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Abstract

The inclusion of generally distributed random variables in stochastic models is often tackled by choosing a
parametric family of distributions and applying fitting algorithms to find appropriate parameters. A recent
paper proposed the approximation of probability density functions (PDFs) by Bernstein exponentials, which
are obtained from Bernstein polynomials by a change of variable and result in a particular case of acyclic
phase-type distributions. In this paper, we show that this approximation can also be applied to cumulative
distribution functions (CDFs), which enjoys advantageous properties and achieves similar accuracy; by
focusing on CDFs, we propose an approach to obtain stochastically ordered approximations. The use of a
scaling parameter in the approximation is also presented, evaluating its effect on approximation accuracy.

Keywords: Bernstein Polynomials, Phase-Type Distributions, Markov Chains, Analytic Approximation

1. Introduction

Continuous-time models of stochastic systems frequently need to include random variables with general
(i.e., non-exponential) probability distributions, to represent properties enforced by design (e.g., periodic
releases or deterministic timeouts) or by contract (e.g., service times guaranteed along the development
process or by some agreed service level objective), or to fit observed data or learned parameters. A standard
approach is to select a parametric family of probability distributions and to apply fitting algorithms to find
appropriate parameter values to approximate the observed random variables. An ideal family of distributions
should be sufficiently general to result in accurate approximations, but it should also support simple fitting
procedures and allow efficient analysis (or simulation) of the resulting system model.

The family of phase-type (PH) distributions [1], defined as the time to absorption in Markov chains, is
broadly used to approximate general random variables. By varying the number of phases in the Markov
chain, this family allows a tradeoff between accuracy of the approximation and analysis cost of the resulting
model. PH parameter fitting methods include maximum likelihood methods [2, 3], moment matching [4, 5],
tail behavior matching [6, 7], or both [8]. Stochastic models with PH type distributions result in underlying
Markov chains with regular structures, which can be analyzed efficiently through matrix analytic methods
[9, 10].

In [11], an approach was proposed to approximate probability density functions (PDFs) using Bernstein
exponentials (BEs), i.e., linear combinations of Bernstein polynomials (BP) [12, 13] where the support
[0, 1] is mapped to [0,∞) through a change of variable. This approach results in a subclass of acyclic PH
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distributions, which we refer to as Bernstein phase type (BPH) distributions, that preserve shape properties
of approximated density functions and enjoy derivation simplicity as their parameters can be derived in
closed form, while allowing efficient model analysis.

In this paper, we study the properties of BPH approximations for cumulative distribution functions
(CDFs) rather than PDFs. In fact, BPH approximations guarantee uniform convergence and preserve
local shape properties, notably including non-negativity, but they do not preserve integral measure and
thus require normalization to obtain valid PDFs with unitary measure. Conversely, we show that, when
BPH approximations are applied to CDFs, or to complementary CDFs (CCDFs), the resulting functions
are valid cumulative distributions and preserve the important properties of the original CDFs including
monotonicity, upper and lower bounds, and exact limit values at 0 and +∞. In particular, we focus on
stochastic order for models designed for the evaluation of safe guarantees of system metrics (e.g., quality
of service) [14, 15]. We present an approach to obtain BPH approximations that guarantee smaller and
greater stochastic order, and characterize the required tail conditions and minimum degree of the BPH
approximation. This paper extends our preliminary work [16] by introducing a scaling parameter in BPH
approximations and by evaluating its effect on the approximation accuracy. We also present additional
experiments showing that BPH approximations based on CDFs achieve similar accuracy to those based on
PDFs (while providing technical advantages) and we illustrate their limitations in the approximation of
distributions with high coefficient of variation (as common for other general purpose PH fitting approaches).

The paper is organized as follows. In Section 2, we recall background information on Bernstein poly-
nomials, Bernstein exponentials, and PH distributions. In Section 3, we present the properties of BPH
approximations of CDFs, while in Section 4 we propose an approach to obtain stochastically ordered BPH
approximations. In Section 5, we evaluate our approach numerically to highlight advantages and limita-
tions. In Section 6, we compare the BPH approximations of CDFs with BPH approximations of PDFs. In
Section 7, we explore the selection of the scaling parameter in the mapping of the support applied by BEs.
Conclusions are drawn in Section 8.

2. Background

2.1. Bernstein Polynomials
For any order n ∈ N, the Bernstein operator Bn maps a function G : [0, 1] → R onto a polynomial defined

as [12]:

Bn(G; y) :=

n∑
i=0

G

(
i

n

) (
n

i

)
yi(1− y)n−i . (1)

The Bernstein operator is linear, i.e., Bn(λ1G1 + λ2G2; y) = λ1Bn(G1; y) + λ2Bn(G2; y), and it represents
polynomials up to degree n exactly, i.e., Bn(y

k; y) = yk for any 0 ≤ k ≤ n. Bn(G; y) also preserves many
properties of G, which motivated its investigation and wide application as a tool for approximation.

Boundary Conditions, Bounds, Monotonicity. Bn(G; y) is exactly equal to G(y) at the endpoints of the
domain [0, 1] and preserves upper and lower bounds, i.e., G(0) = Bn(G; 0), G(1) = Bn(G; 1), and ∀y ∈
[0, 1],m ≤ G(y) ≤ M =⇒ ∀y ∈ [0, 1],m ≤ Bn(G; y) ≤ M . Moreover, if G is monotonic increasing (or
decreasing) over [0, 1], so is Bn(G; y). By combination of these properties, if G(y) is a CDF (or a CCDF)
with support [0, 1], so is Bn(G, y) for any n ∈ N, i.e., the Bernstein operator Bn maps distributions to valid
distributions.

Uniform Convergence. For any continuous function G, the Bernstein operator ensures asymptotic conver-
gence to 0 of the error |G(y)−Bn(G; y)| when n → ∞, uniformly over the entire support [0, 1]:

∀ϵ > 0,∃n̄ ∈ N such that n > n̄ =⇒ ∀y ∈ [0, 1], |G(y)−Bn(G; y)| < ϵ. (2)

For further related results and explicit bounds we refer to [13].
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2.2. Bernstein Exponentials
The BE operator extends the Bernstein operator to the class of bounded functions with infinite support

[0,∞) through the change of variables y = e−x (i.e., x = − log(y)) which maps the support [0, 1] onto [0,∞).
According to this, for any order n ∈ N, the BE operator maps a function F : [0,∞) → R onto an

exponential mixture of the form:

BEn(F ;x) :=

n∑
i=0

F
(
log
(n
i

)) (n
i

)
e−ix(1− e−x)n−i. (3)

By design, the BE operator inherits various shape preservation properties of the Bernstein operator. Since
the change of variables y = e−x is continuous and strictly monotonic, BEn(F ;x) is exactly equal to F (x)
for x = 0 and x → ∞, it preserves the bounds of F , and if F (x) is monotonic, so is BEn(F ;x). Moreover,
BEn(F ;x) converges to F (x) uniformly over [0,∞) as n → ∞.

2.3. Probability Distributions
Given a probability space (Ω,F , P ) and a random variable X : Ω → R, its CDF and CCDF are defined,

respectively, as F (x) := P (X ≤ x) and F̄ (x) := P (X > x) = 1− F (x) for all x ∈ R; if F (x) is continuous,
we say that X is a continuous random variable and the PDF of X is defined as f(x) := d

dxF (x). Given a
nonnegative random variable X : Ω → [0,∞), we say that the function F : [0,∞) → [0, 1] is a defective CDF
for X if limx→∞ F (x) < 1 and we say that it has probability mass at 0 if F (0) > 0.

2.4. Phase-Type Distributions
A degree n continuous-time PH distribution is given by the time to absorption in a continuous-time

Markov chain (CTMC) with n transient states and one absorbing state. A PH distribution that can be
represented by a CTMC without cycles is called acyclic PH.

Figure 1: A degree 3 PH distribution

A graphical example of PH distribution is provided in Figure 1
where the absorbing state is colored in gray. The initial probabil-
ity vector and the infinitesimal generator of the CTMC are q =(
0.4 0 0.6 0

)
and

Q =


−5.2 3 2.2 0
1.2 −2.5 0.5 0.8
4 2.3 −7.55 1.25
0 0 0 0

 .

Note that the last entry of q (in this case zero) and the last column
of Q can be calculated from the rest (the row corresponding to the
absorbing state is filled with zeros). Accordingly, the most widely used
representation of a PH distribution includes only the parts of the initial
probability vector and of the infinitesimal generator that correspond
to transient states. For the above example, the representation is the
vector-matrix pair

a =
(
0.4 0 0.6

)
, A =

−5.2 3 2.2
1.2 −2.5 0.5
4 2.3 −7.55

 .

Given a vector-matrix pair (a,A), the corresponding PH distribution will be denoted by PH(a,A). The
PDF, the CDF, and the CCDF of PH(a,A) will be denoted and can be calculated as

fa,A(x) = aexA(−A1), Fa,A(x) = 1− aexA1, and F̄a,A(x) = aexA1

where 1 denotes the column vector of ones.
In [11] it was shown and illustrated numerically through several examples that normalized BE approxima-

tion of a PDF results in a PH distribution. [11] provides also a more detailed description of the characteristics
of BP and BE.
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3. Approximation of Cumulative Density Functions by Bernstein Phase-Type Distributions

The degree n BE approximation of a given CDF F (x) with support [0,∞) is

F̂n(x) =

n∑
i=0

F
(
log

n

i

)
· Tn,i(x) (4)

where

Tn,i(x) :=

(
n

i

)
e−ix(1− e−x)n−i .

The division by zero in case of i = 0 is resolved by considering the limiting value of F (x) as x tends to
infinity, i.e., F

(
log n

0

)
= limx→∞ F (x) which is equal to 1 if the CDF is not defective (we will denote this

limit also simply by F (∞)). At the other end, for i = n we have F (log(n/n)) = F (0) which is 0 if there is
no probability mass at 0 in the distribution.

The same BE can be obtained based on the CCDF.

Proposition 1. Let F̄ (x) be the CCDF of a given CDF F (x), i.e., F̄ (x) = 1 − F (x). The distribution
obtained by the degree n BE approximation of F (x), given by F̂n(x) in (4), is equal to the distribution
derived from the degree n BE approximation of F̄ (x), i.e., F̂n(x) = 1− ˆ̄Fn(x).

Proof. The degree n BE approximation of F̄ (x) is

ˆ̄Fn(x) =

n∑
i=0

F̄
(
log

n

i

)
·
(
n

i

)
e−ix(1− e−x)n−i (5)

=

n∑
i=0

(
1− F

(
log

n

i

))
·
(
n

i

)
e−ix(1− e−x)n−i

=

n∑
i=0

(
n

i

)
e−ix(1− e−x)n−i − F̂n(x) =

(
e−x + (1− e−x)

)n − F̂n(x) = 1− F̂n(x)

from which F̂n(x) = 1− ˆ̄Fn(x) directly follows.

The following theorem shows that the approximation given in (4) corresponds to an acyclic PH distri-
bution.

Theorem 1. When F (x) is a CDF with support [0,∞), i.e., limx→∞ F (x) = 1, then Fa,A(x) = F̂n(x),
where

a =
(
a1 ... an

)
with ai = F

(
log

n

i− 1

)
− F

(
log

n

i

)
, (6)

and

A =


−1 1 0 ...
0 −2 2 0 ...

. . .
... 0 −(n− 1) n− 1

... 0 −n

 . (7)

I.e., the CDF of PH(a,A) is equal to the approximation in (4).

The graphical representation of PH(a,A) is shown in Figure 2 (where the role of F (0) and F (∞) can be
explicitly seen).
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F (∞)−F (logn)

F (logn)−F
(
log n

2
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log n

n−2

)
−F

(
log n

n−1

)
F
(
log n

n−1

)
−F (0)

1 2 (n−2) (n−1) n

Figure 2: Bernstein PH approximation of a CDF F (x)

Proof. The Laplace transform of the PDF of PH(a,A) is

f∗
a,A(s) =

n∑
i=1

(
F

(
log

n

i− 1

)
− F

(
log

n

i

)) n∏
j=i

j

j + s
(8)

where the product
∏n

j=i
j

j+s corresponds to the convolution of n− i+ 1 exponential random variables with
rates i, i+ 1, ..., n.

F̂n(x) is the weighted sum of terms in the form

Tn,i(x) =

(
n

i

)
e−ix(1− e−x)n−i (9)

with derivative

tn,i(x) = T ′
n,i(x) = (n− i)

(
n

i

)
e−(i+1)x(1− e−x)n−i−1 − i

(
n

i

)
e−ix(1− e−x)n−i

whose Laplace transform is

t∗n,i(s) =

∫ ∞

0

e−sxtn,i(x)dx =

n∏
j=i+1

j

j + s
−

n∏
j=i

j

j + s
.

Accordingly, the Laplace transform of f̂(x) = F̂ ′
n(x) is

f̂∗(s) =

∫ ∞

0

e−sxf̂(x)dx =

n∑
i=0

F
(
log

n

i

) n∏
j=i+1

j

j + s
−

n∏
j=i

j

j + s


=

n∑
i=1

(
F

(
log

n

i− 1

)
− F

(
log

n

i

)) n∏
j=i

j

j + s
(10)

from which, by comparing (8) and (10), we have f∗
a,A(s) = f̂∗(s). Additionally, using 1 − Fa,A(0) =∑n

i=1 ai = F (∞)−F (0) = 1−F (0) and F (0) = F̂n(0), F (∞) = F̂n(∞), as discussed after (3), we also have
Fa,A(x) = F̂n(x).

The time domain equivalent of (10) is provided in the following proposition.

Proposition 2. If F (0) = 0, then

F̂n(x) =

n∑
i=1

(
F

(
log

n

i− 1

)
− F

(
log

n

i

)) i−1∑
j=0

Tn,j(x) . (11)
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Proof. From (4) and (9), we have

F̂n(x) =

n∑
i=0

F
(
log

n

i

)
· Tn,i(x) =

n∑
i=0

F
(
log

n

i

)
·

 i∑
j=0

Tn,j(x)−
i−1∑
j=0

Tn,j(x)


=

n∑
i=0

F
(
log

n

i

)
·

i∑
j=0

Tn,j(x)−
n∑

i=1

F
(
log

n

i

) i−1∑
j=0

Tn,j(x)

=

n∑
i=0

F
(
log

n

i

)
·

i∑
j=0

Tn,j(x)−
n−1∑
i=0

F

(
log

n

i+ 1

) i∑
j=0

Tn,j(x)

= F (0)︸ ︷︷ ︸
0

·
n∑

j=0

Tn,j(x)︸ ︷︷ ︸
1

+

n−1∑
i=0

(
F
(
log

n

i

)
− F

(
log

n

i+ 1

)) i∑
j=0

Tn,j(x)

=

n∑
i=1

(
F

(
log

n

i− 1

)
− F

(
log

n

i

)) i−1∑
j=0

Tn,j(x)

From Proposition 2 it also follows directly that

dk

dxk

i−1∑
j=0

Tn,j(x)|x=0 = 0 for 0 ≤ k ≤ n− i (12)

by considering Fig. 2 when the last n− i nodes have 0 initial probability, and, as a further consequence, we
also have

dj

dxj
Tn,i(x)|x=0 = 0 for 0 ≤ j ≤ n− i− 1 . (13)

According to Theorem 1, if F (x) is non-decreasing, F (0) = 0 and F (∞) = 1, then its Fa,A(x) = F̂n(x)
approximation based on (4) is such that ai > 0 for i = 1, ..., n, and

∑n
i=1 ai = 1.

In a BE approximation the coefficient of the term Tn,n(x) is equal to the value of the approximation at
zero. Vice versa, the coefficient of the term Tn,0 is equal to the value of the approximation as x → ∞. This
implies the following proposition.

Proposition 3. Given a CDF F (x) that corresponds to a distribution that is with mass at zero (F (0) > 0)
and/or defective (limx→∞ F (x) < 1), the approximation

F̂n(x) = 0 · Tn,n(x) +

n−1∑
i=1

F
(
log

n

i

)
Tn,i(x) + 1 · Tn,0(x) (14)

corresponds to a non-defective distribution without mass at zero. The same can be achieved by approximating
the CCDF F̄ (x) in the form

ˆ̄Fn(x) = 0 · Tn,0(x) +

n−1∑
i=1

F̄
(
log

n

i

)
Tn,i(x) + 1 · Tn,n(x) . (15)

Note that every PH distribution constructed through a BE approximation has the same infinitesimal
generator A given in (7). For this reason, given a vector a = (a1 ... an) the distribution PH(a,A) will be
referred to as BPH(a). The PDF, the CDF, and the CCDF of a BPH(a) will be denoted by fa(x), Fa(x)
and F̄a(x), respectively.
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4. Stochastically Smaller and Larger Approximation

In this section, we study the possibility to create BPH distributions that guarantee stochastic order with
respect to the distribution we aim to approximate. If F̄X(x) and F̄Y (x) are the CCDF of X and Y , then X
is stochastically smaller than Y (equivalently, Y is stochastically larger than X) if and only if

P (X > z) = F̄X(z) ≤ F̄Y (z) = P (Y > z),∀z ≥ 0 . (16)

In the sequel we will use the notation

F̄+ϵ(x) = min(F̄ (x) + ϵ, 1) and F̄−ϵ(x) = max(F̄ (x)− ϵ, 0) , (17)

among which F̄+ϵ(x) is useful to obtain larger BPH approximations while F̄−ϵ(x) to obtain smaller ones.
In case of ϵ > 0, the distributions corresponding to the CCDFs in (17) are either with mass at zero or are
defective. As shown by Proposition 3, we can still easily obtain approximations of them that correspond to
non-defective distributions without mass at zero using (14) or (15).

The main result is the following theorem. Intuitively, the theorem guarantees that a stochastically larger
(smaller) BPH approximation can be obtained for some sufficiently large degree n̂ when: (1) the tail of the
CCDF decays faster than an exponential with rate 1 (slower than an exponential with arbitrarily small rate);
(2) at 0, the CCDF is not flat (has a finite derivative). Note that this section uses CCDF approximations
(equivalent to CDF approximations) for technical convenience.

Theorem 2. (a) Let F̄ (x) be a continuous CCDF with the following property:

• F̄ (x) ≤ Ce−x for some 0 < C < ∞;

• there exists a finite minimal nd for which dnd

dxnd
F̄ (x)|x=0 ̸= 0 (i.e., dk

dxk F̄ (x)|x=0 = 0 for k < nd).

Then for any 0 < ϵ < 0.5 there exists an n̂ such that for any n > n̂, the function

ˆ̄F+ϵ,n(x) =

n∑
i=1

F̄+ϵ

(
log

n

i

)
· Tn,i(x) (18)

is the CCDF of a BPH distribution that is stochastically larger than F̄ (x).

(b) Let F̄ (x) be a continuous CCDF with the following properties:

• F̄ (x) > ce−ax for some 0 < c < ∞ and a < ∞;
• d

dx F̄ (x)|x=0 is finite.

Then for any 0 < ϵ < 0.5 there exists an n̂ such that for any n > n̂, the function

ˆ̄F−ϵ,n(x) =

n−1∑
i=1

F̄−ϵ

(
log

n

i

)
· Tn,i(x) + Tn,n(x) (19)

is the CCDF of a BPH distribution that is stochastically smaller than F̄ (x).

Even though we are mainly interested in stochastic order results in the BPH setup, the results are
actually meaningful (and possibly useful) for the domain of the original Bernstein approximation over the
interval [0, 1]. We start with the classic setup over [0, 1], and switch to the exponential domain and prove
Theorem 2 after.

Using notation in accordance with Section 2.1, we assume G(y) to be a continuous, increasing function
on [0, 1] with G(0) = 0, G(1) = 1.

We denote

G+ϵ(y) = min(G(y) + ϵ, 1) =

{
G(y) + ϵ y < ŷ,
1 y ≥ ŷ,

(20)
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Figure 3: Example approximations for G(y) = y2(1− 2 log(y)), n = 4, ϵ = 0.2 and ŷ = 0.66.

with ŷ := min{y : G(y) ≥ 1− ϵ}.
We also define the operator

B̃+
n (G+ϵ; y) :=

n∑
i=1

G+ϵ

(
i

n

)(
n

i

)
yi(1− y)n−i. (21)

We note that B̃+
n (G+ϵ; y) ̸= Bn(G+ϵ; y) as the i = 0 term is missing from the sum in (21); accordingly,

B̃+
n (G+ϵ; y) = Bn(G+ϵ; y)− ϵ(1− y)n. (22)

Example. Fig. 3 shows the various operators applied to the function

G(y) = y2(1− 2 log(y))

using parameters n = 4 and ϵ = 0.2. (This function is actually the CCDF of the Erlang(2) distribution with
mean 1 reverted back to [0, 1] domain from exponential domain.)

The properties of G(y), G+ϵ(y), Bn(G+ϵ; y), and B̃+
n (G+ϵ; y) are as follows:

• G(y) is increasing with G(0) = 0, G(1) = 1;

• G+ϵ(y) is increasing with G+ϵ(0) = ϵ,G+ϵ(1) = 1, and this function is constant 1 on interval [ŷ, 1];

• Bn(G+ϵ; y) is the Bernstein approximation of G+ϵ, so it is increasing, Bn(G+ϵ; 0) = ϵ, Bn(G+ϵ; 1) = 1,
but this function is not constant over any interval;

• B̃+
n (G+ϵ; y) is increasing, B̃+

n (G+ϵ; 0) = 0, B̃+
n (G+ϵ; 1) = 1, and it is strictly smaller than Bn(G+ϵ; y)

over [0, 1).

Theorem 3. Assuming that

• G(y) is a continuous, increasing function on [0, 1] with G(0) = 0, G(1) = 1, and

• G(y) ≤ Cy for some C < ∞, and

• there exists an nd ≥ 1 such that dnd

dynd
G(y)

∣∣∣
y=1

̸= 0

then for any 0 < ϵ < 0.5 there exists an n̂ such that for all n > n̂,

G(y) ≤ B̃+
n (G+ϵ; y) ≤ G(y) + 2ϵ ∀y ∈ [0, 1] . (23)
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The proof of Theorem 3 is provided in Appendix A.

Remark 1. The conditions of Theorem 3 are also necessary in the following sense:

• Around 0: B̃+
n (G+ϵ; y) is a polynomial for any choice of n and ϵ, so its derivative at 0 is finite, and it

can dominate functions with G(y) ≤ Cy for some finite C. We also note that the condition G(y) ≤ Cy
follows from G′(0) < ∞, which is a practical way to check G(y) ≤ Cy for most functions.

• Around 1: If G(y) was such that dn

dynG(y)|y↗1 = 0 for all n > 0 then B̃+
n (G+ϵ; y) ≥ G(y) could not

hold around y = 1, since B̃+
n (G+ϵ; y) is a polynomial with some positive derivative at y ↗ 1.

There is an obvious counterpart of Theorem 3 for a lower bound. Introduce the notations

G−ϵ(y) = max(G(y)− ϵ, 0) =

{
0 y ≤ y̌,
G(y)− ϵ y > y̌,

(24)

with y̌ := max{y : G(y) ≤ ϵ} and the operator

B̃−
n (G−ϵ; y) =

n−1∑
i=0

G−ϵ

(
i

n

)(
n

i

)
yi(1− y)n−i + yn. (25)

We note that ϵ < 0.5 ensures y̌ ≤ ŷ.

Theorem 4. Assuming that

• G(y) is a continuous, increasing function on [0, 1] with G(0) = 0, G(1) = 1, and

• 1−G(1− y) < Cy for some C < ∞, and

• there exists a finite minimal nd such that dnd

dynd
G(y)

∣∣∣
y=0

̸= 0

then for any 0 < ϵ < 0.5 there exists an n̂ such that for all n > n̂,

G(y) ≥ B̃−
n (G−ϵ; y) ≥ G(y)− 2ϵ ∀y ∈ [0, 1] . (26)

Remark 2. Similarly to Remark 1, 1−G(1− y) < Cy follows directly from G′(1) < ∞.

Proof. (Theorem 4) To prove (26), we use the operator

J(G; y) = 1−G(1− y). (27)

J is an involution (that is, J(JG) = G), and it preserves the properties G(0) = 0, G(1) = 1, monotonicity
and continuity.

To check how J transforms the approximation (25) into (21), we first expand H(y) = 1 − G(1 − y) in
two steps:

U(z) = 1−G(z), H(y) = U(1− y),

and write

1−G−ϵ

(
i

n

)
= 1−max

(
G

(
i

n

)
− ϵ, 0

)
= min

(
1−G

(
i

n

)
+ ϵ, 1

)
= min

(
U

(
i

n

)
+ ϵ, 1

)
= min

(
H

(
1− i

n

)
+ ϵ, 1

)
= H+ϵ

(
1− i

n

)
. (28)

Next we rewrite (25) as

B̃−
n (G−ϵ; z) =

n−1∑
i=0

G−ϵ

(
i

n

)(
n

i

)
zi(1− z)n−i + zn =

n∑
i=0

G−ϵ

(
i

n

)(
n

i

)
zi(1− z)n−i + ϵzn.

9



Then, using
∑n

i=0

(
n
i

)
zi(1− z)n−i = 1, we obtain

1− B̃−
n (G−ϵ; z) =

n∑
i=0

(
1−G−ϵ

(
i

n

))(
n

i

)
zi(1− z)n−i − ϵzn

(28)
=

n∑
i=0

H+ϵ

(
1− i

n

)(
n

i

)
zi(1− z)n−i − ϵzn

z=1−y
=

n∑
i=0

H+ϵ

(
1− i

n

)(
n

i

)
(1− y)iyn−i − ϵ(1− y)n

j=n−i
=

n∑
j=0

H+ϵ

(
j

n

)(
n

j

)
yj(1− y)n−j − ϵ(1− y)n

=

n∑
j=1

H+ϵ

(
j

n

)(
n

j

)
yj(1− y)n−j = B̃+

n (H+ϵ; y).

Checking how J transforms the conditions and conclusion of Theorem 4 into the conditions and conclusion
of Theorem 3 follows the same pattern.

The symmetry used in the proof of Theorem 4 is due to the fact that the theorem is presented with
Bernstein polynomials in the [0, 1] domain. Now we switch to the BE in the [0,∞) domain, providing the
proof for Theorem 2.

Proof. (Theorem 2) For both parts, we apply the transformation F̄ (x) = G(e−x), that is,

y = e−x ⇐⇒ x = − log(y) .

This transformation maps the interval x ∈ [0,∞) to y ∈ [1, 0]; we examine how it transforms the functions
and conditions in part (a) and part (b) of Theorem 2 respectively.

(a) The function ˆ̄F+ϵ,n(x) in (18) is mapped to B̃+
n (G+ϵ; y) (see (21)).

The conditions of part (a) of Theorem 2 are also mapped directly to the conditions of Theorem 3:

• the condition G(y) ≤ Cy for some C < ∞ is equivalent to F̄ (x) ≤ Ce−x with the same C;

• since d
dxe

−x
∣∣∣
x=0

= 1, the mapping x → e−x preserves the derivative at x = 0, so

dnd

dxnd
F̄ (x)

∣∣∣∣
x=0

̸= 0 ⇐⇒ dnd

dynd
G(y)

∣∣∣
y=1

̸= 0.

The stochastic ordering conclusion also directly follows, since transforming the variable domain does
not affect inequalities for the values of the functions involved.

(b) Applying the same transformation y = e−x and F̄ (x) = G(e−x), we now get that the function ˆ̄F−ϵ,n(x)

in (19) is mapped to B̃−
n (G−ϵ; y) (see (25)).

The conditions of part (b) of Theorem 2 are also mapped directly to the conditions of Theorem 4:

• d
dx F̄ (x)|x=0 ≤ C is equivalent to G′(1) ≤ C, which follows directly from 1−G(1− y) < Cy;

• F̄ (x) > ce−ax for some 0 < c < ∞ and a < ∞ is equivalent to G(y) > cya, which means that
in the Taylor series expansion of G around y = 0, no more than the first ⌈a− 1⌉ derivatives can
be 0.

The stochastic ordering conclusion also directly follows, similarly to part (a).

10
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Figure 4: BPH approximations of a shifted exponential distri-
bution: there does not exist a larger BPH distribution.
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Figure 5: BPH approximations of a truncated exponential dis-
tribution: there does not exist a smaller BPH distribution.

The assumptions on the derivatives in Theorem 2 are necessary, since for any F̄ BPH CCDF, there exists
a finite nd for which dnd

dxnd
F̄ (x)|x=0 ̸= 0, so no BPH CCDF can dominate a function whose every derivatives

at x = 0 are 0, such as 1 − e−
1
x2 . Similarly, every F̄ BPH CCDF has a finite derivative at 0, so no BPH

CCDF can be dominated by a function like F̂ (x) = 1−
√
x that has an infinite derivative at 0.

The CCDFs of bounded random variables also violate the conditions of Theorem 2 and cannot be
dominated either; we state this as a separate corollary.

Corollary 1. Consider a CCDF F̄ (x). Then

∃x > 0, F̄ (x) = 1 =⇒ ̸ ∃ BPH(a), ∀x ≥ 0, F̄ (x) ≤ F̄a(x)

and
∃x > 0, F̄ (x) = 0 =⇒ ̸ ∃ BPH(a), ∀x ≥ 0, F̄ (x) ≥ F̄a(x),

Relevant examples of bounded random variables include shifted and truncated exponentials:

F̄se(x) =

{
1 x ≤ 1,
e−(x−1) x > 1,

F̄te(x) =

 e1−x − 1

e− 1
x ≤ 1,

0 x > 1.
(29)

Figures 4 and 5 illustrate the issues when trying to find stochastically larger approximations of shifted
exponentials and stochastically smaller approximations of truncated exponentials, respectively.

5. Numerical Investigations

In this section we use several distributions to numerically investigate BPH approximations obtained
based on the CCDF (which, as shown in Proposition 1, is equivalent to using the CDF). Let us list these
distributions and discuss their characteristics.

5.1. Considered Distributions
The order k Erlang distribution with mean equal to 1 is with CCDF

F̄ (x) =

k−1∑
i=0

e−kx(kx)i/i! , (30)

11



and we will refer to it as Erlang(k).
While an Erlang distribution is itself a PH distribution, it provides a straightforward way to analyze

several crucial characteristics of BPH approximations for the following reasons. The order k can be used to
control both the behavior at zero and as x tends to infinity. The larger k, the longer the CCDF remains close
to one (the first k−1 derivatives of the CCDF are zero at x = 0), and the more phases we need to construct
a stochastically larger BPH. At x → ∞, the larger k, the faster the CCDF decays (at rate e−kxxk−1) and
the more phases we need to construct a stochastically smaller BPH. Moreover, the Erlang distribution is
known to have the smallest possible squared coefficient of variation (SCV) among PH distributions of a
given order k independent of the mean [17], namely 1/k. This allows us to study easily also the impact of
the SCV on the goodness of the approximation.

Erlang distributions satisfy the conditions of both part (a) and (b) of Theorem 2 with any order and
any mean, which guarantees that there exists an n such that ˆ̄F+ϵ,n(x), defined in (18), ( ˆ̄F−ϵ,n(x) defined in
(19)) defines a random variable that is stochastically larger (smaller) than the one defined by F̄ (x).

The Weibull distribution with scale λ and shape k, which we will denote by Weibull(λ, k), has CCDF

F̄ (x) = e−(x/λ)k ,

and we have to distinguish two cases:

• with k > 1 the conditions of part (a) of Theorem 2 are satisfied (i.e., the existence of a stochastically
larger BPH is guaranteed) but not those of part (b) because F̄ (x) decays at x → ∞ faster than
exponential (i.e., there does not exist a stochastically smaller BPH);

• with k < 1 the conditions of part (a) are not satisfied because F̄ (x) decays at x → ∞ slower than
exponential, and neither those of part (b) are met because the derivative at x = 0 is infinite.

(With k = 1 the Weibull distribution is identical to the exponential distribution.)
For what concerns the (shifted) Pareto distribution with CCDF

F̄ (x) =
1

(x+ 1)α
with α > 0,

which we will denote by Pareto(α), conditions of part (a) of Theorem 2 are not satisfied because the decay
of the CCDF is slower than exponential as x → ∞ (i.e., there does not exist a larger BPH distribution) but
those of part (b) are met (i.e., there exist smaller BPH distributions).

Furthermore, we will use also uniform distributions specifying their support.

5.2. Distribution Approximations
We approximate F̄ (x) itself and its increased and decreased variants, i.e., F̄+ϵ(x) and F̄−ϵ(x) as given

in (17) as well, in order to obtain stochastically larger and smaller BPH distributions. For a given n and ϵ,
checking whether ˆ̄F+ϵ,n(x) ≥ F̄ (x) for every x ≥ 0 ( ˆ̄F−ϵ,n(x) ≤ F̄ (x) for every x ≥ 0) is not straightforward.
We analyzed the difference between F̄ (x) and the approximations numerically over the main body of the
functions. If minx

ˆ̄F+ϵ,n(x)− F̄ (x) = 0 then ˆ̄F+ϵ,n(x) defines a random variable that is stochastically larger
than the one of F̄ (x); vice versa, if maxx

ˆ̄F−ϵ,n(x)− F̄ (x) = 0 then ˆ̄F−ϵ,n(x) defines a random variable that
is stochastically smaller than the one of F̄ (x). (Note that F̄ (0) = ˆ̄F+ϵ,n(0) =

ˆ̄F−ϵ,n(0) = 1 is guaranteed by
the approximation, which implies that minx

ˆ̄F+ϵ,n(x)− F̄ (x) ≤ 0 and maxx
ˆ̄F−ϵ,n(x)− F̄ (x) ≥ 0.)

We start with Erlang distributions for which, as mentioned above, the existence of both smaller and
larger BPH distributions is guaranteed.

Figure 6 shows the CCDFs and PDFs resulting from the approximation of the Erlang(2) CCDF with
n = 40 and ϵ = 0.1. Approximating F̄ (x) itself via (3) gives a good approximation but does not guarantee
stochastic order. Approximating F̄+ϵ(x) and F̄−ϵ(x) provides a larger and a smaller distribution, respectively,
but the resulting CCDFs are far from the original due to the relatively large values of ϵ. For a CCDF F̄ (x) we
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Figure 6: Approximating the Erlang(2) CCDF with n = 40, ϵ = 0.1: on the left the resulting CCDFs, on the right the
corresponding PDFs.
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Figure 7: Approximating the Erlang(10) CCDF with n = 40, ϵ = 0.1: on the left the resulting CCDFs, on the right the
corresponding PDFs.

denote the corresponding PDF as f(x) = −F̄ ′(x). A particular consequence of using F̄−ϵ(x) can be observed
for the PDF f̂−ϵ,40(x) at zero where we have f̂−ϵ,40(0) = 4.05. This is due to the fact that the derivative
of ˆ̄F−ϵ,40(x) is negative at zero. The larger ϵ, the larger f̂−ϵ,40(0). The SCV in this case is relatively large,
1/2, and hence, approximating F̂ (x) provides a CCDF and a corresponding PDF that follows closely the
original CCDF and PDF.

Figure 7 shows analogous experiments for Erlang(10). Similar to the Erlang(2) case, approximating
F̄+ϵ(x) and F̄−ϵ(x) provides a larger and a smaller distribution, respectively, and we have a peak at zero
in the PDF of the smaller distribution. The main difference with respect to Erlang(2) is the much lower
SCV (1/10 for Erlang(10)). Accordingly, f̂40(x) is unable to capture the “narrow” shape of f(x). The rigid
structure of the BPH distribution (fixed intensities and distributed initial probabilities, see Figure 2) is not
appropriate to obtain low SCV with an order 40 BPH distribution.

In Figure 8 we show the difference between the original CCDF and the approximating CCDFs for the two
experiments considered so far, i.e., n = 40, ϵ = 0.1 with Erlang(2) and Erlang(10). For the approximating
F̄n(x), close to zero the resulting CCDF is smaller than the original, and later it becomes larger. According
to our experience this is the typical situation when approximating a CCDF that has one or more derivatives
equal to zero at zero.

As expected, for smaller values of ϵ, it can be necessary to increase the number of phases in order to
obtain a stochastically larger (or smaller) approximation. In Figure 9, using Erlang(10) and ϵ = 0.02, we
show the difference between the approximating CCDFs and the original one with n = 40 and n = 160.
With 40 phases, there is no stochastic order between the Erlang and the approximations. Indeed, both
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Figure 8: Difference in the CCDFs approximating the Erlang CCDF with n = 40, ϵ = 0.1, Erlang(2) on the left and Erlang(10)
on the right.
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Figure 9: Difference in the CCDFs approximating the Erlang(10) CCDF with ϵ = 0.02; with n = 40 on the left and with
n = 160 on the right.

ˆ̄F+ϵ,40(x)− F̄ (x) and ˆ̄F−ϵ,40(x)− F̄ (x) cross the x axis. For n = 160, stochastic order is guaranteed.
We report also some results for several orders of the BE approximation: n = 5, 10, 20, 40, 80 and 160.

We investigate the minimum and the maximum of ˆ̄Fn(x)− F̄ (x), ˆ̄F+ϵ,n(x)− F̄ (x) and ˆ̄F−ϵ,n(x)− F̄ (x). The
results are shown in Figure 10 using Erlang(2) and Erlang(10) with ϵ = 0.05. The minimum and maximum of
ˆ̄Fn(x)−F̄ (x) show a symmetric behavior with respect to the x axis. For the stochastically larger and smaller
approximations, minx

ˆ̄F+ϵ,n(x) − F̄ (x) is symmetric to maxx
ˆ̄F−ϵ,n(x) − F̄ (x) and minx

ˆ̄F−ϵ,n(x) − F̄ (x) is
symmetric to maxx

ˆ̄F+ϵ,n(x) − F̄ (x). A larger (smaller) distribution is guaranteed once n is increased so
that minx

ˆ̄F+ϵ,n(x)− F̄ (x) (maxx
ˆ̄F−ϵ,n(x)− F̄ (x)) reaches the x axis.

We turn our attention now to a distribution for which neither larger nor smaller BPH approximations
exist, namely, the Weibull(0.5, 0.5) distribution. Figure 11 shows the approximations of the CCDF itself for
various values of n. Close to 0 the approximations are not able to follow the fast decay of the Weibull(0.5, 0.5)
CCDF (its derivative at 0 is infinite) while toward the tail the approximations decrease faster than the tail
of the Weibull(0.5, 0.5) distribution because it is heavier than exponential. Increasing n, as expected, results
in approximations that are closer to the Weibull(0.5, 0.5) CCDF both around 0 and toward the tail.

BPH distributions that are larger than the Weibull(0.5, 0.5) distribution do not exists because of the tail
behavior of the Weibull(0.5, 0.5) distribution. However, it is possible to obtain BPH distributions whose
CCDF is larger than that of the Weibull(0.5, 0.5) up to a predefined limit by approximating the increased
version of the Weibull(0.5, 0.5) CCDF, i.e., F̄+ϵ(x). This is illustrated in Figure 12. The larger n, the longer
ˆ̄F+ϵ,n remains larger than F̄ (x). On the left side of the figure, ˆ̄F+ϵ,10(x) is larger than F̄ (x) up to x = 2.53,
ˆ̄F+ϵ,40(x) up to x = 4.22 and ˆ̄F+ϵ,160(x) up to x = 5.96. Similarly, the larger ϵ (i.e., the more we increase
the CCDF during the approximation), the longer ˆ̄F+ϵ,n remains larger than F̄ (x). On the right side of
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Figure 10: Minimum and the maximum of ˆ̄Fn(x) − F̄ (x), ˆ̄F+ϵ,n(x) − F̄ (x) and ˆ̄F−ϵ,n(x) − F̄ (x) for various values of n with
ϵ = 0.05 and Erlang(2) (left) and Erlang(10) (right).
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Figure 11: Approximations of the Weibull(0.5, 0.5) CCDF with different values of n: the initial part of CCDFs on the left and
their tail on the right.

the figure, ˆ̄F+0.01,40(x) is larger than F̄ (x) up to x = 3, ˆ̄F+0.05,40(x) up to x = 4.21 and ˆ̄F+0.1,40(x) up to
x = 4.9.

BPH distributions that are smaller than the Weibull(0.5, 0.5) distribution do not exists because of the
behavior of the Weibull(0.5, 0.5) CCDF around 0. Nevertheless, by approximating the decreased version of
the CCDF, F̄−ϵ, it is possible to obtain BPH distributions with CCDF that is smaller than Weibull(0.5, 0.5)
CCDF for any x larger than a predefined value. Also in this case, increasing either n or ϵ improves the
situation in the sense that the threshold value of x after which the CCDF of the BPH approximation
is smaller becomes smaller. This is illustrated in Figure 13. On the left-hand side, varying n, we have
ˆ̄F−0.05,10(x) < F̄ (x) for any x larger than 0.23, ˆ̄F−0.05,40(x) < F̄ (x) for x > 0.037 and ˆ̄F−0.05,160(x) < F̄ (x)

for x > 0.005. On the right-hand side, varying ϵ, we have ˆ̄F−0.01,40(x) < F̄ (x) for any x larger than 0.15,
ˆ̄F−0.05,40(x) < F̄ (x) for x > 0.037 and ˆ̄F−0.1,40(x) < F̄ (x) for x > 0.02.

While the Erlang(10) distribution, as mentioned already, is with low SCV, the Weibull(0.5, 0.5) distribu-
tion has a high SCV, specifically, it is equal to 5. The high SCV is due to the heavy tail of the distribution,
a feature that is notoriously hard to capture with general purpose PH fitting approaches (i.e., approaches
that do not treat the tail of the distribution with special care). Indeed, the approximating BPH distri-
butions are with an SCV that is far from that of the Weibull(0.5, 0.5) even for large values of n. This is
shown in Table 1. This weakness of the BPH approximations could be easily reduced to a large extent by
combining the BPH approximation with the method proposed in [6] to fit heavy-tailed distributions. Such
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Figure 12: Approximations of the increased Weibull(0.5, 0.5) CCDF with various values of n and ϵ = 0.05 on the left and with
various values of ϵ and n = 40 on the right.
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Figure 13: Approximations of the decreased Weibull(0.5, 0.5) CCDF with various values of n and ϵ = 0.05 on the left and with
various values of ϵ and n = 40 on the right.

an approach, i.e., combining the method in [6] with a general purpose fitting procedure, was described and
applied successfully in [8]. Note that, since the procedure in [6] is with very low computational complexity,
its combination with BPH approximation would result in a method with execution time as low as that of
pure BPH approximation.

n 10 50 100 500 1000 5000 10000 50000 100000
SCV 1.97 2.45 2.62 2.95 3.08 3.35 3.46 3.68 3.76

Table 1: SCV of various order of BPH approximations of the Weibull(0.5, 0.5) distribution whose SCV is equal to 5.

5.3. Necessary Order to Obtain Smaller or Larger Distributions
Here we numerically investigate the minimal n as a function of ϵ, denoted by n+(ϵ) and n−(ϵ), that

allows to obtain stochastically larger or smaller approximations, respectively.
Table 2 shows n+(ϵ) and n−(ϵ) for each choice of F̄ . When such n+(ϵ) or n−(ϵ) do not exist the table

indicates ̸ ∃ (this happens always in accordance with Theorem 2 as discussed in Section 5.1 distribution by
distribution). It turns out that for all of the considered distributions, if n+(ϵ) or n−(ϵ) exist, then larger
and smaller CCDFs are obtained for any n ≥ n+(ϵ) and n ≥ n−(ϵ), respectively, i.e.,

ˆ̄F+ϵ,n(x) ≥ F̄ (x) x ∈ [0,∞), ∀n ≥ n+(ϵ) and
ˆ̄F−ϵ,n(x) ≤ F̄ (x) x ∈ [0,∞), ∀n ≥ n−(ϵ).
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Weibull(2, 2) Weibull(0.5, 0.5) Erlang(2) Erlang(10) Pareto(1) Pareto(5)
ϵ n+(ϵ) n−(ϵ) n+(ϵ) n−(ϵ) n+(ϵ) n−(ϵ) n+(ϵ) n−(ϵ) n+(ϵ) n−(ϵ) n+(ϵ) n−(ϵ)

0.1 7 ̸ ∃ ̸ ∃ ̸ ∃ 5 7 24 29 ̸ ∃ 1 ̸ ∃ 11
0.01 68 ̸ ∃ ̸ ∃ ̸ ∃ 27 28 192 180 ̸ ∃ 1 ̸ ∃ 74
0.001 687 ̸ ∃ ̸ ∃ ̸ ∃ 271 237 1976 1869 ̸ ∃ 1 ̸ ∃ 746

Table 2: Minimal order, n+(ϵ) and n−(ϵ), to obtain stochastically larger and smaller approximations, respectively, as function
of ϵ.

Table 2 shows that apart from the exception (and possible corner case) Pareto(1), n+(ϵ) and n−(ϵ)

typically increase linearly in 1/ϵ, with a constant factor depending on F̄ . For Pareto(1), ˆ̄F−ϵ,n(x) ≤ F̄ (x)
holds already for n = 1, for any choice of ϵ examined.

5.4. Application of BPH Approximations in Queues
Finally, we apply some of the already studied approximations in M/G/1 queues. The service time

distribution is Erlang(2) or Erlang(10) (see (30)). We use the same values of ϵ for approximations as in
Table 2, namely 0.1, 0.01 and 0.001, and the minimal n that allows us to obtain stochastically larger and
smaller approximate BPH service time distributions (this is also indicated in Table 2 as n+(ϵ) and n−(ϵ),
respectively). The utilization of the queue is set to 0.7. The queue length distribution of the resulting
M/BPH/1 queue can be calculated by the procedure provided in [11] that has linear complexity in the
order n and hence allows us to use large values of n in the computation.

Since the BPH approximations guarantee stochastic order with respect to the original service time
distribution, the CCDF of the queue length distribution and its upper and lower bounds for Erlang(2) are
illustrated in Figure 14 on the left, while the difference between the bounds are plotted on the right. As
expected, the bounds become tighter as ϵ ↘ 0. The largest difference between the upper bound and the
lower bound is 0.5202, 0.0885 and 0.01357, respectively, for ϵ = 0.1, ϵ = 0.01 and ϵ = 0.001. For Erlang(10)
the results are shown in Figure 15. In this case the largest difference between the upper bound and the
lower bound is 0.6769, 0.09476 and 0.01388, respectively, for the same values of ϵ.

The figures indicate that for Erlang(2) and Erlang(10), the differences between the upper bound and
the lower bound are rather similar in spite of the essentially different service time distribution (the SCV of
the service time is 1/2 for Erlang(2) and 1/10 for Erlang(10)). We note that the figures hide an important
aspect of the approximation which is highlighted in Table 2. Namely, in case of Erlang(10) the minimal order
guaranteeing stochastic ordering is about seven times larger than in case of Erlang(2), however this increase
does not lead to unfeasible computations due to the simplicity of the construction and the application of
BPH approximations.

6. Comparison of PDF and CDF Approximations

BPH approximation was proposed in [11] for PDFs, while in this paper we study BPH approximations
of CDFs. In this section we compare the PDF and CDF based BPH approximations.

The degree n BPH approximation of a given PDF f(x) is

f̂n(x) =
1

c

n∑
i=1

f
(
log

n

i

)(n
i

)
e−ix(1− e−x)n−i, (31)

where c =
∑n

i=1

f(log n
i )

i is a normalizing constant ensuring that
∫∞
0

f̂n(x)dx = 1.
Figures 16, 17 and 18 plot the PDF and the CDF based approximations of the Uniform(0, 1), the

Uniform(1, 2) and the Weibull(1, 2) distributions for n = 50. Visual inspection of these plots indicates
approximations with similar precision. For a better numerical comparison we evaluated the error measures

DPdf
1 =

∫ ∞

x=0

∣∣∣f̂n(x)− f(x)
∣∣∣ dx, and DPdf

2 =

∫ ∞

x=0

(
f̂n(x)− f(x)

)2
dx
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Figure 14: Bounds on the probability of more than c jobs present in the queue in case of Erlang(2) service time distribution (left)
and the difference between the upper bound and the lower bound (right); obtained by larger and smaller BPH approximations
with minimal order guaranteeing stochastic order for various values of ϵ. The plots are valid at integer values of c, and the
discrete points are connected for better visibility.

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 15: The same results as in Figure 14 with Erlang(10).

for the investigated distributions, where f̂n(x) stands for the PDF of the BPH approximation obtained either
based on the PDF or the CDF. The following table summarizes the results for order 25 and 50.

Distance DPdf
1 DPdf

2

Order of approx. 25 50 25 50

BPH approx. PDF based|CDF based PDF based|CDF based PDF based|CDF based PDF based|CDF based
Uniform(0,1) 0.2061 | 0.2088 0.15035 | 0.15063 0.06004 | 0.06013 0.04327 | 0.04302
Uniform(1,2) 0.5928 | 0.57139 0.46055 | 0.4058 0.1843 | 0.1851 0.1354 | 0.1253
Weibull(1, 2) 0.1055 | 0.0915 0.05535 | 0.04837 0.00463 | 0.00373 0.001324 | 0.001043

The CDF based approximation is better in more cases but the error measures are similar. Without including
the numerical values, we report that in case of n = 100 the CDF based approximation resulted in lower
DPdf

1 and DPdf
2 measures for all the three distributions. In contrast, with n = 10 the CDF based approxi-

mation resulted, surprisingly, in lower DPdf
1 and DPdf

2 measures for the Uniform(0, 1) and the Weibull(1, 2)
distributions, but not for Uniform(1, 2).

Based on these numerical experiences, we can conclude that the PDF and CDF based BPH approxima-
tions have rather similar quality. An advantage of the CDF based BPH approximation is that it does not
require the application of a normalization constant (denoted by c in (31)) in order to obtain a proper dis-
tribution. This constant, in particular cases with low values of n, can also introduce some sort of distortion
of the approximation because its effect can be seen as approximating f(x)/c instead of f(x) itself.
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Figure 16: PDF and CDF based BPH approximation of the
Uniform(0, 1) distribution with n = 50.
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Figure 17: PDF and CDF based BPH approximation of the
Uniform(1, 2) distribution with n = 50.
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Figure 18: PDF and CDF based BPH approximation of the Weibull(1, 2) distribution with n = 50.

7. Scaling Bernstein Phase Type Distributions

To transform Bernstein polynomials to Bernstein exponentials, we applied the change of variable y = e−x.
Applying a scaled version of this change of variable, namely, y = e−λx (i.e., x = − log(y)/λ), we also obtain
a mapping from [0, 1] onto [0,∞) but with an additional free parameter. This parameter, λ, referred to as
scaling parameter, can be optimized in order to get better approximations.

The degree n scaled BE approximation of a given CDF F (x) with scaling parameter λ ∈ (0,∞) is

F̂n,λ(x) =

n∑
i=0

F

(
log n

i

λ

)
·
(
n

i

)
e−iλx(1− e−λx)n−i︸ ︷︷ ︸

≜Tn,i,λ(x)

. (32)

Similar to the BE approximation, the scaled BE approximation given in (32) also corresponds to a PH
distribution as it is shown by the following theorem.

Theorem 5. The CDF of PH(a,A) with

a =
(
a1 ... an

)
, ai = F

(
log n

i−1

λ

)
− F

(
log n

i

λ

)
(33)
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Figure 19: Bernstein PH approximation of a CDF F (x) with scale parameter λ

and

A =



−λ λ 0 ...
0 −2λ 2λ 0 ...

. . .
... 0 −(n− 2)λ (n− 2)λ 0

... 0 −(n− 1)λ (n− 1)λ
... 0 −nλ


(34)

is equal to the approximation in (32). That is Fa,A(x) = F̂n,λ(x).

The graphical representation of PH(a,A) is shown in Figure 19. The proof of Theorem 5 based on (32)
follows the same pattern as the proof of Theorem 1 based on (4), and we omit it here, but we spell out some
properties of scaled BE approximation of CDFs.

Based on Figure 19, it is easy to verify that
∑n

i=1 ai = 1 if F (0) = 0 and F (∞) = 1 (which we assume
in this paper). Moreover, since F (x) is non-decreasing we have ai > 0, i = 1, ..., n, that is, a = (a1 ... an) is
a valid distribution over the phases. A direct consequence of Theorem 5 is the following corollary.

Corollary 2. The approximation F̂n,λ(x) of a CDF F (x) is a valid CDF, i.e., it is non-decreasing, F̂n,λ(0) =

0 and F̂n,λ(∞) = 1.

To indicate the effect of the scaling parameter in BPH approximations of a given CDF F (x), we investigate
the behavior of some low order (n = 5) approximations of uniform and Weibull distributions with F̂n,λ(x)
according to (32).

Figure 20 presents the results for the Uniform(0, 1) distribution. It indicates that different λ parameters
result in approximating CDFs with different qualitative properties. The increase of the CDF in (0, 1),
i.e., F̂n,λ(1) − F̂n,λ(0) = F̂n,λ(1) increases with λ. That is, for large λ values the probability that the
approximating BPH random variable is larger than 1 is vanishing. The right side of Figure 20 indicates the
price of increasing F̂n,λ(1). When λ is large, the uniform density is significantly over-estimated by F̂ ′

n,λ(x)
in the (0, 0.5) interval.

Figure 21 presents the approximation of the CDF of the Uniform(1, 2) distribution. In this case, high
λ values also lead to a sharp increase of the CDF in the (0, 1) interval, but they result in inaccurate
approximations. The right side of Figure 21 shows the associated density functions. To better understand
the behavior of the fitting curves, Table 3 reports the points where (32) samples the CDF to fit. That is,
all sampling points with λ = 4 and λ = 2 are in the (0, 1) interval where the CDF is zero. Consequently,
F̂n,λ(x) = Tn,0,λ(x) = (1 − e−λx)n in these cases. For a more appropriate fit, it is worth to set λ so that
some sample points are present in the (1, 2) interval as well, which is the case with λ = 0.5 and λ = 1. This
simple example already indicates that the proper choice of λ depends on the distribution to fit.

Figures 22 and 23 present the approximations for the CDF of the Weibull(1, 0.5) and the Weibull(1, 2)
distributions where the sample points are also according to Table 3. Similarly to the uniform distributions,
sample points close to zero (i.e., when λ is large) result in an over estimation of the PDF and the CDF in
the (0.5, 1) interval. Lower λ values shift the sample points as well as the distribution to the right.
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Figure 20: Scaled BPH approximation of the CDF of the Uniform(0, 1) distribution with different λ parameters: approximate
CDFs on the left and the corresponding approximate PDFs on the right.
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Figure 21: Scaled BPH approximation of the CDF of the Uniform(1, 2) distribution with different λ parameters: approximate
CDFs on the left and the corresponding approximate PDFs on the right.

λ p1 p2 p3 p4

0.5 0.4462 1.0216 1.832 3.218
1 0.2231 0.5108 0.9162 1.609
2 0.1115 0.2554 0.4581 0.8047
4 0.05578 0.1277 0.2290 0.402

Table 3: The sampling points, pn−i =
log n

i
λ

, of the order n = 5 BPH approximation with different λ parameters.
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Figure 22: Scaled BPH approximation of the CDF of the Weibull(1, 0.5) distribution with different λ parameters: approximate
CDFs on the left and the corresponding approximate PDFs on the right.
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Figure 23: Scaled BPH approximation of the CDF of the Weibull(1, 2) distribution with different λ parameters: approximate
CDFs on the left and the corresponding approximate PDFs on the right.

7.1. Effect of the Scaling Parameter on the Accuracy of BPH Approximation
As it was illustrated before, different scaling parameters result in different BPH approximations, which

raises the problem of finding the optimal scaling parameter for the scaled BPH approximation of a given
distribution function.

The scaling parameter has two effects on the approximation (see (32)):

• it determines the points where the original function is sampled,
(

log n
i

λ

)
with i = 1, ..., n− 1, and

• it affects the exponential functions applied in the approximation (i.e., the terms become
(
n
i

)
e−iλx(1−

e−λx)n−i).

The complex interdependencies of these two effects inhibit an analytical treatment of the optimal scaling
parameter, and lead us to resort to numerical investigations.

We investigate the effect of the scaling parameter on some CDF based error measures of the scaled BPH
approximation. Namely, we analyze the error measures

DCdf
1 =

∫ ∞

x=0

∣∣∣F̂n,λ(x)− F (x)
∣∣∣ dx, and DCdf

2 =

∫ ∞

x=0

(
F̂n,λ(x)− F (x)

)2
dx

for some non-negative distributions with CDF given by F (x).
The two error measures are plotted as function of the scaling parameters in Figures 24 to 27 in case of

approximating the Uniform(0,1), the Uniform(1,2), the Weibull(1, 0.5) and the Weibull(1, 2) distributions.
The figures suggest the following conclusions:

• increasing the order decreases the error in all cases;

• the error has a large scale U-shape as a function of λ;

• for some distributions (e.g., the uniform distributions) this U-shape behavior is altered by fluctuation,
which decreases when increasing the order of the approximation;

• the optimal λ value, denoted as λ̂, depends both on the distribution to approximate and the error
measure;

• for some distributions (e.g., the uniform distributions and the Weibull(1, 2) distribution) the optimal
λ value is rather insensitive to the order (for those orders where the fluctuation is not present), while
for other distributions (e.g., the Weibull(1, 0.5) distribution) the optimal λ value depends on the order.
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Figure 24: DCdf
1 (left) and DCdf

2 (right) error measures of order 10, 25 and 50 scaled BPH approximation of the CDF of
the Uniform(0, 1) distribution as a function of the scaling parameter. On the left, the minimum is attained at λ̂10 = 2.297,
λ̂25 = 1.625, λ̂50 = 1.516. On the right, at λ̂10 = 2.297, λ̂25 = 2.144, λ̂50 = 2.297.
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Figure 25: DCdf
1 (left) and DCdf

2 (right) error measures of order 10, 25 and 50 scaled BPH approximation of the CDF of
the Uniform(1, 2) distribution as a function of the scaling parameter. On the left, the minimum is attained at λ̂10 = 1.149,
λ̂25 = 0.9013, λ̂50 = 0.9659. On the right, at λ̂10 = 1.149, λ̂25 = 1.072, λ̂50 = 1.149.
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Figure 26: DCdf
1 (left) and DCdf

2 (right) error measures of order 10, 25 and 50 scaled BPH approximation of the CDF of the
Weibull(1, 0.5) distribution as a function of the scaling parameter. On the left, the minimum is attained at λ̂10 = 0.2102,
λ̂25 = 0.1593, λ̂50 = 0.1387. On the right, at λ̂10 = 0.3536, λ̂25 = 0.2774, λ̂50 = 0.2415.
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Figure 27: DCdf
1 (left) and DCdf

2 (right) error measures of order 10, 25 and 50 scaled BPH approximation of the CDF of
the Weibull(1, 2) distribution as a function of the scaling parameter. On the left, the minimum is attained at λ̂10 = 2.297,
λ̂25 = 1.319, λ̂50 = 1.319. On the right, at λ̂10 = 2.071, λ̂25 = 1.414, λ̂50 = 1.414.

8. Conclusions

We applied Bernstein exponentials to the approximation of CDFs and showed that the resulting CDFs
are valid and describe random variables that belong to a subclass of acyclic PH distributions, allowing
efficient approximations of non-Markovian models. We also provided an approach to obtain stochastically
ordered approximations, which opens the way to the application in problems where a safe approximation of
performance metrics is required.

Additionally, we compared the CDF based BPH approximation, studied in this paper, and the previously
studied PDF based BPH approximation and have found that the quality of the two approximations are rather
similar, while CDF based BPH approximation has some additional advantages (does not require additional
normalization). Finally, we studied the application of a scaling parameter in the BPH approximation
and shown that the application of an appropriate scaling parameter is important for the accuracy of the
approximation.

A. Proof of Theorem 3

We start with proving necessary lemmas assuming the conditions of Theorem 3.

Lemma 1. There exists an ym > 0 and nm such that for any n > nm,

G(y) ≤ B̃+
n (G+ϵ; y) ∀y ∈ [0, ym] . (A.1)

Proof. Let

ym := min
{
ŷ,

ϵ

2C

}
, and nm := min

{
n : (1− (1− ym)n) ≥ 1

2

}
; (A.2)

such an nm exists since limn→∞(1−(1−ym)n) = 1. The choice of ym and nm guarantees ϵ(1−(1−ym)nm) ≥
Cym. The function ϵ(1− (1− y)nm) is concave for y ∈ [0, 1], so

ϵ(1− (1− y)nm)|y=0 ≥ Cy|y=0 and ϵ(1− (1− y)nm)|y=ym
≥ Cy|y=ym

,

imply
ϵ(1− (1− y)nm) ≥ Cy for any y ∈ [0, ym] .

For any fixed y ∈ [0, 1], ϵ(1− (1− y)n) is increasing in n, so for any n > nm,

ϵ(1− (1− y)n) ≥ ϵ(1− (1− y)nm) ≥ Cy ∀y ∈ [0, ym] . (A.3)
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Finally, for any n > nm and y ∈ [0, ym], we have

B̃+
n (G+ϵ; y)−G(y) = Bn(G+ϵ; y)− ϵ(1− y)n −G(y)

y≤ŷ
= Bn(G+ϵ; y)− ϵ(1− y)n + ϵ−G+ϵ(y)

= ϵ(1− (1− y)n)︸ ︷︷ ︸
≥Cy

+Bn(G+ϵ; y)︸ ︷︷ ︸
≥ϵ

−G+ϵ(y)︸ ︷︷ ︸
≤ϵ+Cy

≥ Cy + ϵ− (ϵ+ Cy) = 0,

where the first inequality is by (A.3), the second by the bound preserving property of the Bernstein operator
and the third by the condition of Theorem 3.

Lemma 2. For any positive integer n0, any y0 ∈ (0, 1) and any c > 0 there exist y1, y2 ∈ (0, 1) such that
for any n ≥ ⌈n0+1

y0
⌉,

n∑
i=⌊ny0⌋

bn,i(y) ≤ cyn0 ∀y ∈ [0, y1] (A.4)

and
n∑

i=⌈ny0⌉

bn,i(y) ≥ 1− c(1− y)n0 ∀y ∈ [y2, 1] , (A.5)

where

bn,i(y) =

(
n

i

)
yi(1− y)n−i . (A.6)

Remark 3. A possible interpretation of Lemma 2 is examining how smooth the Bernstein approximation is
around y = 0 for the (discontinuous) function h(y) = U(y − y0), where U is the Heaviside function. While
the lemma does not give an exact answer to that question, it will be sufficient for our purposes.

Remark 4. The main difficulty in Lemma 2 is finding a y1 independent of n. The assumption ⌊ny0⌋ ≥ n0

guarantees that the leading term in the sum in (A.4) is of order smaller than yn0 around 0, so for any
fixed n, there clearly exists a proper y1; however, the coefficients in the sum increase rapidly with n, so more
work is necessary to obtain y1 uniformly in n.

Proof. (Lemma 2) We start by rearranging (A.4) as

n∑
i=⌊ny0⌋

(
n

i

)
yi−n0(1− y)n−i ≤ c . (A.7)

We aim to prove that for a fixed n, the terms in (A.7) decay rapidly (at least exponentially) in i for y < y0

2−y0
.

This will allow us to bound the entire sum with the dominant term. Comparing consecutive terms in the
sum gives (

n
i+1

)
yi+1−n0(1− y)n−(i+1)(
n
i

)
yi−n0(1− y)n−i

=
n− i

i+ 1
· y

1− y
≤ n− ny0

ny0
· y

1− y
=

1− y0
y0

· y

1− y
,

where 1−y0

y0
is constant, so the right-hand side can be made smaller than 1/2 by choosing y < y0

2−y0
, i.e.,

y <
y0

2− y0
=⇒ 1− y0

y0
· y

1− y
≤ 1/2 .
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Then
n∑

i=⌊ny0⌋

(
n

i

)
yi−n0(1− y)n−i ≤ 2

(
n

⌊ny0⌋

)
y⌊ny0⌋−n0(1− y)n−⌊ny0⌋ = 2

(
n

⌊ny0⌋

)
y⌊ny0⌋−n0−1(1− y)n−⌊ny0⌋ · y,

where a factor of y is separated in the last expression for having a bounded term and a y dependent term.
The term 2

(
n

⌊ny0⌋
)
y⌊ny0⌋−n0−1(1 − y)n−⌊ny0⌋ has its maximum at y = (⌊ny0⌋ − n0 − 1)/(n − n0 − 1) . We

define
y∗ = min

n

{
⌊ny0⌋ − n0 − 1

n− n0 − 1

}
,

where the minimum exists because limn→∞(⌊ny0⌋ − n0 − 1)/(n− n0 − 1) = y0 .
Then for any y < min(y∗, y0

2−y0
), we have

2

(
n

⌊ny0⌋

)
y⌊ny0⌋−n0−1(1− y)n−⌊ny0⌋ · y ≤ 2

(
n

⌊ny0⌋

)
(y∗)⌊ny0⌋−n0−1(1− y∗)n−⌊ny0⌋ · y.

Next we use the fact that
(
n
i

)
yi(1− y)n−i ≤ 1 for any choice of n, i and y to get

2

(
n

⌊ny0⌋

)
(y∗)⌊ny0⌋−n0−1(1− y∗)n−⌊ny0⌋ · y

=
2
(

n
⌊ny0⌋

)(
n−n0−1

⌊ny0⌋−n0−1

) ( n− n0 − 1

⌊ny0⌋ − n0 − 1

)
(y∗)⌊ny0⌋−n0−1(1− y∗)n−⌊ny0⌋︸ ︷︷ ︸

≤1

· y .

Finally,
2
(

n
⌊ny0⌋

)(
n−n0−1

⌊ny0⌋−n0−1

) = 2
n(n− 1) . . . (n− n0)

⌊ny0⌋(⌊ny0⌋ − 1) . . . (⌊ny0⌋ − n0)
→ 2

yn0+1
0

as n → ∞,

which is a finite constant. Setting

C∗ = max
n>⌈n0+1

y0
⌉

(
2
(

n
⌊ny0⌋

)(
n−n0−1

⌊ny0⌋−n0−1

)) and y1 = min

(
c

C∗ , y
∗,

y0
2− y0

)
ensures (A.7) and thus (A.4).

To prove (A.5), we use the operator J(G; y) = 1 − G(1 − y). We obtain (A.5) by applying J to (A.4),
proving Lemma 2.

Proof. (Theorem 3.) The B̃+
n (G+ϵ; y) ≤ G(y)+2ϵ part of (23) is fairly straightforward. Applying Bn to the

continuous function G+ϵ, uniform convergence guarantees that there exists an nϵ such that for any n > nϵ,

Bn(G+ϵ; y) ≤ G+ϵ(y) + ϵ .

Then for any n > nϵ, we have

B̃+
n (G+ϵ; y) = Bn(G+ϵ; y)− ϵ(1− y)n ≤ Bn(G+ϵ; y) ≤ G+ϵ(y) + ϵ ≤ G(y) + 2ϵ .

The main challenge of (23) is the G(y) ≤ B̃+
n (G+ϵ; y) part. Its proof relies on analyzing the behavior

over the intervals [0, ym], [ym, yM ] and [yM , 1] separately for 0 < ym < yM < 1, where Lemma 1 proves the
statement for [0, ym] and we continue with the [yM , 1] interval.
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Using (20), B̃+
n (G+ϵ; y) can be rewritten and estimated as

B̃+
n (G+ϵ; y) =

⌈ŷn⌉−1∑
i=1

(
G

(
i

n

)
+ ϵ

)
bn,i(y) +

n∑
i=⌈ŷn⌉

bn,i(y) ≥
n∑

i=⌈ŷn⌉

bn,i(y) . (A.8)

We apply (A.5) with n0 = nd (where nd is from Theorem 3), y0 = ŷ and

c =
1

2

∣∣∣∣∣ dnd

dynd
G(y)

∣∣∣∣
y=1

∣∣∣∣∣ (A.9)

(where the absolute value is necessary since the sign depends on the parity of nd) to obtain a y2 such that
for any n > ⌈nd+1

y0
⌉,

B̃+
n (G+ϵ; y) ≥ 1− c(1− y)nd ∀y ∈ [y2, 1] .

Choosing c according to (A.9) guarantees

1− c(1− y)nd ≥ G(y)

on some interval [y3, 1], since the first nd − 1 derivatives of both sides are zero and the ndth derivative of
the left-hand side is double of the derivative of the right-hand side at y = 1. Consequently, we can choose

yM = max{y2, y3}

to obtain that for any n ≥ ⌈nd+1
y0

⌉,

B̃+
n (G+ϵ; y) ≥ G(y) ∀y ∈ [yM , 1] . (A.10)

At this point, we have B̃+
n (G+ϵ; y) ≥ G(y) on [0, ym] and also on [yM , 1]; what remains is the interval

[ym, yM ]. Let
δ = min(ϵ, 1−G(yM )) > 0 .

For this δ we have

G+ϵ(y)−G(y) ≥ δ > 0 ∀y ∈ [ym, yM ], (A.11)

because if ŷ ≥ yM then G+ϵ(y)−G(y) = ϵ for ∀y ∈ [ym, yM ], and if ŷ ≤ yM then G+ϵ(y)−G(y) ≥ 1−G(yM )
for ∀y ∈ [ym, yM ].

Due to uniform convergence, there exists an nc such that for any n > nc,

|Bn(G+ϵ; y)−G+ϵ(y)| ≤ δ ∀y ∈ [ym, yM ]; (A.12)

from (A.11) and (A.12) it follows that

Bn(G+ϵ; y) ≥ G(y) ∀y ∈ [ym, yM ] . (A.13)

Putting together (A.1), (A.10) and (A.13), we obtain that

n̂ = max{nϵ, nm,

⌈
nd + 1

y0

⌉
, nc}

is a suitable choice so that, for any n > n̂,

Bn(G+ϵ; y) ≥ G(y) ∀y ∈ [0, 1], (A.14)

proving (23) and Theorem 3.
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