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Abstract—Apache Kafka is a key component in event-driven
and microservice architectures relying on distributed publish-
subscribe messaging for scalable and fault-tolerant streaming of
real-time data. To reduce distribution overhead, messages are
buffered and dispatched to the broker when either a maximum
batch size N is reached or a timeout T expires, enabling control
on the trade-off between high throughput and low latency.
However, this trade-off has been explored only through empirical
studies, referred to specific system deployments and not suited
for runtime adaptation to variable workload conditions.

We provide an analytical characterization of the arrival
process induced by Kafka batching policy under Poisson arrivals.
The analysis develops on the observation that the time for
buffering a full batch and the size of a batch dispatched at
expiration of the timeout follow truncated Erlang and Poisson
distributions, respectively. Leveraging this insight, we derive
closed forms for quantities that characterize the arrival process,
and we propose a method for efficient simulation of the process
embedded at dispatching times. To support practical implemen-
tation, we evaluate solutions for drawing samples from an Erlang
distribution provided by NumPy, PyTorch, and R, and we also
propose a novel approach based on rejection sampling with
proposal function in the family of Kumaraswamy distributions
with automated optimization of parameters with respect to the
number of phases.

Numerical experimentation shows that: (i) aggregated simu-
lation enabled by the analytical formulation is insensitive to the
value of the batch size, and it definitely outperforms fine-grained
simulation of individual message arrivals; (ii) the best efficiency
is obtained with the NumPy implementation of Erlang, with
promising results of the novel approach based on Kumaraswamy,
which achieves results comparable to PyTorch and better than R.

Index Terms—Kafka Broker, Batched Arrival Process, Rejec-
tion Sampling, Kumaraswamy Distribution

I. INTRODUCTION

Apache Kafka [1] is a major platform supporting scalable
and fault tolerant streaming of real-time data for a large variety
of systems, including data pipelines and event-driven and
microservice architectures [2]–[5]. The Kafka broker imple-
ments the publish-subscribe pattern, in pull-mode, receiving
and storing messages from producers, and serving them upon
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consumers’ request. To achieve high throughput and low
latency, Kafka producers collect messages into batches before
sending them to the Kafka broker. In addition, to ensure
low latency, a timeout is used to stop waiting for additional
messages and send a batch before it is full; in particular,
the configuration parameters batch.size and linger.ms
control the maximum batch size and the timeout from the
reception of the first message in a batch, respectively. Kafka
exposes a wide array of other tunable parameters, such as
buffer memory, message compression, and acknowledgement
policies, all of which interact in subtle ways to influence
throughput, latency, and reliability. Due to this complexity,
most existing studies have relied heavily on simulation, often
building customized Kafka clusters or synthetic workloads to
explore the design space [6]–[8]. While this body of litera-
ture has provided valuable empirical insights, the mechanism
resulting from the interaction of batch size and timeout was
never made explicit in a closed form supporting predictive
evaluation of the effects of the joint setting of the two
parameters, by analytic formulation or by efficient simulation
able to scale up to volumes involved in practical deployments.

In this paper, we address this gap by proposing an analytical
characterization of the interplay between batch accumulation
and timeout-triggered dispatch, with specific reference to
characteristics and usage scenarios of the Kafka Broker, but
also open to adaptation for cloud or other systems where
aggregation is driven by the trade-off between throughput and
latency [9], [10]. The analysis develops on the observation
that the time for buffering a full batch follows a truncated
Erlang distribution with shape parameter equal to the batch
size, while the size of a batch dispatched at expiration of the
timeout follows a truncated Poisson distribution.

Leveraging this insight, we derive closed forms for quanti-
ties that characterize the arrival process, and we propose an ef-
ficient aggregated simulation method that observes the process
at dispatching times so as to avoid fine-grained simulation of
individual message arrivals. To support practical and efficient
implementation of the proposed approach, we evaluate solu-
tions for drawing samples from an Erlang distribution provided
by NumPy, PyTorch, and R, and we compare them against the
simulation of Erlang distribution by summation of Exponential
samples, which is commonly applied in various contexts



[11] [12] [13], but becomes extremely inefficient when the
number of phases is as high as the batch size of practical
deployments [6] [7]. We also propose a novel approach based
on rejection sampling with proposal function in the family of
Kumaraswamy distributions with automated optimization of
parameters through a multi-parameter Differential Evolution
(DE) algorithm [14], [15].

Numerical experimentation shows that: (i) aggregated sim-
ulation enabled by the analytical formulation is insensitive
to the value of the batch size, and it definitely outperforms
fine-grained simulation of individual message arrivals (ii) the
best efficiency is obtained with the NumPy implementation of
Erlang, with promising results of the novel approach based on
Kumaraswamy, which achieves results comparable to PyTorch
and improving on R.

In the rest of the paper, after a review of related works
in Section II, the analytical formulation of the Kafka arrival
process is developed in Section III, and the method based on
rejection sampling with a Kumaraswamy proposal is presented
in Section IV. Numerical experimentation comparing different
implementations of the simulation approach is reported in
Section V, followed by conclusions in Section VI.

II. RELATED WORK

Several studies have addressed performance engineering
of the Kafka platform, focusing on trade-offs between key
system parameters such as batch size, timeout configuration,
and latency, to achieve objectives of throughput and latency,
under different workload conditions.

In [6], accurate predictions of throughput, latency, and
disk usage over time are obtained for Kafka cloud services
by combining queueing theory and phase-type approxima-
tion of empirical observations. The influence of batch size
on Kafka’s performance under variable network and system
conditions is the focus of [7], with reference to a Docker
deployment of Kafka. The study remarks the importance of
end-to-end latency variability. Given the impact of batch size
on message loss rates, the authors propose a reactive batching
strategy open to adaptation for different network conditions.
The impact of batching strategies on throughput and latency
in distributed stream processing subject to varying system
conditions is studied in [16], to propose a lightweight control
algorithm for dynamic adjustment of batch sizes based on
runtime system metrics.

Regarding the generation of pseudo-random samples of
gamma (and Erlang) distributions, [17] surveys and classifies
algorithms based on acceptance-rejection, series expansion,
and transformation techniques, highlighting the trade-offs in-
volved, particularly when dealing with extreme values of the
shape parameter. Efficient sampling from classical statistical
distributions, including gamma, beta, Poisson, and binomial,
is investigated in [18]. The work introduces algorithmic strate-
gies to improve precision and efficiency, with tailored methods
for each distribution that leverage transformation and rejec-
tion sampling. The problem of generating random samples
from phase-type distributions is addressed in [19] [13] [12]

[20], with matrix-structure-based algorithms [19] exploiting
the embedded Markov chain structure, or with summation of
exponential samples (obtained by logarithms on the product
of uniform samples) [13] [12].

Rejection sampling for the simulation of gamma distri-
butions for shape parameters α ≥ 1 is addressed in [21].
The inefficiency of classical rejection sampling methods for
complex distributions is tackled in [22], which introduces
partial rejection sampling as a more efficient alternative based
on partial information about the target distribution. Efficient
gamma sampling for α ≥ 1 is also explored in [21], which
introduces an optimized rejection sampling scheme with a
carefully constructed proposal distribution.

Usage of Kumaraswamy distribution is addressed in [23]
for quantile regression for bounded variables and in [24]
with reference to numerical instabilities in the inverse CDF
and logarithmic Probability Density Function (PDF). The
generalization of the Kumaraswamy distribution is the focus
of [25], where the Kumaraswamy-G family is introduced to
improve adaptability to skewed and heavy-tailed data.

III. ANALYTICAL CHARACTERIZATION

We consider a Kafka-like message generation system, where
a producer transmits data to a broker using a dual-trigger
batching policy. The producer buffers incoming messages into
a batch stored in memory. A batch is dispatched to the broker
as soon as either one of the following conditions is met: the
number of buffered messages reaches a fixed batch size N ; or
a timeout T elapses.

For the start of the timeout, we consider two policies:
the timeout clock can be started (1) after the dispatch of
the previous batch, or (2) after the first arrival following the
dispatch of the previous batch (i.e., after the first message of
the current batch arrives). In the first case, the time between
subsequent batches cannot exceed T but there can be empty
batches (notifying that no message has arrived in T time units).
In the second case, every batch contains at least one message
but the interbatch time can exceed T . In both cases, a message
cannot be held in the buffer for a time longer than T .

The analysis of the two cases uses similar technical steps
and differences are negligible when the timeout is much higher
than the expected time between message arrivals, as in most
practical applications. Due to space limitations, we analyze the
first case in Section III-A and briefly discuss changes required
for the second case in Section III-B.

A. Timeout Clock Starts at Batch Dispatch

We assume that message arrivals follow a homogeneous
Poisson process with rate λ, a standard assumption in the mod-
eling of aggregate traffic in distributed systems. The number
of messages in a batch and the associated interbatch time will
be denoted by the random variables η and ζ, respectively.

The number of message arrivals over an interval of length T
follows the Poisson distribution with parameter λT . Consider-
ing also the fact that if N messages arrive before the timeout
clock exceeds T then a batch of N messages is dispatched, the



number of messages in a batch is the minimum of a Poisson
distributed random variable with parameter λT and N , that is,

η = min{Poisson(λT ), N}

and its Probability Mass Function (PMF) is given as

pη(k) = P (η = k) =


(λT )ke−λT

k!
if k < N ,

∞∑
i=N

(λT )ie−λT

i!
if k = N .

(1)

Similarly, the interbatch time is less than T if N messages
arrive before the timeout clock exceeds T and in this case its
distribution follows the Erlang distribution with parameters λ
and N . Otherwise it is equal to T . Accordingly,

ζ = min{Erlang(λ,N), T}

with PDF

fζ(t) = fErl(λ,N, t)I0<t<T + (1− FErl(λ,N, T ))δ(t− T )

=
λN tN−1e−λt

(N − 1)!
I0<t<T +

N−1∑
i=0

(λT )ie−λT

i!
δ(t− T )

(2)

where fErl and FErl are the PDF and the CDF of the Erlang
distribution, respectively, I is the indicator function and δ is
the Dirac delta function.

The relation between the number of messages and the inter-
batch time is η < N ⇐⇒ ζ = T and, vice versa, η =
N ⇐⇒ ζ < T , which implies that

P (η = N) =

∞∑
i=N

(λT )ie−λT

i!
= FErl(λ,N, T ) = P (ζ < T ) .

(3)

In turn, Eq. (3) can be calculated efficiently in most comput-
ing environments through the regularized lower incomplete
Gamma function Q defined as:

Q(N,λT ) :=
γ(N,λT )

Γ(N)
=

∫ λT

0
tN−1e−tdt∫∞

0
tN−1e−tdt

=

∞∑
i=N

(λT )ie−λT

i!

where γ(N,λT ) is the lower incomplete Gamma function and
Γ(N) is the Gamma function (Γ(N) = (N−1)! for integer N ).

From a simulation perspective, pairs (η, ζ) of batch size
and inter-batch time can be generated as follows. A uniform
random value u ∼ U(0, 1) can be used to determine how the
next batch will be triggered:

• If u ≤ P (η = N), then the batch size is η = N
and the inter-batch time ζ is generated by sampling the
Erlang(λ,N) distribution truncated over [0, T ].

• If u > P (η = N), then the inter-batch time is ζ = T and
the batch size is generated by sampling the Poisson(λT )
distribution truncated over 0, 1, ..., N − 1.

The mean batch size E[η] and the mean inter-batch time
E[ζ] can be computed based on Eq. (1) and Eq. (2):

E[η] = λT (1−Q(N − 1, λT )) +N Q(N,λT ) ,

E[ζ] =
N

λ
Q(N + 1, λT ) + T (1−Q(N,λT )) .

Proof. Using Eq. (1),

E[η] =
N−1∑
k=1

k
(λT )ke−λT

k!
+N

∞∑
k=N

(λT )ke−λT

k!

= λT

N−1∑
k=1

(λT )k−1e−λT

(k − 1)!
+N Q(N,λT )

= λT

N−2∑
k=0

(λT )ke−λT

k!
+N Q(N,λT )

= λT (1−Q(N − 1, λT )) +N Q(N,λT ) .

Using Eq. (2),

E[ζ] =
∫ T

0

tfErl(λ,N, t) dt+ T

N−1∑
i=0

(λT )ie−λT

i!

=
N

λ

∫ T

0

λN+1tNe−λt

N !
dt+ T (1−Q(N,λT ))

=
N

λ
FErl(λ,N + 1, T ) + T (1−Q(N,λT ))

=
N

λ
Q(N + 1, λT ) + T (1−Q(N,λT )) .

The probability that a randomly selected message belongs to
a batch with k messages, denoted by Lk, due to a mechanism
analogous to that of the inspection paradox, is not equal to the
probability that a batch contains k messages, i.e., P (η = k).
Lk is instead given by

Lk =
kP (η = k)

E[η]
.

Table I reports P (η = k) and Lk with N = 8 where Lk >
P (η = k) for N ≥ 5, illustrating that messages are more
likely to belong to larger batches.

Next, we study the time elapsed between the arrival of a
message and the dispatch of its batch. This quantity is strongly
impacted by the position of the message within its batch and
the size of the batch. Therefore, we denote by Ui,j the elapsed
time between message arrival and batch dispatch for a message
that is the jth message in a batch of size i.

For i < N (i.e., when the dispatch is triggered by the time-
out), assuming Poisson arrivals, the i messages are distributed
uniformly over the interval [0, T ]. Furthermore, the larger the
value of j (1 ≤ j ≤ i), the less time the corresponding
message has to wait until dispatch. The PDF of Ui,j , denoted
by fU (i, j, x), can then be obtained from the j-th order statistic
of a batch of i samples with uniform distribution, which is
distributed as X ∼ Beta(j, i − j + 1), by mapping X to
[0, T ] and subtracting the result from T (which is equivalent
to swapping x/T and 1− x/T in the Beta PDF):

fU (i, j, x) =
1

T
·

(
1− x

T

)j−1 ( x

T

)i−j

(j − 1)! (i− j)! / i!
.

For i = N and j = N , UN,N = 0 since the dispatch is
triggered by the message arrival. For i = N and j < N , the



k 0 1 2 3 4 5 6 7 8
P (η = k) 0.0067 0.0337 0.0842 0.1404 0.1755 0.1755 0.1462 0.1044 0.1333

Lk 0 0.0069 0.0345 0.0863 0.1439 0.1799 0.1799 0.1499 0.2187

TABLE I: P (η = k) and Lk with λ = 1, T = 5, N = 8

previous N−1 arrival times follow a uniform distribution over
an interval whose distribution is Erlang(λ,N) truncated over
the interval [0, T ]. It follows that for j < N we have

fU (N, j, x) =

∫ T

x

fErl(N,λ, t)

FErl(N,λ, T )
· 1
t
·(

1− x
t

)j−1 (x
t

)N−1−j

(j−1)! (N−j−1)!
(N−1)!

dt

=
e−λxλ(λx)N−1−j Q(j, λ(T − x))

(N − 1− j)! Q(N,λT )
.

Finally, individual message arrival times can also be easily
generated from pairs (η, ζ) of batch size and interbatch time:

• If η < N and ζ = T , then generate η uniform random
variables on [0, T ].

• If η = N and ζ < T , then the last arrival is at ζ, while
the others can be obtained by generating N − 1 uniform
random variables on [0, ζ].

B. Timeout Clock Starts at First Message Arrival

In this case, every batch contains at least one message,
which arrives after an exponentially distributed delay, which
starts the timeout. Dispatch is then triggered either by the
arrival of an additional N − 1 messages or by the timeout.
Accordingly, the same quantities derived in Section III-A can
now be obtained by modifications following these redefined
equations:

η = 1 +min{Poisson(λT ), N − 1} (4)
ζ = Exp(λ) + min{Erlang(λ,N − 1), T} (5)

IV. EFFICIENT SIMULATION OF THE ARRIVAL PROCESS

The analytical formulation presented in Section III opens
the way to an aggregated simulation scheme, where samples
are drawn from closed-form distributions of the batch-level dy-
namics of the Kafka broker: for each batch, a Bernoulli sample
with weights identified by Eq. (3) pre-selects whether the batch
should be full or the timeout should expire, which results,
respectively, in either (i) a truncated-Poisson increment of the
count of dispatched messages with deterministic advancement
of time (by the timeout), or in (ii) a deterministic increment of
messages (by the batch size) with truncated Erlang advance-
ment of time. This approach avoids the fine-grained stochastic
simulation of individual message arrivals, with major reduction
of computational complexity and substantial immunity with
respect to the batch size. To effectively exploit this approach,
an efficient solution is required to generate samples from the
truncated Erlang that characterizes the interarrival time of full
batches.

To benchmark the proposed approach, we implemented the
aggregated simulation using a rejection approach where the
truncated Erlang distribution is simulated by repeatedly draw-
ing a sample from the distribution Erlang(λ,N) until obtaining
a value lower than T . In turn, the generation of Erlang samples
was performed using alternative baseline implementations:

• The Exponential Sum sampler draws N independent ex-
ponential samples with rate λ (using the inverse transform
method, i.e., − log(1− U)/λ) and returns their sum.

• The NumPy Gamma method uses np.random.gamma
to directly sample from the target distribution (using
Marsaglia and Tsang’s gamma method [26], with normal
samples generated with the ziggurat method [27]).

• The R Gamma method uses the rgamma function from
the R environment via rpy2 bindings (using the method
of [28] to generate gamma samples with shape greater
than 1 from exponential samples obtained with [29]).

• The PyTorch Gamma method leverages torch.
distributions.Gamma (implementing Marsaglia
and Tsang’s gamma method [26], with normal samples
generated using the Box-Muller transformation [30]).

In addition, we also experimented with a novel approach:
• The Kumaraswamy-based rejection sampling implements

a rejection approach, using the Kumaraswamy distri-
bution as proposal function: the target distribution is
Erlang(λ,N) truncated over [0, T ]; candidate samples
are generated by inverse transform from a scaled Ku-
maraswamy distribution with support [0, T ], where the
parameters a, b and the overscaling factor p are pre-
optimized offline using a Differential Evolution optimizer
(implemented in scipy.optimize) for each configu-
ration of parameters N and λT . The acceptance test is
implemented using the scipy.stats.gamma package
for evaluation of the target truncated Erlang PDF.

More details on the latter approach are provided in the next
two subsections.

A. Kumaraswamy-based Rejection Sampling
The Kumaraswamy distribution is defined by the PDF

fKS (x; a, b) = a b xa−1(1− xa)b−1, x ∈ [0, 1], (6)

where a and b are positive-valued shape parameters that permit
ductile fit of a large variety of shapes. As a crucial trait, the
Kumaraswamy distribution has a closed-form inverse CDF

F−1
KS (u; a, b) =

(
1− (1− u)1/b

)1/a

, u ∈ [0, 1], (7)

which enables fast and efficient sample generation via inverse
transform sampling. Closed-form invertibility and shape duc-
tility make it a natural candidate as a proposal distribution for
rejection sampling over bounded domains.



In our case, the target is the Erlang distribution truncated
over [0, T ], which is proportional to the following function:

fTrErl(x;N,λ) =
λNxN−1e−λx

Γ(N) · FErl(T ;N,λ)
, x ∈ [0, T ], (8)

and rejection sampling can be implemented through the fol-
lowing standard algorithm:

1) Draw m uniform samples ui ∼ U(0, 1).
2) Transform them using the inverse CDF of the Ku-

maraswamy: xi =
(
1− (1− ui)

1/b
)1/a

.
3) Evaluate the acceptance probability:

αi =
fTrErl(xi;N,λ)

p · fKS (xi; a, b)
.

4) Accept the sample xi if vi < αi, with vi ∼ U(0, 1).
In this implementation, the support of Kumaraswamy distri-
bution is remapped through a change of variable so that the
inverse CDF ranges within an interval [xleft, xright] identified
so that the target truncated Erlang density is lower than a
threshold ϵ for any x < xleft and for any x > xright:

xleft = QErl(ε),

xright = min (QErl(1− ε), T ) ,

where QErl(p) denotes the quantile function of the complete
Erlang distribution on [0,∞) and ε ≪ 1 is a small threshold.
Due to the restricted support of the proposal function, the
simulated distribution will be exactly equal to 0 for any
x /∈ [xleft, xright]. Unit measure within the significant interval
[xleft, xright] is still guaranteed by the general properties of
rejection sampling and the threshold ϵ permits the error be
controlled to be as small as required. As a major advantage,
the restriction permits the shape parameters a, b and the
overscaling factor p be optimized to obtain a tighter fit of
the target distribution, and thus a higher acceptance rate, in
the interval where this concentrates its mass of probability.
Note that an exact implementation of this focusing approach
might be obtained by the adoption of a piecewise proposal
function, with Kumaraswamy covering the core body of the
target distribution, and other (invertible) distributions covering
the intervals [0, xleft] and [xright, T ].

As a detail crucial for efficiency, note that in this implemen-
tation all the steps are fully vectorized using NumPy, avoiding
explicit Python loops. Besides, for numerical precision, the
truncated Erlang density is evaluated in logarithmic form, to
avoid underflows for high values of the Erlang shape parameter
N (as occurring in practical application where N is equal to
the batch size):

log (fTrErl(x; N,λ)) = ((N − 1) · log(x)) + (N · log(λ))
− (λ · x)− log (Γ(N))− log (FErl(T ;N,λ))

(9)

where constants log(λ), log(Γ(N)), and log(FErl(T ;N,λ))
can be precomputed once per run for efficiency.

B. Optimization of Proposal Parameters
To maximize the efficiency of the rejection sampling

method, we tune the parameters of the Kumaraswamy proposal
distribution to best match the truncated Erlang target. The goal
is to find the optimal shape parameters a and overscaling
factor p such that the acceptance probability is maximized
while ensuring that the proposal dominates the target over the
interval of interest.

Given the desired mode of the proposal Kumaraswamy
function, we determine the corresponding b parameter using
the following relation:

b =
mode−a(−1 + a+ modea)

a
. (10)

The proposal is then fully defined by (a,mode, p).
a) Feasibility Domain and Penalty Term: To ensure that

the proposal remains above the target density in the most
relevant region, we numerically identify an interval [x1, x2] ⊂
[0, 1] where the truncated Erlang PDF is significantly non-zero.
The loss function to be minimized is defined as:

L(a, p) = −E[acceptance rate] + penalty, (11)

where the penalty term imposes a large cost when the pro-
posal falls below the target on [x1, x2]. This guarantees the
correctness of the rejection sampler.

b) Optimization Strategy: Optimization uses the
differential_evolution algorithm (in the SciPy
implementation), a global evolutionary method for non-
convex landscapes [14], [15]. To further improve robustness,
we scan across small shifts in the mode of the Erlang
target, adjusting the Kumaraswamy shape accordingly.
For each candidate mode shift, the optimizer explores the
parameter space, based on the shape of the target function:
p ∈ [1.0, 2.0], a ∈ [1, 30]. The best configuration is
selected as the one that maximizes the acceptance rate while
maintaining full coverage of the target. The resulting proposal
shows valuable overlap with the truncated Erlang and ensures
high sampling efficiency.

C. Symmetric Proposal: A Simplified Strategy
An alternative to optimizing a Kumaraswamy proposal over

the entire significant interval [xleft, xright] is to focus solely
on the subinterval [xmode, xright]. The goal is to construct a
one-sided proposal g(x) that dominates fTrErl(x;N,λ) in
this region, and then reflect it around the mode to obtain
a symmetric proposal gsym(x) over the whole subinterval
[xleft, xright].

The symmetric proposal can be built as follows:
1) Optimize via the differential_evolution algo-

rithm the Kumaraswamy parameters (a, p) such that:

g(x) ≥ fTrErl(x;N,λ), ∀x ∈ [xmode, xright].

2) Define the symmetric proposal by reflecting g(x) around
xmode:

gsym(x) =

{
g(x), if x ≥ xmode,

g(2xmode − x), if x < xmode.



3) Verify that gsym(x) ≥ fTrErl(x;N,λ) for all x ∈
[xleft, xright].

This strategy reduces the complexity of the optimization,
guarantees symmetry by design, and provides a valid proposal
over the entire interval of interest.

V. PERFORMANCE EVALUATION

We evaluate feasibility and efficiency of the proposed
method under different implementation choices, with reference
to deployment settings identified in the literature [6], [7]. The
evaluation is structured around four research questions:

• Q1: Does the proposed aggregated simulation correctly
reproduce the expected distributions under full batch and
timeout limiting conditions?

• Q2: How much does the proposed aggregated simulation
(enabled by Section III) improve efficiency compared to
a message-level simulation?

• Q3: How do different samplers of truncated Erlang com-
pare in terms of accuracy and computational efficiency?

• Q4: In the implementation of the novel rejection sam-
pling based on Kumaraswamy proposal function, how
effectively does the optimization algorithm adapt the
parameters of the proposal distribution as the batch size
increases, and how do different construction strategies,
i.e., range-based optimization versus symmetric reflec-
tion, affect overall sampling performance?

Unless otherwise noted, experiments are conducted using
an Erlang(N,λ) distribution with rate λ adjusted to set the
mode (N − 1)/λ to 10, timeout equal to T = 12, and a batch
size of N = 1000. Results are averaged over 500 independent
iterations to ensure statistical robustness. The maximum coef-
ficient of variation obtained for the Kumaraswamy total time
is 0.02066, and the coefficient of variation of the same method
for the accuracy is 0.0094. Both values are based on the
Kumaraswamy-based rejection sampling with dominant pro-
posal. Where not explicitly specified, the term Kumaraswamy
used in plots and in the discussion of Research Questions
Q2 and Q3 refers interchangeably to the Kumaraswamy-based
rejection sampling method with dominant proposal.

To answer Q1, we compare results obtained through fine-
grained stochastic simulation reproducing the arrival of single
messages against theoretical closed forms derived in the ana-
lytical characterization of Section III. In particular, we evaluate
distributions under the two limiting conditions: batch flush
triggered by reaching the maximum size N , and batch flush
triggered by a timeout T . Results are illustrated for visual
inspection in Fig. 1, and developed in Tables II and III with
quantitative metrics of accuracy expressed in terms of Mean
Absolute Error (MAE) and Kullback-Leibler divergence (KL).
Results indicate that time behavior emerging from fine-grained
stochastic simulation converges to theoretical forms.

For Q2, we use the Exponential summation sampler as
baseline solution that reproduces the number of elementary
samples that would be needed in a fine-grained simulation
at the level of individual messages, and we compare its

execution time against those of the methods that fully exploit
aggregated simulation by NumPy Gamma, RGamma, PyTorch
Gamma, and Kumaraswamy with dominant proposal samplers.
As shown in Fig. 2-(top), all the samplers NumPy Gamma,
RGamma, PyTorch Gamma, and Kumaraswamy are by far
more efficient than the exponential summation, with a gain
increasing with the batch size.

For Q3, in Fig. 2-(bottom), we compare the time per valid
sample for NumPy Gamma, RGamma, PyTorch Gamma, and
Kumaraswamy samplers, for different values of the batch size.
To evaluate the potential error introduced by focusing the
optimization of the proposal distribution only on the significant
region of the truncated Erlang target, we compute the KL
divergence between the optimized Kumaraswamy proposal
and the target distribution. KL divergence values for other
benchmark methods are also reported in Table IV.

For Q4, we analyze how the optimization procedure adjusts
the parameters of the Kumaraswamy distribution for variable
values of the batch size. Results, not reported here for space
limitations, indicate that the algorithm successfully adjusts
these parameters to maintain a stable acceptance rate around
59−60%. To highlight the difference between the dominant
and the symmetric forms of the proposal function, Fig. 3
illustrates their different optimized shapes with respect to a
target Erlang distribution: the symmetric proposal effectively
reduces the deviation on the left side of the curve, i.e., the
proposal optimized over the full interval [xleft, xright]. This
improvement is mainly consequent to the asymmetric nature
of the Kumaraswamy distribution in the dominant strategy,
which results in a looser fit on the left side of the mode,
which in turn hinders the acceptance rate in rejection sampling.
This difference results in a significant improvement of the
acceptance rate during rejection sampling, with values ranging
with the batch size (i.e. the number of phases) in 0.76-0.78
for the symmetric version and in 0.66-0.67 for the dominant
implementation. The symmetric approach yields consistently
higher acceptance due to its tighter adherence to the target
distribution, particularly on the left side, where the dominant
proposal exhibits a noticeable mismatch.

Finally, Fig. 4 compares the total sampling time of the
library methods and the two Kumaraswamy-based rejec-
tion strategies as a function of the timeout. The symmetric
Kumaraswamy-based proposal achieves performance compa-
rable to PyTorch, while the version adopting the dominant
proposal shows slightly higher time. Both approaches outper-
form the R-based rgamma method, and the NumPy Gamma
implementation remains the most efficient across all timeout
values. For the sake of readability, the method based on the
exponential sampler is not included, as its execution time
is significantly higher and would have distorted the visual
representation. All timings were measured under the same
number of accepted samples (1000).

The proposed method offers a favorable balance between
computational efficiency and statistical accuracy. It maintains
a stable acceptance rate, adapts well to different system con-
figurations, with performance comparable to well-established



Fig. 1: Example histograms obtained by the aggregated sampling method for truncated Erlang (left) and (discrete) truncated
Poisson distributions (right)

TABLE II: Accuracy Metrics for Erlang Interarrival Time

Simulated Batches KL Mean KL Std MAE Mean MAE Std

1000 1.0923e-02 1.46e-03 8.0031e-03 1.83e-03
5000 4.6801e-03 5.95e-04 5.4591e-03 4.37e-04

10000 3.7706e-03 5.60e-04 5.6346e-03 6.07e-04
20000 3.1827e-03 6.97e-04 5.0524e-03 5.32e-04
50000 2.7479e-03 2.28e-04 4.9234e-03 3.80e-04

TABLE III: Accuracy Metrics for Poisson Batch Size

Simulated Batches KL Mean KL Std MAE Mean MAE Std

1000 3.5304e-01 1.68e-01 5.6574e-03 1.66e-03
5000 8.2434e-02 3.16e-02 2.5084e-03 6.37e-04

10000 4.8381e-02 1.23e-02 1.8770e-03 3.00e-04
20000 2.8218e-02 5.39e-03 1.5364e-03 1.90e-04
50000 1.1594e-02 1.95e-03 8.2649e-04 1.05e-04

TABLE IV: KL Divergence vs. Truncated Erlang

Method KL Divergence for N=1500
Kumaraswamy 0.002340
Exponential Sum 0.000175
NumPy Gamma 0.000100
R Gamma 0.000224
PyTorch Gamma 0.000135

implementations such as rgamma and PyTorch, making it a
practical and promising solution for real-world sampling tasks.

VI. CONCLUSION

We introduced a theoretical and computational framework
for modeling the message generation process in Kafka-like
systems. Assuming Poisson arrivals, we formally characterized
the dual-trigger batching mechanism, which depends on both
a maximum batch size and a timeout. This results in a
mixed interarrival time distribution with a truncated Erlang
component with a fixed timeout threshold. To achieve effi-
ciency in sampling from Erlang distributions with large shape
parameters, we proposed a lightweight rejection sampling
method. This approach exploits analytical invertibility and
shape flexibility of the Kumaraswamy distribution, here used
as proposal function, with parameters optimized by a multi-
parameter differential evolution algorithm. Two optimization
strategies are considered: a dominant proposal, designed to
upper-bound the target over the entire region of interest; and
a symmetric proposal, built by optimizing the right side of the
mode and reflecting it to construct a tighter overall fit. Our

experimental evaluation confirmed that the proposed method
matches the accuracy of state-of-the-art implementations in
NumPy, R, and PyTorch, while significantly outperforming
the classic exponential sampler in terms of computational ef-
ficiency. Notably, the symmetric formulation attains sampling
times that are on par with PyTorch and clearly outperforms
the rgamma function from R.
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