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Abstract. To improve performance or reliability, systems frequently
include multiple components that operate in parallel or with limited
interaction, e.g., replicated components for triple modular redundancy.
We consider components modeled by independent and possibly different
continuous-time Markov chains and propose an approach to estimate
the distribution of first passage times for a combination of component
states (e.g., a system state where all components have failed) without
generating the joint state space of the underlying Markov chain nor
evaluating probabilities for each of its states. Our results highlight that
the approach leads to accurate approximations with significant reductions
of computational complexity.

Keywords: First Passage · Bounded Reachability · CTMC · Markov
Chain · Replicated · Modular Redundancy

1 Introduction

Continuous-time Markov chains (CTMCs) are a class of stochastic processes that
has found broad application in models of system performance and reliability.
Many high-level modeling formalisms such as stochastic Petri nets [17], stochastic
process algebras [9], and queuing networks [15] define CTMC processes that
can then be analyzed using dedicated tools [1,12,16] to evaluate transient or
steady-state metrics.

To improve performance or reliability, systems frequently include replicated
components operating in parallel or with limited interaction, e.g., components
replicated for triple modular redundancy (TMR). When the system includes many
replicated components, each with a state evolving over time, the large number of
states of the resulting CTMC process presents major challenges due to memory
and computation requirements. These issues are exacerbated by the necessity of
using phase-type (PH) distributions [18] to model activities with non-exponential
durations. PH distributions can be introduced in the model as a sequence of
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intermediate states (phases) for a non-exponential activity, where rates between
states are selected to fit the original distribution (by matching moments [4],
tail behavior [11], or both [13], or by maximizing likelihood [3]). While the use
of additional intermediate states allows more accurate approximations, it also
increases the number of system states, especially when many such activities can
execute in parallel.

Several approaches were proposed to analyze large CTMCs with multiple
components. These include binary decision diagrams (BDDs) [16], which represent
the CTMC transition matrix as a directed graph where paths select rate values,
and structured analysis [6], which represents the CTMC transition matrix as
a sum of Kronecker products of the small transition matrices of individual
components. Either approach can be used to evaluate transient or steady-state
probabilities of each system state through iterative methods.

In this work, we propose an approximate solution method to evaluate the
cumulative distribution function (cdf) of the first passage time of a combination of
component states (e.g., a system state where all components have failed) without
enumerating system states (in contrast with alternative approaches computing
probabilities for each system state). The approximation will be developed by time
discretization assuming that the system can be in the concerned combination of
component states at the end of a small time interval only if all but one of the
components are already there at the beginning of the time interval. The state
distribution of the components at the beginning of each interval is assumed to
be independent, irrespective of first passage events in previous time intervals.
Time discretization will be removed then leading to a differential equation whose
numerical integration provides the approximation.

In contrast with classical work on replicated components [2,5,19], we consider
possibly different CTMC components with an arbitrary number of states (instead
of one up and one down state) and evaluate the cdf (instead of the moments) of
the first passage time.

The paper is organized as follows. We recall background and define our
problem in Section 2, and we present our approximation method in Section 3. In
Section 4, we provide numerical results and discuss some implementation issues,
drawing our conclusions in Section 5.

2 Background and Problem Definition

We consider a system composed of n independent components modeled as CTMCs
{Yk(t)}1≤k≤n with finite state spaces Sk and infinitesimal generators Qk =
(qkij)i,j∈Sk

with k = 1, ..., n. We denote by Fk ⊆ Sk the set of failure states of
component k. In general, the components can be repaired (i.e., the states in Fk

are not absorbing). The transient probabilities of component k are denoted by

pkij(t) = P (Yk(t) = j | Yk(0) = i) for i, j ∈ Sk, k = 1, ..., n,

which can be calculated, for example, by uniformization.
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The system can be modeled as a CTMC {X(t)} with state space denoted by
S = S1×S2× ...×Sn, where X(t) = (Y1(t), . . . , Yn(t)). The set of states in which
all components are in a failure state is denoted by F = F1 × F2 × ...× Fn ⊆ S.

Let T be the first time when all the components are in a failure state, that is,

T = min {t ≥ 0 | X(t) ∈ F} ,

and let FT (t) indicate its cdf, that is, FT (t) = P (T ≤ t). The cdf FT (t) is known
as first passage time distribution to reach a state in F . It is also referred to as
time-bounded reachability in probabilistic model checking.

Since the components are independent, the transient probabilities of the
composed system can easily be computed based on the transient probabilities of
the components in product form as

P (X(t) = (y1, ..., yn) | X(0) = (s1, ..., sn)) =

n∏
k=1

pkskyk
(t) . (1)

where (s1, ..., sn) is the initial state. Accordingly, also P (X(t) ∈ F ), that is, the
probability that all components are in a failure state at a given time t (which is
not equal to FT (t)), can be computed in product form considering the components
in isolation.

On the contrary, FT (t), i.e., the first passage time cdf to reach a state in F ,
cannot be obtained in product form multiplying first passage time cdfs of the
components. Indeed, the product of first passage time cdfs of the components
yields the probability that all components have been in a failure state before
time t at least once (and not the probability that all components have been in a
failure state at the same time).

In order to determine FT (t) exactly, one has to consider a variant of {X(t)},
that we denote by {X ′(t)}, in which states in F are made absorbing. In this
modified CTMC we have

FT (t) = P (X ′(t) ∈ F | X ′(0) = (s1, ..., sn)) .

Making states in F absorbing couples the behavior of the components and they
are not independent anymore in a probabilistic sense. Consequently, the transient
probabilities of {X ′(t)} are not in product form and we need to consider a CTMC
with |S| − |F | states (it is not necessary to represent states in F during the
calculations), with exponential growth of the state space with respect to the
number of components, quickly making the analysis unfeasible.

The aim of this paper is to propose an approximation of FT (t), denoted by
F̂T (t), that is based on the individual behavior of the components and hence
does not require analyzing {X ′(t)}. By doing so, the computational complexity
is kept linear with respect to the number of components.

3 Approximation Method

In order to provide the stochastic interpretation of the proposed approximation
method, we give first a description in which time is discretized. This discretized
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version proceeds in time by taking steps of length δ and calculating F̂T (iδ), i =
0, 1, 2, . . . , the approximation of FT (iδ) for i = 0, 1, 2, . . . . We assume that δ is
such that there is negligible probability that more than one component makes a
transition in an interval of length δ.

The assumption on δ implies that the system enters a state in F in (t, t+ δ]
only if at time t the number of failed components is n− 1. For this reason, at
each step we calculate the probability that in {X(t)} at time t all components
other than component k are failed by

Uk(t) =
∏

1≤i≤n,i ̸=k

P (Yi(t) ∈ Fi) . (2)

The intensity with which component k moves from up states to down states at
time t can be calculated as

Dk(t) =
∑
i ̸∈Fk

P (Yk(t) = i)
∑
j∈Fk

qkij

 . (3)

The probability itself that component k is up at time t and makes a transition
from an up state to a down state in (t, t+ δ] can be approximated by Dk(t)δ.

In order to easily consider all components together, we introduce also

G(t) =

n∑
i=1

Ui(t)Di(t) . (4)

The approximation starts with F̂T (0) = FT (0) = P (X(0) ∈ F ), which can be
easily calculated given the initial distribution of the components, and proceeds
according to

F̂T ((i+ 1)δ) = F̂T (iδ) + (1− F̂T (iδ))G(iδ)δ , (5)

where we multiply by (1− F̂T (iδ)) to consider the probability that a state in F
was already reached.

The approximation in Eq. (5) relies on the fact that in {X ′(t)} the components
evolve independently up to the moment in which the system reaches a state in F .
This suggests that the product-form probabilities in Eq. (1) multiplied by the
probability that a state in F has not been reached give a good approximation of
the probabilities of the states in S \ F , that is,

P (X ′(t) = (y1, ..., yn)) ≈ (1− FT (t))

n∏
i=1

P (Yi(t) = yi) for (y1, ..., yn) ̸∈ F ,

where in our numerical scheme FT (t) is substituted by F̂T (t). For the states in F
we have P (X ′(t) ∈ F ) = FT (t) ≈ F̂T (t).

To remove time discretization, note that Eq. (5) can be reorganized as

F̂T ((i+ 1)δ)− F̂T (iδ)

δ
= (1− F̂T (iδ))G(iδ) ,
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and by taking the limit δ → 0, we obtain the differential equation

F̂ ′
T (t) = (1− F̂T (t))G(t) (6)

with initial condition F̂T (0) = FT (0). The approximation F̂ (t) can then be
calculated by numerical integration of Eq. (6).

Note that if the components are identical and share also the initial distribution,
then

U(t) := U1(t) = ... = Un(t) = P (Y1(t) ∈ F1)
n−1,

D(t) := D1(t) = ... = Dn(t) =
∑
i ̸∈F1

P (Y1(t) = i)
∑
j∈F1

q1ij

 ,

and Eq. (4) simplifies to G(t) = nU(t)D(t).

4 Numerical Experiments and Implementation Issues

We present two sets of experiments. First, we use a model composed of identical
components described by a CTMC with a small state space. This case allows us
to compare the results obtained by the proposed approximation method against
exact results. Next, a model composed of different CTMCs with large state spaces
is analyzed. In this case we compare the approximation against simulation.

After the experiments, we briefly discuss implementation issues and provide
execution times.

4.1 Identical Components with Small State Space

The infinitesimal generator of the components is

Q =


−α α 0 0
α −2α− β α β
0 α −α− β β
γ 0 0 −γ

 ,

which describes a four state system in which (i) the first three states correspond
to normal operation states among which there are transitions with intensity α,
(ii) from the second and third up states, the down state can be reached by a
transition with intensity β, and (iii) repair takes to the first state with intensity γ.

The parameters (α, β, γ) allow us to calibrate the steady-state probability of
being in the failure state in a component considered in isolation which, as we will
see, has an impact on the accuracy of the approximations. The following sets of
parameters (α, β, γ) will be used: (1, 1, 12) (Case 1), (2, 2, 3) (Case 2), (4, 4, 0.75)
(Case 3). Steady-state probabilities of the failure state are 1

33 , 1
5 , 2

3 , respectively.
We calculated exact and approximate first passage distributions, i.e., FT (t)

and F̂T (t), for several values of n in the above cases. The initial state s is the
state in which all components are in the first state.
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Fig. 1. Case 1: Exact FT (t) and approximate F̂T (t) (top); approximation ARE (bottom).
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Fig. 2. Case 1: Approximate and exact state probabilities with n = 2 (top); ARE of the
probability of the fourth state (i.e., the failure state) for different values of n (bottom).

Fig. 1 shows FT (t) and F̂T (t) and the absolute relative error (ARE) of F̂T (t).
Visually, the approximation cannot be distinguished from the exact values. The
ARE shows that the approximation error is low and decreases as we increase
the number of components. The downward spikes in the ARE are due to the
points where exact and approximate curves cross each other leading to a point
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where the ARE is zero. In order to investigate the source of the approximation
error of F̂T (t), we calculated state probabilities of the components based on
the approximation and exactly. In Fig. 2 there is no visible error in the state
probabilities with n = 2 and the ARE of the probability of the fourth state 4
decreases as n is increased. (Note that since the initial state is the same for
all components, they have the same transient probabilities; hence we use Y (t)
without specifying the component.)

In Fig. 3, we observe that for Case 3, where the failure state is reached with
higher probability, we obtain greater absolute error and ARE of the approximation.
Similarly to Fig. 1, the error decreases as we increase the number of components.
In Fig. 4, we can see that (as expected) the errors in the state probabilities and
ARE of the failure state are also higher.
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0.8
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Fig. 3. Case 3: Exact FT (t) and approximate F̂T (t) (top); approximation ARE (bottom).

As a comparison of the three cases, in Fig. 5, we depicted for n = 4 the ARE of
F̂T (t) and the ARE of the probability of the fourth state. In the range t ∈ [0, 2], as
expected, the higher the probability of the failure state, the worse approximation
we obtain. For the third considered case, after t = 2 the approximation gets
better. This is due to the fact that FT (t) is getting closer and closer to one
making it easier to obtain good ARE values. In the other two cases, we have
FT (10) < 0.2 and the approximation error remains stable.
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Fig. 4. Case 3: Approximate and exact state probabilities with n = 2 (top); ARE of the
probability of the fourth state (i.e., the failure state) for different values of n (bottom).

2 4 6 8 10
10-6

10-5

10-4

0.001

0.010

0.100

1

2 4 6 8 10
10-7

10-6

10-5

10-4

0.001

0.010

0.100

Fig. 5. ARE of F̂T (t) (top) and ARE of the probability of the fourth state (bottom)
with n = 4 for all three considered cases.

4.2 Different Components with Large State Spaces

In order to describe the components, we use the Petri net (PN) depicted in Fig. 6
which models a rejuvenation mechanism [8]. The system is in one of four states:



First Passage Distributions of Compositions of Independent Markov Chains 9

Fig. 6. PN model of a rejuvenation mechanism.

Ok is a safe operational state; Error corresponds to an aged operational state
that may lead to a failure; in state Ko the system is down due to a failure; the
fact that a failure has been detected is modeled by state Detected. Transitions
among these four states are modeled by PN transitions error, fail, detect,
and repair. The system is complemented by a rejuvenation mechanism with a
timer that controls when the next rejuvenation takes place. The rejuvenation
mechanism is either in state Wait, where it waits for the timer to run out, or in
state Rejuv, where rejuvenation is carried out. The transition from Wait to
Rejuv is called startRej. Rejuvenation can be completed while the system is
in state Ok or Error and it takes the system back to its initial state through
either transition rejOk or rejErr, respectively. In state Ko rejuvenation is
not possible but the timer is stopped only when a failure is detected. When
rejuvenation is in progress, the system cannot degrade, that is, transitions error
and fail are inhibited when place Rejuv has a token.

The time to fire distribution of the transitions will be defined through PH
distributions [18]. An order r PH distribution is given through the time to
absorption in a CTMC with r transient states, called phases, and one absorbing
state. Accordingly, it is determined by the initial probability vector, denoted
by a, and the infinitesimal generator of its CTMC, denoted by A. We will use two
subclasses of PH distributions. The first one is the family of Erlang distributions.
In terms of PH distributions, an Erlang distribution with shape parameter4 r
and mean equal to m is obtained by

a = (1 0 ... 0), A =



− r
m

r
m

− r
m

r
m

. . . . . .

− r
m

r
m

− r
m


,

4 The shape parameter is equal to the number of phases, that is, the number of transient
states.



10 A. Horváth, M. Paolieri, E. Vicario

where only the parameters of the transient states are given in a and A (the others
can be deduced from these). An Erlang distribution with r phases and mean
equal to m will be denoted by Erl(r,m). The second subclass is a mixture of
Erlang distributions with common intensity and uniform mixing probability. In
terms of PH distributions, this subclass has

a =

(
1

k

1

k
...

1

k︸ ︷︷ ︸
k

0 ... 0︸ ︷︷ ︸
r−k

)
, A =



−λ λ

−λ λ

. . . . . .

−λ λ

−λ


,

which are determined by three parameters: the total number of phases, r, the
number of phases with non-zero initial probability, k, and the intensities in A
denoted by λ. We will refer to this family of distributions as Erlang mixture
(EM); an EM distribution will be denoted by EM(r, k, λ). In Fig. 7 we show a
few examples of Erlang and EM distributions through their probability density
functions (pdf).

When time to fire distributions in a PN are PH distributions, the underlying
stochastic process is a CTMC whose infinitesimal generator can be built by
Kronecker operations (see, e.g., [7]). The CTMC is subject to the so-called state
space explosion problem. This is due to the fact that, given a marking, the
number of states corresponding to the marking in the underlying CTMC is equal
to the product of the number of phases of the PH distributions of the enabled
transitions in the marking.

As Case 1, we consider a system composed of three components. Their PH
distributions together with the number of states of the resulting CTMC are
reported in Table 1. Note that the components are not identical. Every state of
the CTMC corresponding to a marking in which there is a token in place Ko
or Detected is considered as a failure state. These markings are (Ko,Wait),
(Ko,Rejuv), (Detected,Wait), and (Detected,Rejuv). For example, for
what concerns the second component, the above four markings correspond to 600,

0 2 4 6 8 10
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0.2

0.4

0.6

0.8

1.0

Fig. 7. Pdf of Erlang and EM distributions with various parameters.
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error fail detect repair startRej rejErr rejOk # st. # up st.
comp. 1 Erl(2,40) Erl(2,50) EM(4,2,1) EM(40,20,1) Erl(100,60) EM(8,6,1) EM(6,3,1) 898 414
comp. 2 Erl(2,40) Erl(2,25) EM(4,2,1) EM(40,20,1) Erl(150,50) EM(8,6,2) EM(6,3,1) 1298 614
comp. 3 Erl(2,40) Erl(2,50) EM(4,2,2) EM(40,20,2) Erl(100,50) EM(8,6,2) EM(6,3,1) 898 414

Table 1. PH distributions of the components of Case 1, the number of states of the
resulting CTMC and the number of up states in the CTMC.

4, 40 and 40 states, respectively, for a total of 684 failure states. In Table 1 we
reported also the number of up states for each component. The product of these
numbers provides the number of states of the CTMC that we should analyze in
order to calculate the first passage time distribution exactly. For Case 1, it is
105,237,144 (i.e., approximately 108).

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

Fig. 8. Total probability of failure states as function of time for the three components
of Case 1 in isolation.

To give an idea of the behavior of the components in isolation, in Fig. 8 we
show the probability of being in a failure state as function of time for the three
components.

The approximate first passage time distribution calculated by the proposed
method is depicted in Fig. 9 together with an empirical cdf obtained by simulation.
The number of simulation runs was set to 5 · 105. The figure also shows the 95%
confidence band constructed around the empirical, simulation-based cdf using
the Dvoretzky-Kiefer-Wolfowitz inequality [10,21]. The approximate first passage
time distribution cannot be distinguished from the one obtained by simulation.
The width of the confidence band is 0.00384. Fig. 10 shows the function G(t)
defined in Eq. (4) which is used to obtain the approximation F̂T (t) through
numerical integration of Eq. (6).

As Case 2, we consider a system obtained by small modifications of the system
of Case 1 in such a way that failure probabilities become smaller. Specifically, the
time to fire distribution of transition repair of components 1 and 2 of Case 2 is
EM(40,20,5) (instead of EM(40,20,1)) which means that these two components
get back to state Ok from state Detected five times faster. This change does
not modify the state space, that is, the number of states and the number of
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Fig. 9. Case 1: First passage time distribution by approximation and by simulation
with 95% confidence bounds based on simulation.
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Fig. 10. Case 1: The function G(t) defined in Eq. (4) which is the base of the approxi-
mation procedure.

up states is the same as in Case 1, reported in Table 1. The approximate first
passage time distribution together with results obtained by 106 simulation runs
are provided in Fig. 11. The approximate cdf deviates very slightly from the
simulation-based cdf from about t = 150. Note however that, as indicated by
the confidence band whose width is 0.00272, a much larger number of simulation
runs would be necessary to estimate such small probabilities with high confidence.
That is, the visible but very small difference can be due to chance.

Case 3 is obtained from Case 2 by increasing the number of phases of the
applied Erlang distributions. Specifically, we double the number of phases of
transition wait and change the number of phases of transitions error and fail
to 5 (in the two cases before it was 2). These modifications have a twofold impact.
First, failure probabilities become even smaller because the Erlang distribution
with shape parameter equal to 5 has a smaller variability and it becomes less
likely that transitions error and fail fire before a rejuvenation. Second, the
state space becomes larger. The number of states of the three components is
2,898, 4,298 and 2,898, respectively. The number of up states in the components
is 2,014, 3,014 and 2,014, respectively, meaning that exact analysis would require
dealing with a CTMC with 12, 225, 374, 744 ≈ 1.2 · 1010 states. Results are shown
in Fig. 12 with 2 · 106 simulations runs. Also in this case there is a small but
visible difference between the approximation and the simulation-based empirical
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Fig. 11. Case 2: First passage time distribution by approximation and by simulation
with 95% confidence bounds based on simulation.
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Fig. 12. Case 3: First passage time distribution by approximation and by simulation
with 95% confidence bounds based on simulation.

cdf but, as indicated by the confidence band with width equal to 0.00192, it can
very well be due to chance and only an extremely large number of simulation
traces could verify the precision of the approximation.

The intended use of the proposed approximation is the analysis of reliability
of systems composed of independent components. Consequently, we are interested
in approximating relatively small probabilities. In Fig. 13 we show that the
approximation can result in good precision even in case of much larger probabilities
by evaluating Case 1 up to t = 10000.

4.3 Implementation Issues

The presented numerical results were calculated by a prototype implementation
of the method using Wolfram Mathematica [14]. The transient probabilities of
the components, which are necessary to compute G(t) defined in Eq. (4), were
determined by uniformization (see, e.g., [20]) with precision 10−8, representing the
infinitesimal generators of the components by sparse matrices. The approximate
first passage time distribution was calculated by numerical integration of the
differential equation Eq. (6) applying the NDSolve function of Mathematica.
The sought relative precision was set to 10−8. NDSolve evaluates G(t) at several
time points in order to compute F̂T (t). Calculation of the transient probabilities of
the components by uniformization is efficient if these time point are in increasing
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Fig. 13. Case 1: First passage time distribution by approximation and by simulation
with 95% confidence bounds based on simulation up to t = 10000.

order. This is however not always the case since NDSolve, in order to guarantee
precision, takes steps also backward in time. For this reason, for a time-efficient
computation it is convenient to store the transient probabilities at a few recently
used time points, allowing for not starting uniformization from t = 0.

The execution time of calculating the approximation for the complex system
referred to as Case 1 in Section 4.2 (described in Table 1) up to t = 200 took
0.7 seconds. Case 2 required the same amount of time. Case 3 required instead
about 4 seconds. This is because in this system both the state spaces and the
intensities in the infinitesimal generators are larger (meaning that more steps are
required for the uniformization to guarantee the same precision).

Simulation was also carried out in Mathematica based on the Petri net (that
is, not the underlying CTMC) generating firing times according to the PH
distributions of the transitions. A standard laptop was used parallelizing the
generation of the simulation traces among 14 processor cores. Generating the
5 · 105 traces for Case 1 required around 30 minutes of computation. Case 2
required about an hour because generating a trace requires roughly the same
amount of time but we generated twice as many traces. Simulation of Case 3 took
about 5 hours because a single trace requires more time and we also generated
more traces.

5 Conclusions

We presented an approximate solution to compute the cdf of the first passage time
of a combination of component states without enumerating system states. The
approximation achieves high accuracy when failures are rare or when the system
includes many components. In future work, we plan to extend the approach to
analyze systems with m-out-of-n failure conditions. We also plan to investigate
how far {X ′(t)} is from a product form.
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