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Abstract— In this paper we consider the problem of collecting
a large amount of data from several different hosts to a single
destination in a wide-area network. Often, due to congestion
conditions, the paths chosen by the network may have poor
throughput. By choosing an alternate route at the application
level, we may be able to obtain substantially faster completion
time. This data collection problem is a non-trivial one because
the issue is not only to avoid congested link(s), but to devise
a coordinated transfer schedule which would afford maximum
possible utilization of available network resources. In this pa-
per we present an approach for computing coordinated data
collection schedules, which can result in significant performance
improvements. We make no assumptions about knowledge of the
topology of the network or the capacity available on individual
links of the network, i.e., we only use end-to-end information.
Finally, we also study the shortcomings of this approach in terms
of the gap between the theoretical formulation and the resulting
data transfers in wide-area networks. In general, our approach
can be used for solving arbitrary data movement problems
over the Internet. We use the Bistro platform to illustrate one
application of our techniques.

Keywords: System design, Simulations, Graph theory.

I. INTRODUCTION

Large-scale data collection problems or uploads correspond
to a set of important applications. These applications include
online submission of income tax forms, submission of papers
to conferences, submission of proposals to granting agencies,
Internet-based storage, and many more. In the past, much
research has focused on downloads or data dissemination
applications; in contrast, large-scale wide-area uploads have
largely been neglected. However, upload applications are likely
to become significant contributors to Internet traffic in the
near future, as digital government programs as well as other
large scale data transfer applications take advantage of the

proliferation of the Internet in society and industry. For in-
stance, consider the online submission of income tax forms.
US Congress has mandated that

�����
of tax returns should be

filed electronically by 2007. With (on the order of) �
���

million
individual tax returns (alone) filed in US yearly, where each
return is on the order of � ��� KBytes [21], scalability issues
are a major concern, since the data involved is on the order
of terabytes.

Recently, we proposed a scalable and secure application-
level architecture for wide-area upload applications [4]. This
upload architecture is termed Bistro, and hosts which partic-
ipate in this architecture are termed bistros. Given a large
number of clients that need to upload their data to a given
destination server, Bistro breaks the upload process into three
steps: (1) a timestamp step which provides bit-commitment
[32] as well as ensures that the data is submitted on-time,
for applications with deadlines, all without having to actually
transfer the data, (2) a data transfer step, where clients push
their data to intermediate hosts (bistros), which ensures fast
response time for the clients, and (3) a data collection step,
where a destination server (termed destination bistro) pulls
data from bistros, i.e., the destination server determines how
and when the data is transferred from the bistros. We note
that during step (2) receipts corresponding to clients’ transfers
are sent by the (intermediate) bistros to the destination bistro;
hence the destination bistro knows where to find all the data
which needs to be collected during step (3). Performance of
the third step, i.e., large-scale data collection from multiple
source hosts to a destination server, is the topic of this paper.
We note that in this context there are no deadline issues, as
any deadlines associated with an upload application are taken
care of in step (1) above.



We focus on application-level approaches to improving
performance of large-scale data collection. We do this in the
context of the Bistro upload framework. However, one could
consider other applications where such improvements in data
transfer times is an important problem. One example is high-
performance computing applications where large amounts of
data need to be transferred from one or more data repositories
to one or more destinations, where computation on that data is
performed [13]. Another example is data mining applications
where large amounts of data may need to be transferred to a
particular server for analysis purposes.

Consequently, our data collection problem can be stated as:
Given

a set of source hosts, the amount of data to
be collected from each host, and a common
destination host for the data

our goal is to

construct a data transfer schedule which speci-
fies on which path, in what order, and at what
time should each “piece” of data be transferred
to the destination host

where the objective is to

minimize the time it takes to collect all data
from the source hosts, usually referred to as
makespan.

Since we are focusing on application-level solutions, a path
(above) is defined as a sequence of hosts, where the first host
on the path is the source of the data, intermediate hosts are
other bistros (hosts) in the system, and the last host on the
path is the destination host. The transfer of data between any
pair of hosts is performed over TCP/IP, i.e., the path the data
takes between any pair of hosts is determined by IP routing.

We note that the choice of the makespan metric is dictated
by the applications stated above, i.e., there are no clients in the
data collection problem and hence metrics that are concerned
with interactive response time (such as mean transfer times)
are not of as much interest here. Since the above mentioned
applications usually process the collected data, the total time
it takes to collect it (or some large fraction of it) is of greater
significance. Note, however, that our problem formulation
(below) is versatile enough that we can optimize for other
metrics (if desired), e.g., mean transfer times. We also note that
we do not require a distributed algorithm for the above stated
problem since Bistro employs a server pull approach, with all
information needed to solve the data collection problem avail-
able at the destination server. Also not all hosts participating
in the data transfer need to be sources of data; this does not
change the formulation of our problem since such hosts can
simply be treated as sources with zero amount of data to send
to the destination. In the remainder of the paper we use the
terms hosts, bistros, and nodes interchangeably.

There are, of course, simple approaches to solving the data
collection problem; for instance: (a) transfer the data from
all source hosts to the destination host in parallel, or (b)
transfer the data from the source hosts to the destination

host sequentially in some order, or (c) transfer the data in
parallel from a subset of source hosts at some specific time
and possibly during a predetermined time slot, as well as other
variants (refer to Section V for details). We refer to these
methods as direct, since they send data directly from the source
hosts to the destination host.

However, long transfer times between one or more of the
hosts and the destination server can significantly prolong
the amount of time it takes to complete a large-scale data
collection process. Such long transfer times can be the result
of poor connectivity between a pair of hosts, or it can be
due to wide-area network congestion conditions, e.g., due to
having to transfer data over one or more peering points whose
congestion is often cited as cause of delay in wide-area data
transfers [26]. Given the current state of IP routing, congestion
conditions may not necessarily result in a change of routes
between a pair of hosts, even if alternate routes exist.

An approach to dealing with such congestion problems
might be to use application-level re-routing techniques (refer
to Section II for details). Most such techniques use “best”-path
type rerouting, i.e., data from a source host is transferred over
the “best” application level path to the destination host, where
the path is determined independently for each source host.

However, we believe that in the case of a large-scale data
collection problem, the issue is not only to avoid congested
link(s), but to devise a coordinated transfer schedule which
would afford maximum possible utilization of available net-
work resources between multiple sources and the destination.
(We formulate this notion more formally below.) Conse-
quently, our focus in this work is on development of algo-
rithms for coordinated data transfers in large-scale data collec-
tion applications. In contrast, we refer to the application-level
re-routing techniques (mentioned above) as non-coordinated
methods.

Given the above stated data collection problem, additional
possible constraints include (a) ability to split chunks of data
into smaller pieces, (b) ability to merge chunks of data into
larger pieces, and (c) storage related constraints at the hosts.
To focus the discussion, we consider the following constraints.
For each chunk of data we allow (a) and (b) to be performed
only by the source host of that data and the destination
host. We also do not place storage constraints on hosts but
rather explore storage requirements as one of the performance
metrics.

We note that a more general problem where there are
multiple destination hosts is also of importance, e.g., in the
income tax forms submission application, IRS might want the
data to be delivered to multiple processing centers. Although
in this paper we present our methodology in the context of
a single destination, for ease of exposition, we can solve
the multi-destination problem as well (by employing either
multicommodity flow algorithms [1], or a single commodity
min-cost flow algorithm, as in Section III, depending on the
requirements). In other words, there is nothing about our
approach that would fail for the case of multiple destinations
for different pieces of data.



Our contributions are as follows. We propose coordinated
data transfer algorithms for the large-scale data collection
problem defined above, intended for an IP-type network. We
evaluate the performance of these algorithms in a simulation
setting (using ns2 [20]). We show that coordinated methods
can result in significant performance improvements. These
improvements are achieved under low storage requirement
overheads and without significant detrimental effects on other
network traffic.

II. RELATED WORK

As stated in Section I, in this paper we focus on algorithms
for large-scale data transfers over wide-area networks, in the
context of upload applications. To the best of our knowledge,
Bistro [4] is the only application-level framework for large-
scale upload applications existing to date. Hence, we do this
work in the context of Bistro, although as noted above, other
types of applications can benefit as well.

Although some works exist on multipoint-to-point aggre-
gation mechanisms at the IP layer [3], [5], such solutions
have focused on reduction of overheads due to small packets
(e.g., ACKs) and usually require the use of an active networks
framework which is not currently widely deployed over the
public Internet.

Another approach is application-level re-routing, which is
used to improve end-to-end performance, or provide efficient
fault detection and recovery for wide-area applications. For
instance, in [31] the authors perform a measurement-based
study of comparing end-to-end round-trip time, loss rate, and
bandwidth of default routing vs alternate path routing. Their
results show that in � � � to

��� �
of the cases, there is an

alternate path with significantly superior quality. Their work
provides evidence for existence of alternate paths which can
outperform default Internet paths.

Other frameworks or architectures which consider re-routing
issues include Detour [30] and RON [2]. The Detour frame-
work [30] is an informed transport protocol. It uses sharing
of congestion information between hosts to provide a better
“detour path” (via another node) for applications to improve
the performance of each flow and the overall efficiency of the
network. Detour routers are interconnected by tunnels (i.e., a
virtual point-to-point link); hence Detour is an in-kernel IP-
in-IP packet encapsulation and routing architecture designed
to support alternate-path routing. This work also provides
evidence of potential long-term benefits of “detouring” packets
via another node by comparing the long-term average proper-
ties of detoured paths against default Internet paths.

The Resilient Overlay Network (RON) [2] is an architecture
allowing distributed Internet applications to detect failure of
paths (and periods of degraded performance) and recover fairly
quickly by routing data through other (than source and desti-
nation) hosts. It also provides a framework for implementing
expressive routing policies.

The above mentioned re-routing schemes focus on ar-
chitectures, protocols, and mechanisms for accomplishing

application-level re-routing through the use of overlay net-
works. They provide evidence that such approaches can result
in significant performance benefits. We consider a similar
environment (i.e., application-level techniques in an IP-type
wide-area network). However, an important distinction is that
the above mentioned works do not consider coordination of
multiple data transfers. All data transfers are treated inde-
pendently, and each takes the “best” application-level route
available. We refer to such techniques as “non-coordinated”
data transfers. In contrast, our goal is to construct application-
level coordinated data transfers. In [8] we perform an initial
performance study to illustrate potential benefits of coordi-
nated transfers over non-coordinated ones, with respect to
performance and robustness under inaccuracies in network
bandwidth estimation, i.e., when actual available bandwidth
deviates from its estimate by significant amount (e.g., 70%).
In this paper we focus on the coordinated data collection
algorithms and their performance in comparison to a number
of direct methods (detailed in Section V) as well as non-
coordinated methods (for completeness).

Lastly, we note that it is not the purpose of this work to
propose novel techniques for identifying congestion conditions
or determining available or bottleneck link capacities. Rather,
we do this work under the assumption that in the future such
information will be provided by other Internet services, e.g.,
as in [14], [28], [34].

III. GRAPH THEORETIC FORMULATION

In general, the network topology can be described by a
graph �������	�
�������� , with two types of nodes, namely end-
hosts and routers, and a capacity function � which specifies the
capacity on the links in the network. The sources ���������������
and the destination host � are a subset of the end-hosts.
The example of Figure 1(a) illustrates the potential benefits
of a coordinated approach. Here, some chunk of data can be
transferred between ��� and � , while another is transferred, in
parallel, between ��� and � � (as staging for the final transfer
from � � to � ). These two transfers would not interfere with
each other while attempting to reduce the makespan metric by
utilizing different resources in the network in parallel.

Note that, our algorithm (below) does not know either
the topology of the network or the capacity function. In
addition, background traffic exists, which affects the available
bandwidth on the links. Hence, we model the network by
an overlay graph consisting of the set of source hosts and
a destination host. (For ease of presentation below we discuss
our methodology in the context of source hosts and destination
host; however, any end-host can be part of the overlay graph,
if it is participating in the Bistro architecture. In that case,
the node corresponding to this host would simply have zero
amount of data to send in the exposition below.) We refer to
the overlay graph as ��� �!�"�#���$��%� . The overlay graph is a
directed (complete) graph where �&�!�(')� � �������*�+� �-,/. ')� , .
(See Figure 1(b) for an example corresponding to Figure 1(a);
outgoing edges from � are not shown since they are never
used.) The capacity function in � � models available capacity



��� on each edge and is assigned as the bandwidth that is
available for data transfer between end-hosts. (This takes into
account the background traffic, but not any traffic that we are
injecting into the network for the movement of data from
the sources to the destination.) In other words, this is the
bandwidth that is available to us on the path which the network
provides us in the graph � � , subject to the background traffic.
Since we may not know the underlying topology or the routes
that the paths take, we may not be able to properly model
conflicts between flows. In other words, node � � may not
simultaneously be able to send data at rate 1 to each of �
and � � since the paths that are provided by the network share
a congested link and compete for bandwidth. Such knowledge
(if available) could be used to specify a capacity function on
sets of edges, and one could use Linear Programming [9] to
obtain an optimal flow under those constraints.
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Fig. 1. Network topology and a corresponding overlay graph.

From the overlay graph � � we construct a “time-expanded”
graph ����� [12], [17] (see Figure 2) which is the graph that
our algorithm will use for computing a schedule to route the
data from the sources to the destination. Given a non-negative
integer

� � , we construct this graph as follows: for each node
� in � � we create a set of

� �	� � vertices � ��
 � for 
 �� ����� � � and a virtual destination � � in ��� � . We pick a unit of
time � (refer to Section VI for the choice of � ) and for each
edge � � �� � in ��� , add, for all 
 , edges in � � � from � ��
 � to
&��
 � �)� with capacity ������� � � �� � . (For example, suppose we
have available capacity from � and  of � � Kbps and define
� to be � seconds. Then, we can transfer � � Kb of data from
� to  in “one unit of time”.) Thus, the capacity of the edge
from � ��
 � to  ��
 � � � models the amount of data that can be
transferred from � to  in one unit of time. We will discuss
the discrepancies between the model and a TCP/IP network
in Section IV. In addition, we have edges from � ��
 � to the
virtual destination ��� , and edges from � � � � to � ��
 � which are
referred to as the “holdover” edges. The latter just corresponds
to keeping the data at that node without sending it anywhere.

We first define the min-cost flow problem [1]: given a graph
in which each edge has a capacity and a unit transportation
cost, some vertices are supply nodes supplying flows, some are
demand nodes demanding flows, while the total supply equals
to the total demand. We want to satisfy all demands, in the
cheapest possible way, by some flows from the supply nodes.
We use Goldberg’s code [15], [16] to find an optimal flow

efficiently. We now define a min-cost flow instance on ����� :
let the supply of �	� � � � be the amount of data to be collected
from the source host �	� , and the demand of � � be the total
supply. Figure 1(b) shows ��� , ��� , and ��� units of data have to
be collected from � � , � � , and � � , respectively, and the total
demand of � � is � � units. We define the cost of each edge
later. Note that by disallowing edges from � ��
 � to � ��
 � �)� for

�� �

, we hold flow at the source nodes until it is ready to
be shipped. In other words, flow is sent from � � � � � to � � � � �
and then to � � ��� � , rather than from ���-� � � to � � � �)� to � � ��� �
(which is not allowed since there is no edge from � � � � � to
� � ��� � ). This has the advantage that the storage required at the
intermediate nodes is lower. Hoppe and Tardos [18] argue that
allowing edges of the form � ��
 � to � ��
 � � � does not decrease
the minimum value of � (i.e., makespan).
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Fig. 2. Time-expanded graph �! with "$#&% .

Our first goal then is to compute the minimum value of
� �

such that we can route all the data to the destination � � in � ��� ,
because, with respect to our flow abstraction, the makespan
time of our algorithm is

� � . Suppose the minimum value of� � is
�

, we can find it in ' ��(*),+ � � time by doing a doubling
search, followed by a binary search once we find an interval
that contains the minimum

�
for which a feasible solution

exists. In other words, we test sequentially if a feasible flow
exists in � ����� � �$�.- ��� � � until we find a minimum

�./
such that

a feasible flow exists in ���10 but not in � � 032$� . Then we can
obtain

�
by a binary search in the range

��/54 � � � and
�6/

.
Once we know

�
, we apply min-cost flow algorithm in the

time-expanded graph ��� to obtain an optimal flow solution7 � , e.g., the number on the edge in Figure 2 corresponds to
how much data will be sent by that link at that time, as follows.
First note that there could be several feasible flows in � � that
can route all the data to � � . Imposing unit transportation costs
on edges guides the algorithm to obtain a feasible flow with
certain desirable properties. We associate a cost of 8 �:9 8 �;�
� � � � �� � with every transfer edge � ��
 � to  ��
 � � � , where 8 � and
8 � are constants and 8 �;<=8 � < � . Thus, our solution would
prefer sending data over high capacity links if two solutions



have the same total number of transfers. This also provides a
more regular pattern in the flow solution. To every holdover
edge � � � � to � ��
 � , we assign a cost of 
 . This ensures that
data is sent as soon as possible. In other words, among all
feasible flows, we prefer the ones with the property that the
data arrives earlier at � � . Lastly, the cost is

�
for all other

edges. Modifications to this cost function can be made if other
properties are desired (e.g., based on network and/or protocol
characteristics).

The min-cost flow algorithm runs in ' ��� ��� ( ) +�� 8�� , where
� , � , and 8 are the number of vertices, the number of edges,
and the maximum capacity of a link, in the network flow
graph, respectively. If we have

�
bistros, then � �(� � � � � � ,� � � � � � � � � � 9 �)� 4 � , and 8 � (maximum amount of

data that can be sent in one time unit) / (data unit size).
Thus, the total running time (in worst case) of our algorithm
is ' � � � � - ��( ) + � � 8%�*��(*),+ � � � . In our experiments, the entire
computation takes on the order of a few seconds on a Pentium
III 650 MHz, and typical values of

�
,
�
, and 8 are 150, 8,

and 30, respectively. Moreover, in our problem
�

is not large
so it is feasible to build the entire time-expanded graph and
run a min-cost flow algorithm on it. Otherwise, one could use
other algorithms (see Hoppe and Tardos [17], [18]) which run
in polynomial time rather than pseudo-polynomial time.

Note that in our formulation, we compute the capacity
function once initially (refer to Section VI), to estimate the
available capacity between pairs of hosts. We then assume
this to be the available bandwidth for the entire duration of the
transfer. Of course, if the transfer is going to take a long time,
we cannot assume that the network conditions are static. In
this case, we can always compute a new estimate of available
bandwidth during the scheduling of the transfer and compute
a new transfer schedule for the remaining data. (Our algorithm
itself is very fast, and so this does not cause a problem even if
the current transfer is stopped, and the schedule is changed.)
In fact, the algorithm itself can detect when transfer times
are not behaving as predicted and compute a new estimate of
capacities. Such adaptation to changing network conditions is
an ongoing effort. Also note that our algorithm is not compli-
cated to implement since we are working at the application
layer, where we only need to control the route within the
overlay network without any changes to the network protocols
(such as IP or TCP). We also note that for ease of exposition,
we do not explicitly include I/O bandwidth constraints in our
formulation; however, this can easily be included in capacity
constraints within the same graph-theoretic formulation. We do
not include this in our experiments (below) as currently, I/O
bandwidth is not the bottleneck resource in our application.
Lastly, the formulation above is quite robust and we can use
it to model situations where data may be available at different
sources at different times.
Remark: An alternative approach might be to use the overlay
graph, ��� , to compute the “best” path in ��� from each host
to the destination, independently, e.g., � � may choose the path
�"� � �$� � ��� � since it is the maximum capacity path to � , and
send all of its data along this path. This would correspond

to the non-coordinated approach, and hence, our coordinated
approach formulation includes the non-coordinated approach
as a special case. However, this option does not permit for
(a) any coordination between transfers from different source
hosts, (b) explicit load balancing, as each node makes an
independent decision as to which route to send the data on,
and (c) maximum possible utilization of available network
resources between a source and the destination. More formally,
in our time-expanded graph, the non-coordinated method cor-
responds to a feasible flow in a graph � ��� for some

� � . Note
that

� �	� �
where

�
is the minimum value obtained by our

algorithm, which allows for sending of data along multiple
paths between a source and the destination. In fact, by sending
the data along several paths, our algorithm obtains a better
solution than the non-coordinated method. This difference
becomes especially significant, if several good application
level routes exist, but non-coordinated methods send their
data along the “best” path, thus causing congestion along this
path. In this paper, we show that the coordinated approach
performance significantly better (refer to Section VI).

IV. TRANSFER SCHEDULE CONSTRUCTION

What remains is to construct a data transfer schedule,7 � (defined as the goal of our data collection problem in
Section I), from the flow function

7 � computed in Section
III, while taking into consideration characteristics of wide-area
networks such as the TCP/IP protocol used to transfer the data.
This conversion is non-trivial partly due to the discrepancies
between the graph theoretic abstraction used in Section III and
the way a TCP/IP network works. (Below we assume that each
data transfer is done using a TCP connection.)

One such discrepancy is the lack of variance in data transfers
in the graph theoretic formulation, i.e., a transfer of 
 units of
data always takes a fixed amount of time over a particular link.
This is not the case for data transferred over TCP in a wide-
area network, partly due to congestion characteristics at the
time of transfer and partly due to TCP’s congestion avoidance
mechanisms (e.g., decreases in sending rate when losses
are encountered). Another discrepancy in the graph theoretic
formulation is that it does not matter (from the solution’s point
of view) whether the 
 units are transferred as a single flow, or
as multiple flows in parallel, or as multiple flows in sequence.
However, all these factors affect the makespan metric when
transferring data over TCP/IP. Again, these distinctions are
partly due to TCP’s congestion avoidance mechanisms.

Thus, we believe that the following factors should be
considered in constructing

7 � , given
7 � : (a) size of each

transfer, (b) parallelism in flows between a pair of hosts, (c)
data split and merge constraints, and (d) synchronization of
flows. In this paper, we propose several different techniques
for constructing

7 � from
7 � , which differ in how they address

issues (a) and (d). We first give a more detailed explanation of
these issues and then describe our techniques. Note that, we
use the term “transfer” to mean the data transferred between
two hosts during a single TCP connection.



Size of each transfer.
If the size of each transfer is “too large” we could un-
necessarily increase makespan due to lack of pipelining in
transferring the data along the path from source to destination
(in other words, increased delay in each stage of application-
level routing). For example, suppose

7 � dictates a transfer
of �

���
units of data from node ��� to � � to � . � � does

not start sending data to � until all �
���

units of data from
� � have arrived. If the size of each transfer is �

�
units, � �

can start sending some data to � after the first �
�

units of
data have arrived. On the other hand, if the size of each
data transfer is “too small” then the overheads of establishing
a connection and the time spent in TCP’s slow start could
contribute significantly to makespan.

In this work, we address the “too small” problem as follows:
we ensure that each transfer is of a reasonably large size by
carefully picking the time unit and data unit size parameters
in the graph construction step (refer to Section VI for details).
Second, we can provide a mechanism for merging data trans-
fers which are deemed “too small” (we omit this approach due
to lack of space; please refer to [7]). The “too large” problem
is addressed by a proper choice of the time unit parameter
(see Section VI).
Parallelism between flows.
One could try to obtain a greater share of a bottleneck link
for an application by transferring its data, between a pair of
hosts, over multiple parallel TCP connections. However, we
do not explore this option here, mainly because it is not as
useful (based on our simulation experiments) in illustrating the
difference between the data collection methods since all these
methods can benefit from this. In fact, we made a comparison
between a direct method employing parallel connections and
our coordinated methods without parallel connections, and the
coordinated methods could still achieve better performance.
Data split and merge constraints.
The

7 � solution allows for arbitrary (although discrete) split-
ting and merging of data being transferred. However, in a real
implementation, such splitting and merging (of data which
represents uploads coming from many different clients) can
be costly. For instance, in the income tax submission forms
example, if we were to arbitrarily split a user’s income tax
forms along the data transfer path, we would need to include
some meta-data which would allow piecing it back together
at the destination server. Since there is a cost associated with
splitting and merging of data, in this paper we allow it only
at the source of that data and the destination. To ensure
this constraint is met, the first step in our

7 � construction
techniques is to decompose

7 � into flow paths (see details
below).

Evaluation of potential additional benefits of splitting and
merging is ongoing work. For instance, if we do not want to
allow any splitting of the data, we could consider formulating
the problem as an unsplittable flow problem. Unfortunately,
unsplittable flow problems are NP-complete [24]. Good heuris-
tics for these have been developed recently, and could be used
[10].

Synchronization of flows.
The

7 � solution essentially synchronizes all the data transfers
on a per time step basis, which leads to proper utilization of
link capacities. This synchronization comes for free given our
graph theoretic formulation of the data collection problem.
However, in a real network, such synchronization will not
occur naturally. In general, we could implement some form
of synchronization in data transfers at the cost of additional,
out-of-band, messages between bistros. Since the Bistro archi-
tecture employs a server pull of the data, this is a reasonable
approach, assuming that some form of synchronization is
beneficial. Thus, in this paper we explore the benefits of
synchronization.
Splitting the flow into paths.
Given that splitting and merging of data is restricted, we now
give details of decomposing

7 � into paths, which is the first
step in constructing

7 � from
7 � . To obtain a path from

7 � , we
traverse the time-expanded graph (based on

7 � ) and construct
a path from the nodes we encounter during the traversal as
follows. We start from a source host which has the smallest
index number. Consider now all hosts that receive non-zero
flows from it. Among those we then choose the one with
the smallest index number, and then proceed to consider all
hosts that receive non-zero flows from it. We continue in
this manner until the virtual destination is reached. The data
transferred over the resulting path � is the maximum amount
of data that can be sent through � (i.e., the minimum of flow
volume over all edges of � ). We note that a path specifies
how a fixed amount of data is transferred from a source to
the destination. For example (in Figure 2), a path can be
specified as �"� � � � �*�$� � � �)� �$� � ��� � �$� � �-� ����� � , which says that
a fixed amount of data is transferred from node � � to node � �
at time � , and then from node � � to the destination � at time
� (and � � is the virtual destination). In fact, for this path the
value of the flow is � .

To split the flow network into paths, we first obtain a
path using the procedure described above. We then subtract
this path from

7 � . We then obtain another path from what
remains of

7 � and continue in this manner until there are no
more flows left in

7 � . At the end of this procedure, we have
decomposed

7 � into a collection of paths. (An example of
this flow decomposition is given under the description of the
PathSync algorithm below and in Figure 3.)
Imposing Synchronization Constraints.
What remains now is to construct a schedule for transferring
the appropriate amounts of data along each path. We propose
the following methods for constructing this schedule which
differ in how they attempt to preserve the time synchronization
information produced by the time-expanded graph solution.
The PathSync Method.
In this method we employ complete synchronization as pre-
scribed by the time-expanded graph solution obtained in
Section III. That is, we first begin all the data transfers which
are supposed to start at time step

�
. We wait for all transfers

belonging to time step
�

to complete before beginning any of
the transfers belonging to time step � , and so on. We continue



in this manner until all data transfers in the last time step are
complete. We term this approach PathSync100 (meaning that
it attempts �

�����
synchronization as dictated by

7 � ).
Recall that the capacity of an edge in the time-expanded

graph is the volume of data that can be sent over it during one
time unit. Since estimates of available capacity may not be ac-
curate (refer to Section VI), and since we may not know which
transfers do or do not share the same bottleneck link (unless,
e.g., we employ techniques in [29]), it is possible, that some
transfers may take a significantly longer time to finish than
dictated by

7 � . Given the strict synchronization rules above,
one or two slow transfers could greatly affect makespan. An
alternative is to synchronize only 
 �

of the transfers. That
is, as long as a certain percentage of the data transfers have
completed, we can begin all the transfers corresponding to
the next time step, except, of course, those that are waiting
for the previous hop on the same path to complete. We term
this alternative PathSyncX where 
 indicates the percentage
of transfers needed to satisfy the synchronization constraints.

An example of PathSync is depicted in Figure 3 which
shows a collection of paths obtained from decomposing

7 � .
At time step

�
, PathSync100 starts the transfer from � � � � � to

� � �)� , � � � � � to � � � �)� , � � � � � to � � � � , and � � � � � to � � � � ,
since all these transfers belong to time step

�
. When all

these transfers have finished, PathSync100 starts the transfers
belonging to time step � , namely � � � � � to � ��� � , ��� � �)� to
� � ��� � , ��� � �)� to � � ��� � , etc.
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Fig. 3. Solution obtained after flow decomposition.

The PathSync method performs quite well (refer to Section
VI), especially when the percentage of transfers that satisfy
the synchronization requirements is a bit lower than ������� .
This is an indication that it is worth while to attempt to
preserve the timing constraints prescribed by the solution of
the time-expanded graph (as long as these benefits are not
subsumed by the harmful effects of potentially high variance
in the transfers). Since synchronization between hosts is not
free in a real implementation, we also consider a method which
does not require it.

The PathDelay Method.
In the PathDelay method we do not attempt synchronization
between transfers once a transfer along a particular path
begins. That is, as long as a particular data transfer along
one hop of a path completes, the transfer of that data begins
along the next hop of that path. The only synchronization
performed in this method is to delay the transfer of that data
from the source node until an appropriate time, as dictated by���

, i.e., no inter-host synchronization is needed. For example,
after the decomposition of

�	�
into paths, there is a path
����
 ����� ���
�� ��� ����
�� ����� 
�� ��� �"!#� of size

�
(see Figure 3). Since

the data is held at the source
��

until time step
�

in
�	�

, we
schedule the

�  
�� � to
� � 
�� � transfer at “real” time

�%$'&
, where&

is our time unit (refer to Section VI).
One could also create variations on PathDelay by expanding

or contracting the time unit, used in computing
� �

, when con-
structing

�	(
, again to account for variance in data transfer in

a real network as compared to the graph theoretic formulation.
For instance, PathDelayX would refer to a variation where the
time unit

&
in

�	�
is modified to be ) &

in
� (

. Due to lack
of space, we do not explore this here further; refer to [7] for
details and description of other methods for constructing

���
from

� (
.

V. DIRECT METHODS

We now give details of the direct methods used (below) for
comparison purposes.

* All-at-once. Data from all source hosts is transferred
simultaneously to the destination server.* One-by-one. The destination server randomly repeatedly
selects one source host from a set of hosts which still
have data to send; all data from that source host is then
transferred to the destination server.* Spread-in-time- +-, . The destination server chooses val-
ues for two parameters: (1) group size ( + ) and (2) time
slot length ( , ). At the beginning of each time slot, the
destination server randomly selects a group (of size + )
and then the data from all source hosts in that group
is transferred to the destination server; these transfers
continue beyond the time slot length , , if necessary. At
the end of a time slot (of length , ), the destination server
selects another group of size + and the transfer of data
from that group begins regardless of whether the data
transfers from the previous time slot have completed or
not.* Concurrent- + . The destination server chooses a group
size ( + ). It then randomly selects + of the source
hosts and begins transfer of data from these hosts. The
destination server always maintains a constant number,
+ , of hosts transferring data, i.e., as soon as one of
these hosts completes its transfer, the destination server
randomly selects another source host and its data transfer
begins.

Clearly, there are a number of other direct methods that
could be constructed as well as variations on the above ones.



However, this set is reasonably representative for us to make
comparisons (in Section VI).

We note, that each of the above methods has its own
shortcomings. For instance, if the bottleneck link is not shared
by all connections, then direct methods which explore some
form of parallelism in data transfer such as the all-at-once
method might be able to better utilize existing resources and
hence perform better than those that do not exploit parallelism.
On the other hand, methods such as all-at-once might result in
worse effects on (perhaps already poor) congestion conditions.
Methods such as concurrent and spread-in-time require proper
choices of parameters and their performance is sensitive to
these choices.

Regardless of the specifics of a direct method, due to
their direct nature, none of them are able to take advantage
of network resources which are available on routes to the
destination server other than the “direct” ones (as dictated
by IP). Coordinated methods proposed in this paper are able
to take advantage of such resources and therefore result in
significantly better performance, as illustrated in Section VI.

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of the various
data transfer methods and illustrate the benefits of using a
coordinated approach. This evaluation is done through simu-
lation; all results are given with at least �,� ��� � � confidence.
Simulation Setup
For all simulation results reported below, we use ns2 [20]
in conjunction with the GT-ITM topology generator [19] to
generate a transit-stub type graph with ���,� nodes for our
network topology. The number of transit domains is � , where
each transit domain has, on the average, � transit nodes
with there being an edge between each pair of nodes with
probability of

� � � . Each node in a transit domain has, on the
average, � stub domains connected to it; there are no additional
transit-stub edges and no additional stub-stub edges. Each stub
domain has, on the average, � nodes with there being an
edge between every pair of nodes with probability of

� � � . A
subset of our simulation topology (i.e., without stub domain
details) is shown in Figure 4. The capacity of a “transit node to
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B0
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A0

A2

link across different
trasnit domains

:

link to stub domain:

transit domain:

transit node:

link within
a transit domain

:

Fig. 4. The simulation topology.

transit node” edge within the same transit domain is � � Mbps.
The capacity of a “transit node to transit node” edge across
different transit domains is � Mbps. The capacity for a “transit
node to stub node” edge or a “stub node to stub node” edge
is � � � Mbps. Our motivation for assigning a lower capacity to

the “transit node to transit node” edge across different transit
domains is to emulate poorer performance conditions that exist
at the peering points [26]. Moreover, we linearly scale the
propagation delay between nodes generated by the GT-ITM
topology generator [19] such that the maximum round trip
propagation delay in our topology is

���
ms. Note that, the

size and parameters of our network model and the simulation
setup are motivated by what is practical to simulate with ns2
in a reasonable amount of time. However, since our goal is a
relative comparison of the methods, this will suffice.

We locate the destination server in the stub domain con-
nected to � � , and we locate � other bistros in stub domains
connected to other transit nodes. Each bistro holds a total
amount of data which is uniformly distributed between �,�
and � � MBytes with an additional constraint that the total
amount of data in all bistros is � � � MBytes. In addition to
the data collection traffic, we setup

�
to � � � background

traffic flows from nodes attached to transit domain B to
nodes attached to transit domain A. In our experiment, the
ratio of the number of background flows in peering point
(B0,A0) to the number of background flows in peering point
(B1,A1) is 1:3 (asymmetric). We also investigated how the
methods behave under different ratios between the peering
points such as 1:1 (symmetric), 2:1, and 1:2; the results
indicate similar trends, and we do not include them here due
to lack of space. The background traffic pattern is similar to
that in [29]. Each background flow is an infinite FTP with
a probability of

� � � � . Otherwise, it is an on-off CBR UDP
flow. The average on-time and off-time is chosen uniformly
between

� � � and � seconds. The average rate (including the off
periods) is chosen so that the expected total volume of UDP
traffic through a peering point takes up 5% of the capacity
of that point. (Similar trends persist under different volumes
of UDP traffic; we do not include these results due to lack of
space.) To illustrate a reasonably interesting scenario, all nodes
participating in background traffic are located in stub domains
that are different from those holding the bistros participating in
data collection traffic. This choice avoids the non-interesting
cases (for makespan) where a single bistro ends up with
an extremely poor available bandwidth to all other bistros
(including the destination server) and hence dominates the
makespan results (regardless of the data transfer method used).
Construction of Corresponding Graph
We now give details of constructing graph � � of Section
III from the above network. The eight bistros make up the
nodes of � � , with the destination bistro being the destination
node ( � ) and the remaining bistros being the source nodes
( � � ) with corresponding amounts of data to transfer. The link
capacities between any pair of nodes in � � are determined
by estimating the end-to-end mean TCP throughput between
the corresponding bistros in the network. In our experiments
these throughputs are estimated in a separate simulation run,
by measuring the TCP throughput between each pair of bistros
separately while sending a � MByte file between these bistros.
We repeat the measurement 10 times and take the average to
get a better estimation. These measurements are performed



with background traffic conditions corresponding to a partic-
ular experiment of interest but without any data collection
traffic or measurement traffic corresponding to other bistro
pairs. Although a number of different measurement techniques
exist in literature [6], [11], [22], [23], [25], [27], [33], we
use the above one in order to have a reasonably accurate
and simple estimate of congestion conditions for purposes of
comparison of data collection methods. However, we note,
that it is not our intent to advocate particular measurement
and available bandwidth estimation techniques. Rather, we
expect that in the future such information will be provided
by other Internet services, e.g., such as those proposed in
SONAR [28], Internet Distance Map Service (IDMaps) [14],
Network Weather Service (NWS) [34], and so on. Since
these services will be provided for many applications, we do
not consider bandwidth measurement as an overhead of our
application but rather something that can be amortized over
many applications.

In order to construct ��� from � � we need to determine the
time unit and the data unit size. The bigger the time unit is,
the less costly is the computation of the min-cost flow solution
but potentially (a) the less accurate is our abstraction of the
network (due to discretization effects) and (b) the higher is
the potential for large transfer sizes (which in turn contribute
to lack of pipelining effects as discussed in Section IV). The
smaller the time unit is, the greater is the potential for creating
solutions with transfer sizes that are “too small” to be efficient
(as discussed in Section IV). Similarly, the data unit size
should be chosen large enough to avoid creation of small
transfer sizes and small enough to avoid significant errors due
to discretization (as discussed in Section IV).

In the experiments presented here we use a time unit which
is � ��� times bigger than the maximum propagation delay on
the longest path, i.e.,

�
sec. (This choice is motivated by the

fact that in many cases we were not able to run ns simulations
with smaller time units as the resulting number of flows was
too large; a smaller time unit did not present a problem for our
theoretical formulation.) The data unit size is chosen to ensure
that the smallest transfer is large enough to get past the slow
start phase and reach maximum available bandwidth without
congestion conditions. Since without background traffic a
bistro can transmit at a maximum window size of � � � Mbps

� ���
ms (on the longest path), we use a data unit size a bit

larger than that, specifically � � KBytes.
Performance Metrics.
The performance metrics used in the remainder of this section
are: (a) makespan, i.e., the time needed to complete trans-
fer of total amount of data from all bistros, (b) maximum
storage requirements averaged over all bistros (not including
the destination bistro since it must collect all the data), and
(c) mean throughput of background traffic during the data
collection process, i.e., we also consider the effect of data
collection traffic on other network traffic. We believe that these
metrics reflect the quality-of-service characteristics that would
be of interest to large-scale data collection applications (refer
to Section I).

Evaluation Under the Makespan Metric.
We first evaluate the direct methods described in Section V
using the makespan metric. As illustrated in Figure 5(a) direct
methods which take advantage of parallelism in data delivery
(such as all-at-once) perform better under our simulation
setup. Intuitively, this can be explained as follows. Given
the makespan metric, the slowest bistro to destination server
transfer dominates the makespan metric. Since in our case,
the bottleneck which determines the slowest transfer in direct
methods is not shared by all bistros, it makes intuitive sense to
transfer as much data as possible, through bottlenecks which
are different from the one used by the slowest transfer, in
parallel with the slowest transfer.

Since all-at-once is a simple method and it performs better
than or as well as any of the other direct methods described
in Section V under the makespan metric in our experiments,
we now compare just the all-at-once method to our coor-
dinated methods. We include non-coordinated methods in
this comparison for completeness (refer to [8] for details).
This comparison is illustrated in Figure 5(b) where we can
make the following observations. All schemes give comparable
performance when there is no other traffic in the network
(this makes intuitive sense since the capacity near the server
is the limiting resource in this case). When there is con-
gestion in the network and some bistros have significantly
better connections to the destination server than others, our
coordinated methods result in a significant improvement in
performance, especially as this congestion (due to other traffic
in the network) increases. For instance, in Figure 5(b), using
PathSync95 we observe improvements (compared to direct
methods) from � � � times under � � background flows to � � �
times when the background traffic is sufficiently high (in this
case at ��� � flows). PathSync95 is � � � times better than the
non-coordinated method under ��� � flows.

As shown in Figure 5(b), enforcing full synchronization (as
in PathSync100) can be harmful which is not surprising since
a single slow stream can lead to (a) significant increases in
overall data collection time (although nowhere as significant
as the use of direct methods) and (b) increased sensitivity to
capacity function estimates and parameter choices in � � and
��� . We can observe (a), for instance, by comparing the overall
performance of PathSync100 and PathSync95 in Figure 5(b).
Regarding (b), intuitively, overestimating the capacity of a link
may result in sending too much data in one time slot in a
particular transfer in our schedule, which may delay the whole
schedule as we fully synchronize all transfers (refer to [7] for
details).

We note that if the packet size of the background traffic
at the time the capacity estimations were done is different
from those at the time the data is collected, PathSync100
performed anywhere from almost identically to two times
worse; this is another indication that it is sensitive to capacity
function estimates. We also tried modifications to data unit
size (during the discretization step in constructing � � and
��� ) and observed similar effects on PathSync100, for reasons
similar to those given above. (We do not include these graphs
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Fig. 5. Direct, Non-coordinated, and Coordinated Methods under the Makespan Metric.

here due to lack of space).

Above observations raise another question, which is how
much synchronization is really needed in the data collection
schedule. By comparing PathDelay with PathSync (and its
variants) one might say that ensuring that transfers are ini-
tiated at the appropriate times (and then not synchronizing
them along the way) is sufficient, since PathDelay performs
pretty well in the experiments of Figure 5(b). However, the
experiments in this figure are relatively small scale and hence
have relatively few hops in the paths constructed from

7 � .
Other experiments indicate that as the number of hops on a
path (in ��� ) increases, PathDelay begins to suffer from getting
out of sync with the schedule computed in

7 � and performs
much worse than PathSync95, for instance. (We do not include
these figures due to lack of space.)

Remark: One question might be whether the notion of simply
assigning time slots (to bistros) during which to transfer data
directly to the destination server is a reasonable approach.
Since this is essentially the idea behind direct methods such as
spread-in-time, and since they performed significantly worse
than the coordinated methods in the experiments illustrated
above, we believe that such methods do not lead to sufficiently
good solutions.

Evaluation Under the Storage Metric.
Next, we evaluate the different methods with respect to the
storage requirements metric. We note that the direct methods
do not require additional storage, i.e., beyond what is occupied
by the original data itself. In contrast, non-coordinated and
coordinated methods do, in general, require additional storage,
since each bistro might have to store not only its own data
but also the data being re-routed through it to the destination
server.

Figure 6 illustrates the normalized maximum per bistro
storage requirements, averaged over all bistros (other than the
destination), of the non-coordinated and coordinated methods
as a function of increasing congestion conditions. These
storage requirements are normalized by those of the direct
methods. We use the direct methods as a baseline since they
represent the inherent storage requirements of the problem as
noted above. As can be seen from this figure, the additional
storage requirements of our coordinated algorithms are small.
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In all experiments performed by us, storage overheads of
all PathSync variations were no more than

���
. PathDelay

resulted in storage overheads of no more than � ��� (this
makes sense since greater storage is needed when less stringent
flow synchronization is used). We believe these are reasonable
given the above improvements in overall data collection times
(and, also given the current storage costs). Note that the storage
requirement of the non-coordinated method is high because
multiple data flows from different source hosts may be re-
routed to the same intermediate host at the same time.
Evaluation Under the Throughput Metric.
We also evaluate the non-coordinated and coordinated methods
under the normalized mean throughput metric, i.e., their effect
on the throughput of the background traffic which represents
other traffic in the network. The results are normalized by the
throughput achieved by the background FTP traffic without
presence of the data collection traffic.

We first evaluate the throughput of the direct methods.
As illustrated in Figure 7(a), the one-by-one method allows
for the highest background traffic throughput. This is not
surprising, since one-by-one is the most conservative direct
method in the sense that it injects the data collection traffic
into the network one flow at a time. As can be seen in Figure
7(b), the non-coordinated and coordinated methods result in
lower background traffic throughput, but not significantly. The
largest difference we observed was no more than ��� � (for
coordinated and non-coordinated methods). This, of course,
is not surprising since the coordinated and non-coordinated
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Fig. 7. Direct, Non-coordinated, and Coordinated Methods under the Throughput Metric.

methods are more aggressive than direct methods in taking
advantage of bandwidth available in the network. We believe
that this is an indication that they are taking such advantage
without significant adverse effects on other traffic in the
network.

VII. CONCLUSIONS

In this paper we proposed coordinated data transfer algo-
rithms for the large-scale data collection problem and showed
that coordinated methods can result in significant performance
improvements as compared to direct and non-coordinated
methods. We used a network flow based solution, utilizing
time-expanded graphs, which gave us an optimal data transfer
schedule with respect to the makespan metric, given the
constraints on knowledge of the topology and capacity of the
network. Experimentally, we have established that the lack of
knowledge of the paths provided by the network to send data,
are not a significant barrier. Of course, the more we know
about the available capacity and paths chosen by the network,
the better potentially our modeling can be.
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