficiency floating-point neural network inference oper-
ators for mobile, server, and web. https://github.com/google/XNNPACK (2023)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR 2016. pp. 770–778 (2016)

11. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415 (2016)

12. Howard, A.G., et al.: MobileNets: Efficient convolutional neural networks for mo-
bile vision applications. arXiv preprint arXiv:1704.04861 (2017)

13. Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., Hoefler, T.: Data movement is all you
need: A case study on optimizing transformers. Proceedings of Machine Learning
and Systems 3, 711–732 (2021)

14. Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., Tang, L.:
Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM
SIGARCH Computer Architecture News 45(1), 615–629 (2017)

15. Kao, S.C., Subramanian, S., Agrawal, G., Yazdanbakhsh, A., Krishna, T.: Flat: An
optimized dataflow for mitigating attention bottlenecks. In: ASPLOS 2023. vol. 2,
pp. 295–310 (2023)

16. Li, Z., Paolieri, M., Golubchik, L.: Dataset of CNN and transformer infer-
ence latency measuments on mobile devices. https://github.com/qed-usc/

mobile-ml-benchmark.git (2023)
17. Li, Z., Paolieri, M., Golubchik, L.: A benchmark for ML inference latency on mobile

devices. In: EdgeSys 2024. p. 31–36 (2024)
18. Li, Z., Paolieri, M., Golubchik, L.: Inference latency prediction for CNNs on hetero-

geneous mobile devices and ML frameworks. Performance Evaluation 165, 102429
(2024)

19. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted win-
dows. In: ICCV 2021. pp. 10012–10022 (2021)

https://github.com/google/XNNPACK
https://github.com/qed-usc/mobile-ml-benchmark.git
https://github.com/qed-usc/mobile-ml-benchmark.git


22 Li et al.

20. Louppe, G.: Understanding random forests: From theory to practice. arXiv preprint
arXiv:1407.7502 (2014)

21. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet v2: Practical guidelines for
efficient CNN architecture design. In: ECCV 2018. pp. 116–131 (2018)

22. Meta: QNNPACK: Quantized Neural Networks PACKage. https://github.com/
pytorch/pytorch/tree/main/aten/src/ATen/native/quantized/cpu/qnnpack

(2023)
23. Niu, W., et al.: SmartMem: Layout transformation elimination and adaptation for

efficient dnn execution on mobile. In: ASPLOS 2024. vol. 3, pp. 916–931 (2024)
24. Panopoulos, I., Nikolaidis, S., Venieris, S.I., Venieris, I.S.: Exploring the perfor-

mance and efficiency of transformer models for NLP on mobile devices. In: ISCC
2023. pp. 1–4. IEEE (2023)

25. Qualcomm: Qualcomm Linux Performance Guide: DVFS governors.
https://docs.qualcomm.com/bundle/publicresource/topics/80-70014-10/

2-performance-features.html (2024)
26. Sovrasov, V.: ptflops: A flops counting tool for neural networks in PyTorch frame-

work. https://github.com/sovrasov/flops-counter.pytorch (2024)
27. Sun, H., Qu, Y., Wang, W., Dong, C., Zhang, L., Wu, Q.: An experimental study of

DNN operator-level performance on edge devices. In: SmartIoT 2023. pp. 131–138.
IEEE (2023)

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. NeurIPS 2017 p. 6000–6010 (2017)

29. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In: ICCV 2021. pp. 568–578 (2021)

30. Wang, X., Zhang, L.L., Wang, Y., Yang, M.: Towards efficient vision transformer
inference: A first study of transformers on mobile devices. In: HotMobile 2022.
pp. 1–7 (2022)

31. Wightman, R.: PyTorch image models. https://github.com/rwightman/

pytorch-image-models (2019)
32. Wolf, T., et al.: Transformers: State-of-the-art natural language processing. In:

EMNLP 2020. pp. 38–45 (2020)
33. Yu, W., Si, C., Zhou, P., Luo, M., Zhou, Y., Feng, J., Yan, S., Wang, X.: Metaformer

baselines for vision. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (2023)

34. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/native/quantized/cpu/qnnpack
https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/native/quantized/cpu/qnnpack
https://docs.qualcomm.com/bundle/publicresource/topics/80-70014-10/2-performance-features.html
https://docs.qualcomm.com/bundle/publicresource/topics/80-70014-10/2-performance-features.html
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	A Study on Inference Latency for Vision Transformers on Mobile Devices

