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Various sensor network measurement studies have reported instances of transient faults in sensor
readings. In this work, we seek to answer a simple question: How often are such faults observed in
real deployments? We focus on three types of transient faults, caused by faulty sensor readings that
appear abnormal. To understand the prevalence of such faults, we first explore and characterize
four qualitatively different classes of fault detection methods. Rule-based methods leverage domain
knowledge to develop heuristic rules for detecting and identifying faults. Estimation methods
predict “normal” sensor behavior by leveraging sensor correlations, flagging anomalous sensor
readings as faults. Time series analysis based methods start with an a priori model for sensor
readings. A sensor measurement is compared against its predicted value computed using time
series forecasting to determine if it is faulty. Learning-based methods infer a model for the
“normal” sensor readings using training data, and then statistically detect and identify classes of
faults.

We find that these four classes of methods sit at different points on the accuracy/robustness
spectrum. Rule-based methods can be highly accurate, but their accuracy depends critically on
the choice of parameters. Learning methods can be cumbersome to train, but can accurately
detect and classify faults. Estimation methods are accurate, but cannot classify faults. Time
series analysis based methods are more effective for detecting short duration faults than long
duration ones, and incur more false positives than the other methods. We apply these techniques
to four real-world sensor data sets and find that the prevalence of faults as well as their type varies
with data sets. All four methods are qualitatively consistent in identifying sensor faults, lending
credence to our observations. Our work is a first-step towards automated on-line fault detection
and classification.
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1. INTRODUCTION

With the maturation of sensor network software, we are eirgly seeing longer-term
deployments of wireless sensor networks in real mode gettids a result, research at-
tention is now turning towards drawing meaningful scieaiififerences from the collected
data [Tolle et al. 2005]. Before sensor networks can becdieetive replacements for
existing scientific instruments, it is important to ensure uality of the collected data.
Already, several deployments have observed faulty sersatimgs caused by incorrect
hardware design or improper calibration, or by low battemels [Ramanathan et al. 2006;
Tolle et al. 2005; Werner-Allen et al. 2006].

Given these observations, and the realization that it wilifbpossible to always deploy
a perfectly calibrated network of sensors, an importaréaesh direction for the future
will be automated detection, classification, and root-eamsalysis of sensor faults, as well
as techniques that can automatically scrub collected selaga to ensure high quality. A
first step in this direction is an understanding of the preweé of faulty sensor readings in
existing real-world deployments. In this paper, we takéhsustep.

Sensor Data Faults We start by focusing on a small set of sensor faults that baes
observed in real deployments: single-sample spikes se@adings (we call these SHORT
faults, following [Ramanathan et al. 2006]), longer dwatnoisy readings (NOISE faults),
and anomalous constant offset readings (CONSTANT faults).

The three fault types (SHORT faults, NOISE faults, and CONST faults), that we
focus on in this paper, cause the faulty sensor readingsviatderom the normal pattern
exhibited by true (or non-faulty) sensor readings, and ariveld from a “data centric” view
of sensor faults [Ni et al. 2008]. These three fault typeshzaen observed in several real-
world deployments [Ramanathan et al. 2006; Tolle et al. RGO hence, itis important to
understand their prevalence and develop automated ta@mfqr detecting them. Given
these three fault models, our paper makes the three catibribdescribed below.

Before describing our contributions, we note that not alkee data faults fall within the
three fault categories considered in this paper. Ni et dlefNil. 2008] provide examples
of sensor data faults due to calibration errors that carigtehsring the entire deployment.
For example, anffset faultdue to calibration errors causes all the sensor readingff¢o d
from the true value by a constant amount, but the sensornmgaditill exhibit normal
patterns (e.g., a diurnal variation in case of ambient teatpee).

Detection Methods. We first explore four qualitatively different techniques tetecting
such faults from a trace of sensor readings. Our decisioromsider four qualitatively
different fault detection techniques is motivated by thiéofeing two factors. Firstly, our
goal is to explore the space of fault detection techniques dhe suitable for detecting
the class of data faults — SHORT, NOISE, and CONSTANT — exathin this paper.
Secondly, as one might expect, and as we shall see later ipajher, no single method
is perfect for detecting the different types of faults we sider in this paper. Intuitively,
then, it makes sense to explore the space of detection tpesito understand the trade-
offs in detection accuracy versus the robustness to paearnbbices and other design
considerations. This is what we have attempted to do witheretsto the methods that we
have chosen, from among the existing general types of fat#ction methods, and our
choice of qualitatively different approaches exposesthifices in the trade-offs.

All four methods follow a common framework for fault detesti they characterize the
“normal” behavior of sensor readings, and identify sigmificdeviations from this “nor-

ACM Journal Name, Vol. V, No. N, Month 20YY.



mal” as faults. However, in order to facilitate a systematiploration of the space of de-
tection techniques, we choose/design these methods badedrdlifferent types/sources
of information relevant for detecting the SHORT, NOISE ar@NCSTANT data faults. The
four different classes of methods discussed in this pageasifollows.

—Rule-based methoddeveragedomain knowledge about sensor readirtgsdevelop
heuristic rules/constraints that the sensor readings satisty.

—Estimation methodsdefine“normal” sensor behavior by leveragsatial correlation
in measurements at different sensors

—Time series analysis based methodsveragetemporal correlations in measurements
collected by the same sendorestimate the parameters of an (a priori selected) model
for these measurements. A sensor measurement is compaiadtats predicted value,
computed using time series forecasting, to determinesffailty.

—Learning-based methodsnfer a model for the normal and faulty sensor readings using
training datg and then statistically detect and identify classes ot$aul

While all four methods are geared towards automated fawdttien, our design is not fully
automated. In particular, parameter selection (e.g.csptgethe fault detection thresholds
for Rule-based methods) using a combination of domain kedgéd and heuristics (as
summarized in Table 1), requires manual intervention.

While our choice and our design of the four fault detectionhrods is targeted at
SHORT, NOISE, and CONSTANT faults, we discuss extensiotisddstimation method,
the Time series analysis based methods, and the learnsegtimaethods that incorporate
information from multiple sensors co-located on the santer{ter-sensor relationships)
and/or information from sensors attached to different sd@ger-node relationships) in
Section 7. Leveraging these inter-node and inter-sentaifaeships can be useful for de-
tecting data faults not considered in this paper, for examglose caused by calibration
errors [Ni et al. 2008].

Evaluation using injected faults By artificially injecting faults of varying intensity into
sensor data sets, we are able to study the detection perfoerdd these methods. We
find that these methods sit at different points on the acginaaustness spectrum. While
rule-based methods can detect and classify faults, theypeaensitive to the choice of
parameters. By contrast, the estimation method we studyobarate errors in parameter
choices (for example, errors in estimating the correlatietween readings from different
sensor nodes) but relies on spatial correlations and cattasgify faults. Our seasonal
time series model based method exploits temporal coroaksin sensor measurements to
detect faults. It is more accurate and robust at detectingRSHfaults than longer dura-
tion NOISE faults, and incurs more false positives than tteeromethods. However, it
can detect the onset of long duration NOISE and/or CONSTAITt$ accurately; evenin
situations where all the sensor nodes suffer from faultsitaneously. Finally, our learn-
ing method (based on Hidden Markov Models) is cumbersom#lyg@ecause it requires
training, but it can fairly accurately detect and classdylfs. Furthermore, at low fault
intensities, these techniques perform qualitativelyeddhtly: the learning method is able
to detect more NOISE faults but with higher false positiwekile the rule-based method
detects more SHORT faults, with the estimation method'foperance being intermediate.
The time series forecasting based method is able to deteantensity SHORT faults and
short duration NOISE faults but incurs a high false positate. It has a low detection rate
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for long duration NOISE faults. Motivated by the differemrfiprmance of these methods,
we also propose and evaluate hybrid detection techniquashwombine these methods
in ways that can be used to reduce false positives or falsatimeg, whichever is more
important for the application.

Evaluation on Real-World Datasets.Armed with this evaluation, we apply our detection
methods (or, in some cases, a subset thereof) to four raeddhadata sets. The longest of
our data sets spans six months, and the shortest spans on&elayamine the frequency
of occurrence of faults in these real data sets, using a vergle metric: the fraction
of faulty samples in a sensor trace. We find that faults amtively infrequent: often,
SHORT faults occur once in about two days in one of the da&thett we study, and
NOISE faults are even less frequent. However, if a fault isdatected promptly, it can
corrupt a significant fraction of samples — for one data€et33% of samples are affected
by a combination of NOISE and CONSTANT faults across difféneodes. We find no
spatial or temporal correlation among faults. The diffédata sets exhibit different levels
of faults: for example, in a six months-long dataset, les®101% of the samples are
affected by faults, while in another 3-month long datasktses to 20% of the samples
are affected. Finally, we find that our detection methodsiirfelse positives and false
negatives on these data sets, and hybrid methods are neegladihate one or the other.

Our study informs the research on ensuring data qualityn Bveugh we find that faults
are relatively rare, they are not negligibly so, and carefténtion needs to be paid to
engineering the deployment and to analyzing the data. €urtbre, our detection methods
could be used as part of an online fault diagnosis systemwitere corrective steps could
be taken during the data collection process based on thaatitig system’s resulfs.

2. SENSOR FAULTS

In this section, we first visually depict some faults in sensadings observed in real
datasets. These examples are drawn from the same real-datddets that we use to
evaluate prevalence of sensor faults; we describe detailstahese datasets later in the
paper. These examples give the reader visual intuitioni®kinds of faults that occur in
practice, and motivate the fault models we use in this paper.

Figure 1(a) shows readings from a sensor reporting chlgtbpbncentration measure-
ments from a sensor network deployment on lake water. Duaultsfin the analog-to-
digital converter board the sensor starts reporting vadueS times greater than the actual
chlorophyll concentration. Similarly, in Figure 1(b), ooé the samples reported by a
humidity sensor is roughly 3 times the value of the rest ofsuples, resulting in a no-
ticeable spike in the plot. Finally, Figure 2 shows that tagance of the readings from an
accelerometer attached to a MicaZ mote measuring ambiergtion increases when the
voltage supplied to the accelerometer becomes low. In teerade of ground truth values
(as is the case with the data shown in Figures 1 and 2), gtepgaking, the term fault

1A note to the reviewer: A preliminary version of this paper appeared in the Fourth ainEEE Conference

on Sensor, Mesh and Ad Hoc Communications and Networks (SECZIN)/ [Sharma et al. 2007]. Apart
from the material presented in the preliminary version, thismsaript describes and evaluates a time series
forecasting based fault detection method, and analyzes a lawger dataset from the SensorScope deployment.
The SensorScope dataset that we analyzed in [Sharma et @] @itsisted of readings collected over a month
by 31 weather stations, whereas the SensorScope databeteaha Section 5.1 [SensorScope 2006] consists of
readings collected by 64 weather stations over 6 months.
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Fig. 2. NOISE fault: Increase in variance
refers to a deviation from the expected value. Hence, thatsefdults can also be thought
of asanomalies

The faults in sensor readings shown in these figures chamctbe kind of faults we
observed in the four datasets from wireless sensor netwaplogments that we analyze
in this paper. We know of two other sensor network deploysi§falle et al. 2005; Ra-
manathan et al. 2006] that have observed similar faults.

In this paper, we explore the following three fault modelginaded by these examples:

(1) CONSTANT: The sensor reports a constant value for a large number otssive
samples. The reported constant value is either very higleiyrlew compared to the
“normal” sensor readings (Figure 1(a)) and uncorrelatethéounderlying physical
phenomena.

(2) SHORT: A sharp change in the measured value between two succekgagoints
(Figure 1(b)).

(3) NOISE: The variance of the sensor readings increases. Unlike SH@Hts that
affect a single sample at a time, NOISE faults affect a nunobsuccessive samples
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(see Figure 2).

SHORT andNOISE faults were first identified and characterized in [Ramanattaal.
2006] but only for a single dataset. Ni et al. [Ni et al. 200&jegjorize the three fault types
defined above as representing the “data-centric” view afsifiging faults, i.e. these fault
types are defined in terms characteristics of the faulty.data

2.1 What causes sensor faults ?

While it is not always possible to ascertain the root caussdasor faults, several system
(hardware and software) faults have been known to resuéinea faults.

The typical hardware faults that have been observed to carsor faults include dam-
aged sensors, short-circuited connections, low battedycalibration errors. For the sen-
sor faults shown in Figure 1(a), we were able to establishttiey were caused due a
fault in the analog-to-digital converter. Ramanathan efRbmanathan et al. 2006] and
Szewczyk et al. [Szewczyk et al. 2004] identified short dtrconnections as the reason be-
hind abnormally large or small sensor readings resemblH@ST or NOISE faults. Low
battery voltage resulted in a combination of NOISE and CONST faults at temperature
sensors (see Figure 15) during the INTEL Lab, Berkeley depémnt [INTEL 2004]).

A well-known root cause for sensor data faults is calibrajwoblems [Ramanathan
et al. 2006; Ni et al. 2008]. Calibration errors can corrup sensor measurements in
different ways: (i) the measured value can differ from iteetwalue by a constant amount
(Offset fault), (ii) the rate of the measured data can diffem the true/expected rate (Gain
fault), and (iii) the parameters associated with a sensoiggnal calibration formulas may
change during a deployment (Drift fault). Calibration esr@an affect all the samples
collected during a deployment, and the faulty data may est#flibit normal patterns. For
example, ambient temperature measurements affected byfsat €@ult will still exhibit
a diurnal pattern. Without the availability of ground truthlues or a model for expected
sensor behavior, detecting data faults due to calibratimreremains an open problem.
In Section 7, we discuss extensions to our fault detectiothoaks that can be used to
automatically generate a model for expected sensor bahayileveraging spatial corre-
lation across sensor nodes. Bychkovskiy et al. [Bychkgvskial. 2003], and Balzano
and Nowak [Balzano and Nowak 2007] exploit spatial coriefatcross sensor nodes to
develop methods for online sensor calibration that can bd tsrecover from calibration
errors during a deployment, once such an error is detected.

An example of software fault is given in [Ni et al. 2008] whétieet al. identify instances
of SHORT faults due to software errors during communicaéind data logging.

In this paper, our focus is on the prevalence of the SHORT,M)bBnd CONSTANT
data faults and methods for detecting these faults. We datternpt to precisely establish
the root causefor these faults. The reader is referred to [Ni et al. 2008]daletailed
summary of known (system-level) root causes for sensotsfaul

3. DETECTION METHODS

In this paper, we explore and characterize four qualittidgéfferent detection methods
for detecting SHORT, NOISE and CONSTANT faults. As discdsiseSection 1, these
methods leveraging different types/sources of infornmatar fault detection. Rule-based
methods — SHORT and NOISE rules — leveratpenain knowledge about sensor read-
ingsto develop heuristic rules/constraints that the sensatimga must satisfy. The Lin-
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ear Least-Squares Estimation (LLSE) based method defirmemal” sensor behavior by
leveragingspatial correlation in measurements at different sensorbe autoregressive
intergrated moving average (ARIMA) model based time saieslysis methods leverage
temporal correlations in measurements collected by theess@msorto estimate the pa-
rameters of an (a priori selected) model for these measumsmé sensor measurement is
compared against its predicted value, computed using tamessforecasting, to determine
if it is faulty. Finally, the learning-based hidden markowdel (HMM) methodinfers a
model for the normal and faulty sensor readings using tragnilatg and then statistically
detect and identify classes of faults. These methods azided in detail in the rest of
this section. Table | provides a summary of these methodsadakith their variations and
parameters).

3.1 Rule-based (Heuristic) Methods

Ouir first class of detection methods uses two intuitive Istigs for detecting and identify-
ing the fault types described in Section 2.

NOISE Rule: Compute the standard deviation of sample readings withimdaw N. If

it is above a certain threshold, the samples are corruptekebMOISE fault.

To detect CONSTANT faults, we use a slightly modified NOISEe nwhere we classify
the samples as corrupted by CONSTANT faults if the standaxdation is zero. The
window sizeN can be in terms of time or number of samples. Clearly, theop@idince

of this rule depends on the window sikeand the threshold. Determining the best value
for the window sizeN requires domain knowledge, in particular, a good undedstgnof
the normal sensor readings. We discuss a heuristic for selecting tieshibld value later
in this section.

SHORT Rule: Compute the rate of change of the physical phenomenon beinged
(temperature, humidity etc.) between two successive sanplf the rate of change is
above a threshold, it is an instance of a SHORT fault.

For well-understood physical phenomena like temperatumidity etc., the thresholds
for the NOISE and SHORT rules can be set based on domain kdgeleFor example,
[Ramanathan et al. 2006] uses feedback from domain sdemiset a threshold on the
rate of change of chemical concentration in soil.

For automated threshold selection, [Ramanathan et al.]3@0poses the following
technique:

— Histogram based method Divide the time series of sensor readings into groups of
N samples. Plot the histogram of the standard deviationseatie of change observed for
these groups dfl samples. Select one of the modes of the histogram as thétiades

Clearly, if the histogram does not have a (distinct) modentte histogram based method
will fail to select a good threshold. For the NOISE rule, thistBigram method for auto-
mated threshold selection will be most effective when, i ébsence of faults, the his-
togram of standard deviations is uni-modal and sensorsfaifiect the measured values in
such a way that the histogram becomes bi-modal. Howeverathproach is sensitive to
the choice oN; the number of modes in the histogram of standard deviatiepgnds on

N. Figure 3 shows the effect &f on the number of modes in the histogram computed for
sensor measurements taken from a real-world deploymen¥[®8 2005]. The measure-
ments do not contain a sensor fault, but choosing a largesvfaluN (500 or 1000) can
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result in the Histogram method selecting an incorrect tiwles For example, choosing

N = 1000 gives a multi-modal histogram (Figure 3.c); this wadslult in false positives,

if we select one of the two modes greater than 20 as the fagctien threshold. As stated
earlier, selecting the correct value for the parambteequires a good understanding of
the normal sensor readings. In particular, a domain expert would haveuggest that

N = 1000 in our previous example was an unrealistic choice alrpater. In practice, one
should also try a range of values fdrto ensure that the samples flagged as faulty are not
just an artefact of the value selected r

Frequency
Frequency
Frequency

10 15 20 % 30 5 10 15 20 % 0 5 10 15 20 25
Std. Deviation Std. Deviation Std. Deviation

(a) N=100 (b) N=500 (c) N=1000

£} Ed

Fig. 3. Histogram Shape

3.2 An Estimation-Based Method

Is there a method that perhaps requires less domain knogvladgptting parameters? For
physical phenomena like ambient temperature, light etat ¢xhibit a diurnal pattern,
statistical correlations between sensor measurementsesaxploited to generate estimates
for the sensed phenomenon based on the measurements afa@lsanomenon at other
sensors. Regardless of the cause of the statistical ctiorelave can exploit the observed
correlation in a reasonably dense sensor network depldytoetetect anomalous sensor
readings.

More concretely, suppose the temperature values repoytedrsors; ands, are cor-
related. Lef(t,) be the estimate of temperaturesabased on the temperatugereported
by s;. Lett; be the actual temperature value reportedshy If |t; —t1| > &, for some
thresholdd, we classify the reported readifigas erroneous. If the estimation technique is
robust, in the absence of faults, the estimate eftpr(t1|) would be small whereas a fault
of the type SHORT or CONSTANT would cause the reported vadudiffer significantly
from the estimate.

In this paper we consider the Linear Least-Squares Esom@tiLSE) method [Kailath
1977] as the estimation technique of choice. In scalar fthe | LSE equation is

- A
flte) =my + 52 (2 - m,) (1)
2

wherem, andm, are the average temperaturessaiand s, respectively. Ay, is the
covariance between the measurements reportes &gdsy, andA, is the variance of the
measurements reported by
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In the real-world, the value might itself be faulty. In such situations, we can estimate
t1 based on measurements at more than one sensor using the u&toas for the vector
case (a straight forward and well-known generalizatiorhefdcalar form equation).

In general, the information needed for applying the LLSEhndtmay not be available
a priori. In applying the LLSE method to a real-world dataset divide the dataset into a
training set and a test set. We compute the mean and varibeeasor measurements, and
the covariance between sensor measurements based oniihegtoataset and use them
to detect faulty samples in the test dataset. This involveassumption that, in the ab-
sence of faults or external perturbations, the physicahpheenon being sensed does not
change dramatically between the time when the training esdsamples were collected.
We found this assumption to hold for many of the datasets \aé/aed.

Threshold for fault detection: We set the threshold used for detecting faulty samples
based on the LLSE estimation error for the training data¥é. use the following two
heuristics for determining:

— Maximum Error : If the training data has no faulty samples, we candstet be the
maximum estimation error for the training dataset, &e= max{|t; — 1| : t; € TS} where
T Sis set of all samples in the training dataset.

— Confidence Limit: In practice, the training dataset will have faults. If wencaa-
sonably estimate, e.g., from historical information, thecfion of faulty samples in the
training dataset, (say)%, we can sed to be the upper confidence limit of tiig& — p)%
confidence interval for the LLSE estimation errors on thaning dataset.

Actual Readings
LLSE estimate 90

i

Sensor Reading
Estimation Error

UO 2000 4000 6000 8000 10000 2000 4000 600 8000 " 10000
Sample Number Sample Number

(a) LLSE Estimate (b) Estimation Error

Fig. 4. LLSE on NAMOS dataset

Figure 4 is a visual demonstration of the feasibility of LL.Sterived from one of our
datasets. It compares the LLSE estimate of sensor readirgysiagle nodeA based on
the measurements reported by a neighboring i&ydeith the actual readings & The
horizontal line in Figure 4(b) represents the thresldlsing theMaximum Errorcriterion.
The actual sensor data had no SHORT faults and the LLSE metassified only one out
of 11,678 samples as faulty. We return to a more detailed evaluafitLSE-based fault
detection in later sections.

ACM Journal Name, Vol. V, No. N, Month 20YY.



10

Finally, although we have described an estimation-basdtioddhat leverages spatial
correlations, this method can equally well be applied by ¢eWeraging temporal correla-
tions at a single node. By extracting correlations inducgdibrnal variations at a node,
it might be possible to estimate readings, and thereby tifstelts, at that same node. The
method described next presents one approach for explditése temporal correlations for
fault detection.

3.3 A Time Series analysis based Method

Physical phenomena such as temperature, ambient lightexdbit a diurnal pattern. If
these phenomena are measured periodically for a long titeeval (as is the case with
several sensor network deployments), the resulting timiesef measurements by a sen-
sor captures the diurnal pattern as well as other (shoite€)scale temporal correlations.
These temporal correlations can be exploited to constrouidel for the sensor measure-
ments using time series analysis. Time series analysisapalar technique for analyzing
periodically collected data. For example, it is used by hesses to model and forecast
demand for electricity, sale of airline tickets, etc. thehibit temporal correlations like a
diurnal and/or a seasonal pattern [Chatfield 2000].

In this paper, we use a multiplicativ®,1,1)x(0,1,1)s seasonal ARIMA time series
model for fault detection, where the parameteaptures th@eriodic behaviotin the sen-
sor measurement time series; for example, temperatureuna@asnts exhibit similarities
with periods = 24 hours. The multiplicative seasonal model is widely usedriodeling
and forecasting of time series with periodicity [Box et &94]. It can be written explicitly
as,

Z=% 1tz s— % s1+a—0Oa_1—Oa_s+600a_s 1 (2

wherez is the sensor reading aagis a sample drawn from a white noise process at time
t. Equation (2) shows how the model accounts for periodicitydepends not only on
the measurement at tinhe- 1 but also on measurements madane samples in the past,
namely at timeg — s andt —s— 1. For more details on seasonal models, we refer the
interested reader to [Box et al. 1994].

Fault detection using forecasting We used the implementation of maximum likelihood
(ML) computational method (Chapter 7, [Box et al. 1994]) IRSS[SAS ], a commonly
used software package for time series analysis, to estithatevo parameterf) andQ,
of the model using training data. To detect faults in a sensmasurement time series, we
first forecast the sensor measurement at tirbased on our model (using standard time
seriesforecastingtools available in SAS). We then compute the difference betwactual
sensor measurement at titnand its predicted value, and flag the measurement as faulty if
this difference is above a threshaid

We used two different durations of forecasting for faultadsion.

— One-step ahead We forecast the sensor measurement for timel, Z .1, based
on the measurements up to timeWe then compare the measurement at timel, z ., 1,
against its predicted valug, 7 to determine if its faulty.

— L-step ahead Using measurements up to tihewe forecast the values for time
t+i, 1<i<LwithL>1 We then compare the actual measurements for time
1 <i <L against their forecast value. If the difference betweemikasured value and its
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forecast for any sample is greater thiarwe flag that sample as faulty.

One-step ahead forecasting is more suited for detectingRSHfaults. The idea be-
hind L-step ahead forecasting is to detect faults that tasloing durations (for example,
the fault shown in Figure 15). However, the potential erroour forecast grows with
(Chapter 5, [Box et al. 1994]). In order to control false piwes due to erroneous forecast
values, we restridt <s.

Threshold for fault detection: We use two heuristics to determine the threshdltbr
fault detection.

— Forecast Confidence Interval For each sensor measurement in our “test” dataset,
we compute both the forecast value and the 95% confidenawahfer the forecast value.
If a sensor measurement lies outside the 95% confidenceanhfer its forecast value, we
flag that measurement as faulty.
Instead of using a fixed threshaddfor all the measurements, the confidence interval based
heuristic adapts the threshold value dynamically for eaehsurement. If the confidence
interval for the forecast value for a measurement is smadli¢ating that we have a high
confidence that the forecast value represents the true)ydhem the threshold for that
measurement is small. Similarly, if the confidence inteffealthe forecast value for a
measurement is large, then the threshold for that measuatdsiarge.

— Forecast Error: If the sensor measurement time series is monitored canisiy
for a long duration for the presence of faults, we can use iffereince in forecast values
and actual measurements observed in the past to set thibdliréusing the “Confidence
Limit” heuristic described for LLSE based method in Sectio?.

Alternatives to the ARIMA model: The choice of a time series model for sensor mea-
surements is determined by the nature of the phenomenog begasured. For example,
if the sensor measurements do not exhibit periodicity, aoragressive (AR) or a mov-
ing average (MA) (or a combination of the AR and MA models edithe autoregressive
moving average (ARMA) model) would be more appropriate iimetseries analysis. The
model that we use in this work is one of the simplest seasondkfs available. It is possi-
ble that a more complex season model can be a better fit foetims measurement time
series that we analyze in this paper. However, using a mamplex model requires esti-
mating more parameters, and generally, implies a more ctatipoally intensive training
phase requiring a larger training dataset. Our results weigh-world datasets (Section 5)
show that the model that we use in this paper is effectivetattiag faults in a time series
of temperature measurements. The issue of determininigetsiefittime series model for
modeling phenomena such as outdoor temperature and hyrisdibt the focus of our
work.

3.4 A Learning-based Method

For phenomena that may not be spatio-temporally correladdarning-based method
might be more appropriate. For example, if the pattern oftirad” sensor readings and
the effect of sensor faults on the reported readings for sasexre well understood, then we
can use learning-based methods, for example Hidden Marladel (HMMs) and neural

networks, to construct a model for the measurements repbytéhat sensor. In this paper
we chose HMMs because they are a reasonable representdiarong based methods
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that can simultaneously detect and classify sensor faDigermining the most effective
learning based method is outside the scope of this paper.
A Hidden Markov Model (HMM) is characterized by the follovgin

—The number of states in the mod§l,
—The set of possible measuremels,

—For each stats € S, the conditional probability of observing a measuremert O,
P{o]|s}.

—The state transition probabilities = {a;;} wherea;j represents the probability of a
transition to statg from statei.

—The initial state distributiomt = {75} whererz is the probability that the HMM starts in
statei.

Although the states of an HMM are hidden, we can attach sorgsiqgdl significance
to them. For example, based on our characterization ofsfamlSection 2, for a sensor
measuring ambient temperature, we can use a 5-state HMMhdgthtates corresponding
to day, night, SHORT faults, NOISE faults, and CONSTANT faulSuch an HMM can
capture not only the diurnal pattern of temperature but tieodistinct patterns in the
reported values in the presence of faults.

For the basic HMM, the set of possible measuremeéritsdiscrete. In this paper, we use
the basic HMM, and when modeling temperature, humidity, @i make the observation
space discrete by clustering the sensor readings into Bimsexample, we bin tempera-
ture measurements into bins of widthl®C. If the observation space is continuous (and
cannot be made discrete), one can use a continuous density (@@HMM), defined for
a continuous observation space. However, a CDHMM is contipai@ly more complex
than a basic HMM. We chose a basic HMM over CDHMM because (arowdd make
the observation space discrete without introducing sicguifi rounding-off errors, and (b)
we wanted to avoid the additional computational compleixitplved in using a CDHMM
(provided the basic HMM based method proved effective ataligtg sensor faults). Our
results with injected faults (Section 4) and real- worldadats (Section 5) demonstrate
that our basic HMM based method is effective at detectingtypes of sensor faults we
consider in this paper.

Given values fol5,0,P{o | S}, A, andm, and a sequence of sensor measuremgbits,
the HMM can generate the most likely steéethat resulted in observatiod; for each
observation. If the stat§ associated with an observati@} is a fault state (SHORT,
NOISE, or CONSTANT), then we classify observati@y as faulty. Thus, our HMM
based method can detect as well as classify faults.

In order to estimate the paramet&®©, P{o | S}, A, and of the HMM used for fault
detection, we used a supervised learning technique. Wetégdaults into (fault-free)
training dataset (using the techniques described in Sedjidabeled each sample as fault-
free or faulty with a particular fault type, and used thisdkdal data for estimating the
parameters of the HMM. For details on the techniques useddiimating the parameters
of an HMM, and for generating the most likely sequence okstébr a given sequence of
observations, please refer to the tutorial by Rabiner [198& used the implementation
of HMMs provided in MATLAB [MATLAB ].
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3.5 Hybrid Methods

Finally, observe that we can use combinations of the Rusmdhal LSE, ARIMA and
HMM methods to eliminate/reduce the false positives andcatiegs. In this paper, we
study two such schemes:

— Hybrid(U) : Over two (or more) methods, this method identifies a samplaualty
if at least one of the methods identifies the sample as fatliliys, Hybrid(U) is intended
for reducing false negatives (it may not eliminate themretti since all methods might
fail to identify a faulty sample). However, it can sufferfindalse positives.

— Hybrid(l) : Over two (or more) methods, this method identifies a samgplaalty
only if both (all) the methods identify the sample as faulgssentially, we take an in-
tersection over the set of samples identified as faulty bigmiht methods. Hybrid(l) is
intended for reducing false positives (again, it may nohelate them entirely) but suffers
from false negatives.

Several other hybrid methods are possible. For example;ityh can be easily modi-
fied so that results from different methods have differerigivs in determining if a mea-
surement is faulty. This would be advantageous in situatiamere a particular method or
heuristic is known to be better at detecting faults of a @etigpe.

Table | summarizes the methods (and their specific varigltidascribed in this section.
It also highlights the parameters associated with eachadetiat must be determined —
using expert knowledge, heuristics or empirically (trintlaerror) — in order to be able to
use these methods for fault detection. For each paramegetise specify, within brackets,
the approaches used in this paper for determining theievalu

Method Parameters
SHORT & NOISE rules N: sample window size (domain knowledge),
d: threshold for fault detection (Histogram method)
Linear Least-Squares Estimation (LLSE) J: threshold for fault detection
(Maximum training error, Confidence Limit)
ARIMA model s: seasonality (domain knowledge)
ARIMA model: One-step d: threshold for fault detection
(Forecast Confidence Interval, Forecast error)
ARIMA model: L-step L: look-ahead forecast parameter
(domain knowledge and empirically),
d: threshold for fault detection
(Forecast Confidence Interval, Forecast error)
HMM Number of states (domain knowledge)

Table I. Fault Detection Methods

4. EVALUATION: INJECTED FAULTS

Before we can evaluate the prevalence of faults in realdvdatasets using the methods
discussed in the previous section, we need to charactéézadcuracy and robustness of
these methods. To do this, we artificially injected faultshef types discussed in Sec-
tion 2 into sensor measurements from a real-world dataseaicong measurements for
chlorophyll concentration in lake water [NAMOS 2005]. Itigabefore injecting faults,
we should ensure that the dataset does not have any faulptesrifiowever, since we did
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not have ground truth information about faults for this datawe relied on a combination
of visual inspection, and feedback from the members of th&I& project to ensure (to
the extent possible) that the dataset did not contain antsfau

This methodology has two advantages. Firstly, injectingté&into a dataset gives us
an accurate “ground truth” that helps us better understaagerformance of a detection
method. Secondly, we are able to control thiensityof a fault and can thereby explore
the limits of performance of each detection method as wetbasparatively assess differ-
ent schemes at low fault intensities. Many of the faults weehabserved in existing real
datasets are of relatively high intensity; even so, we belieis important to understand
the behavior of fault detection methods across a range tififdensities, since it is unclear
if faults in future datasets will continue to be as pronouhas those in today’s datasets.

Sensor measurements for injecting faultsFor evaluating the Rule-based methods, LLSE,
HMM and the two hybrid methods, we inject NOISE faults intoaserements of chloro-
phyll concentration in lake water collected by buoy numb@s tluring the NAMOS de-
ployments in October, 2005 [NAMOS 2005]. Buoy number 108eméd a measurement
every 8 seconds, and collect,BB0 measurements in total. We use the samples collected
during the first 24 hours (the first 1000 samples) as training data to train LLSE and the
HMM. We inject Noise faults into the remaining samples, areduse these samples to test
our methods. To train the HMM, we inject faults in the traopidata as well. These faults
were of the same duration and intensity as the faults usezbfaparing different methods.
We did not inject any faults in the training data for LLSE.

The samples from the NAMOS deployment did not provide encigiming data to
estimate the parameters of our ARIMA model, and hence, wesaisgples from the Sen-
sorScope deployment to evaluate the ARIMA model based rdetiMe injected NOISE
faults into temperature measurements collected by westaion 3 during the SensorScope
deployment [SensorScope 2006]. This weather station tosknperature measurement
every 30 seconds. We estimate the parameters of the ARIMAemaing samples col-
lected over 3 days (8640 total samples) by station 3. WetiE&ISE faults into samples
from another day (2880 samples collected over 24 hours)ysathese samples to test our
ARIMA model based methods.

Below, we discuss the detection performance of various otstifor each type of fault.
We describe how we generate faults in the correspondingestibes. We use three met-
rics to understand the performance of various methods: tineber of faults detected,
false negatives, and false positives. More specificallyusgthe fraction of samples with
faults as our metric, to have a more uniform depiction of ltesacross the data sets. For
the figures pertaining to this section and Section 5, theldabged for different detec-
tion methods ar®: Rule-basedL.: LLSE, H: HMM, OS: ARIMA model based One-step
ahead forecasting,S: ARIMA model based L-step ahead forecastibgHybrid(U), and
I Hybrid(l).

4.1 SHORT Faults

To inject SHORT faults, we picked a sampland replaced the reported valuewith

Vi =V + f xv;. The multiplicative factorf determines the intensity of the SHORT fault.
We injected SHORT faults with intensity = {1.5,2,5,10}. Injecting SHORT faults in
this manner (instead of just adding a constant value) doe®gaire the knowledge of the
range of “normal” sensor readings.

ACM Journal Name, \Vol. V, No. N, Month 20YY.



15

x10° x10°
I Detected I Detected

18F [ False Negative 8 [ False Negative| |
2 [—__IFalse Positive 2 [—__IFalse Positive
3 g7
iy iy — — —
£ £ —
5 Ze —
1%} 0
29 L5
o <3
€ 3
<] S 4
] 9]
kS T,
c c
S ]
I3l B 2
o ©
iy [

"RLHUI RLHUI RLHUI RLHUI s is 0s Ls 0s Ls 0s Ls

Intensity = 1.5, 2, 5, 10 Intensity = 1.5,2,5,10
(a) SHORT Rule, LLSE, HMM, and Hybrid Methods (b) ARIMA Model

Fig. 5. Injected SHORT faults

Figures 5.a and 5.b depict the performance of our varioubadstfor detecting SHORT
faults of different intensities. The horizontal line in hdhe figures represents the actual
fraction of samples with injected faults. The four sets affilats correspond to increasing
intensity of SHORT faults (left to right).

The ARIMA model based methods incur significantly higher tvemof false positives
compared to other methods. We plot their performance sgghaia Figure 5.b in order to
be able to depict the performance of all the other methods lvgtter clarity in Figure 5.a.
For the Hybrid(U) and Hybrid(l), we include all the methodsept the ARIMA model
based methods. Including the ARIMA model based method irhgbrid methods would
significantly increase the number of false positives forkiyerid(U) method.

The SHORT rule and LLSE do not have any false positives; heheddybrid(l) method
exhibits no false positives (thus eliminating the falseifpess incurred by the HMM based
method). However, for faults with low intensity & 1.5,2), the SHORT rule as well as
LLSE have significant false negatives, and hence, the Hgbmdethod also has a high
number of false negatives for these intensities.

The HMM method has fewer false negatives compared to SHORTand LLSE but it
has false positives for the lowest intensify=£ 1.5) faults. While training the HMM for
detecting SHORT faults, we observed that if the trainingadetd a sufficient number of
SHORT faults (on the order of 15 faults in 11000 samples)jntensity of the faults did
not affect the performance of the HMM.

It is evident from Figure 5.a that Hybrid(U) performs likeetimethod with more detec-
tions and Hybrid(l) performs like the method with less détats (while eliminating the
false positives). However, in general this does not havestthb case, e.g., in the absence
of false positives, Hybrid(U) could detect more faults thha best of the methods and
Hybrid(l) could detect fewer faults than the worst of the haets (as illustrated on the real
data sets in Section 5).

Our ARIMA model based methods do not perform as well as theratrethods. Even
though the One-step (OS) and the L-step (LS) ahead foragastthods are able to detect
most of the high intensityf = {5,10} faults, overall, they incur a significantly higher
fraction of false positives than the other methods. Howesemparing the performance
of One-step ahead forecasting method against the L-stegmldbeecasting with. = 120
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samples shows that for all fault intensities, One-step @dHegecasting performs better
than the L-step ahead forecasting, especially for faults imtensityf = 10. This is to be
expected because fault detection with L-step ahead fdiegas better suited for detecting
faults that affect more than one sample, for example NOISEGONSTANT faults.

The choice of threshold used to detect a faulty sample gevira trade-off between
false positives and false negatives; reducing the thrdsiwolld reduce the number of
false negatives but increase the number of false positivesselect the threshold using the
histogram method (with window si2¢= 100) for the Rule-based methods, the “Maximum
Error” heuristic for LLSE, the “Forecast Error” heuristiorfOne-step ahead forecasting,
and the “Forecast Confidence Interval” heuristic for L-sdépad forecasting.

4.2 NOISE Faults

To inject NOISE faults, we pick a set of successive samylesnd add a random value
drawn from a normal distributioM(0, g2), to each sample iW. We vary the intensity of
NOISE faults by choosing different values for The Low, Medium and High intensity of
NOISE faults correspond ta®, 1.5x, and Xincrease in standard deviation of the samples
in W. Apart from varying the intensity of NOISE faults, we alsawaheir duration by
considering different numbers of samplesin

Duration of Noise faults. We inject NOISE faults of duration (number of sample$\ih
3000 samples, 2000 samples, 1000 samples, and 100 samptaalicating the NOISE
rule, LLSE, HMM, and the two hybrid methods. Since these damfrom the NAMOS
deployment) were collected at an interval of 8 seconds,rmgeof time, these fault dura-
tions range from longer than 6 hours (for 3000 samples) ®tlesn 15 minutes (for 100
samples).

For our ARIMA model based method, like in the case of injectORT faults, we
use One-step ahead forecasting and L-step aHead1Q20) forecasting for detecting the
(injected) NOISE faults. In order to understand the impdcthe parametet. on the
performance of the L-step ahead forecasting based NOISEdatection, we vary the
duration of NOISE faults relative tb = 120. Hence, we inject NOISE faults of duration
720 samples, 120 samples, and 60 samples. Note that a fiditiedg 720 samples lasts
for 6 hours because the SensorScope deployment used asginpdirval of 30 seconds.

Figures 6 [W| = 3000), 7 (W| = 2000), 8 (W| = 1000) and 9 || = 100) show the
performance of the NOISE rule, LLSE, HMM and the hybrid methdor NOISE faults
with varying intensity and duration. For the ARIMA modelgiires 10 [W| = 60), 11
(JW| = 120), and 12|(V| = 720) show the performance of One-step and L-step (20)
ahead forecasting based fault detection. The horizomtalifi each figure corresponds to
the fraction of samples with faults.

4.2.1 Impact of Fault Duration.The impact of NOISE fault duration is most dramatic
for the HMM method. ForlW| = 100, regardless of the fault intensity, the number of
faulty samples were not enough to train the HMM model. Herdgure (9) does not
show results for HMM. FoifW| = 1000 and low fault intensity, we again failed to train
the HMM model. This is not very surprising because for shar&tion (e.g./W| = 100)
or low intensity faults, the data with injected faults isywsimilar to data without injected
faults. For faults with medium and high intensity or faultghnsufficiently long duration,
e.g.,|W| > 1000, performance of the HMM method is comparable to the NEJL8e and
LLSE.
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The NOISE rule and LLSE method are more robust to fault domathan HMM in

the sense that we were able to derive model parameters fee teses. However, for
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Fig. 12. NOISE, ARIMA: 720 samples

|[W| = 100 and low fault intensity, both the methods fail to detewt af the samples with
faults. The LLSE also has a significant number of false pestfor|W| = 100 and fault
intensity 05x. The false positives were eliminated by the Hybrid(l) metho

For the ARIMA model based method, One-step ahead forechstised method detects
fewer faults as the fault duration increases. For examplg)¥| = 60 samples and high
fault intensity, One-step forecasting based method def% of faults, but fofW| = 720
samples and high fault intensity, it detects only 9% of thdtfa L-step ahead forecast-
ing based method is more robust to increase in fault duratiatetects 41% and 33% of
the high intensity faults whejWw/| = 60 samples antW| = 720 samples, respectively, and
hence, the degradation in its performance is not as sevénecase of the One-step ahead
forecasting based method. Itis also worth noting that fotS&faults affectindW| = 60
samples antW| = 120 samples, regardless of the fault intensity, One-stepdhforecast-
ing detects more faults than L-step ahead forecasting. Memvior NOISE faults affecting
|W| =720 samples, L-step ahead forecasting detects more faati<ine-step ahead fore-
casting. Hence, overall, the One-step ahead forecastisgdbmethod is more suited for
detecting short-to-medium duration faults, whereas Ip-ateead forecasting based method
is need when the faults last for a long duration.

4.2.2 Impact of Fault IntensityFor medium and high intensity faults, there are no
false negatives for the three methods—NOISE rule, LLSE aktMHFor low intensity
faults, these three methods have significant false negativa fault duration and intensi-
ties for which the HMM training algorithm converged, the HMivethod gives lower false
negatives compared to the NOISE rule and LLSE. However, wiotte time the HMM
method gave more false positives. Hybrid methods are abiediace the number of false
positives and negatives, as intended. Like the other methitbeé ARIMA model based
One-step ahead and L-step ahead forecasting methodsmdrédter (detect more faults
and incur fewer false positives) as the fault intensity éases. High false negatives for
low fault intensity arise because the measurements widitied faults are very similar to
the measurements without faults.

Overall, however, the ARIMA model based method does notyperfis well as the other
three methods. For example, for NOISE faults lasting 6 h¢126 samples in case of the
ARIMA model and 3000 samples for the other methods), eveln kgh fault intensity, the
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ARIMA model based method detects 33% of the faults wherea®ther three methods
can detect all the faults. The ARIMA model based method alsors a higher rate of false
positives compared to the other methods.

4.2.3 ARIMA model-Impact of parameter [The performance results for the ARIMA
model indicate that, for detecting very long duration fault-step ahead forecasting is
better suited than the One-step ahead forecasting. Howfrehigh intensity NOISE
faults lasting for 6 hours (affecting 720 samples), by eating the measurements 1 hour
in advance (using L-step ahead forecasting Wwith 120), we could detect only 33% of the
faults. Will increasing the forecasting interval, help us detect more faults?
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Fig. 13. High intensity, Long duration NOISE faults Fig. 14. CONSTANT and NOISE faults

Figure 13 shows the performance of L-step ahead forecasimique for detecting
high intensity NOISE faults with duratiofw/| = 720 samples. Contrary to our intuition,
settingL equal to the fault duration (720 samples or 6 hours) detes$sfults thah = 120
samples (1 hour). As we increakethe uncertainty in the forecast value grows. Due to
this increased uncertainty, we are forced to set the fatttatien threshold to a large
value (using the “Forecast Confidence Interval” heurisgifirced in Section 3.3) to prevent
large number of false positives. Even though the variandbeNOISE fault is high, for
most of the samples, the change in the sensor measuremenio(the additive noise) is
small compared to the threshadd Hence, fewer faults are detected for large valué.of
For L = 120 samples, the uncertainty in the forecast value is smaflé hence, we can
set a lower threshold value. By setting a lower thresholdevalve are able to detect more
faults because now the change in sensor measurements digitieeanoise is larger than
the threshold for a larger fraction of faulty samples. THosecasting too far ahead into
the future (large value df) is not always beneficial. The benefits of using a large vafue o
L to detect long duration faults can be outweighed by the aszd error in forecast value
for largelL.

Does there exist a scenario for which increasing the valuk iofiproves the perfor-
mance of the ARIMA model based L-step ahead forecasting“hdrsame temperature
measurement time series as the one used to obtain the rieskigaire 13 (obtained from
the SensorScope deployment), we inject a combination dfinignsity NOISE and CON-
STANT faults into 720 samples. The CONSTANT faults add aeafi20 to each sample.
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Figure 14 shows the impact of increasibgn the number of faults detected. As we in-
crease the value df, we detect more faults and farequal to the duration of faults, we
detect all the faults. In this scenario, the faults are ohsauhbigh intensity that the increase
in thresholdd (due to a larger value df) is not large enough to cause false negatives. A
similar combination of CONSTANT and NOISE faults occurradhie INTEL lab dataset
[INTEL 2004], and for this dataset, increasing the valud.anabled us to detect more
faults (refer to Figure 17).

The results shown in Figures 13 and 14 demonstrate thaetsigalue ofL for detecting
long duration faults depends not only on the duration of #udt$ but also on the difference
in magnitude between the faulty and normal sensor readifgsthe real world datasets,
contextual information about the phenomenon being sensddre nature of faults are
useful in determining the best value for For slowly varying measurements like ambient
temperature, humidity, etc., if the long duration faultsrgmse only the variance of the
sensor measurements, limiting the forecast interval toost shuration (for example, an
hour) works best. However, if the faults change both the meeahthe variance of the
sensor measurements, matching the forecast interval téatiieduration (to the extent
possible) gives better performance. Apart from using thigextual information, we also
relied on trial and error to determine the valud.dhat gave the best performance.

4.3 Other Hybrid methods

We noted earlier that in our evaluation with injected fauligbrid(U) performs like the
method with more detections and Hybrid(l) performs like tinethod with less detections
(while eliminating the false positives). As a result, fowlintensity NOISE faults (see
Figures 6 and 7), Hybrid(U) performs like the HMM, and Hyl§ljdperforms like the
NOISE rule.

Note that the LLSE method, apart from detecting faulty mezsents, also provides an
estimate of their correct value. We can leverage this fadesign a hybrid method that
uses two different methods sequenceas follows.

—Use the LLSE method to identify (some of the) faulty measuets:
—Replace these measurements with their estimates from LLSE.
—Use this modified time series of measurements as input tthanotethod.

We next evaluate whether the hybrid approach of using twergifit methods in sequence
can detect more low intensity faults.

LLSE and HMM : We use a combination of LLSE and HMM to detect low intensity
NOISE faults with duratiodW| = 3000, andW| = 2000 samples injected into readings
from the NAMOS, October, 2005 deployment [NAMOS 2005]. Tdheseasurements are
also used for the evaluation results shown in Figures 6 afidbie 1l shows a comparison
between the LLSE, the HMM, and the combined LL.SBMM method. Note that using
the LLSE and the HMM methoda sequencéelps us detect more faults than either of the
two methods.

LLSE and ARIMA : Low intensity faults can also be detected using a comhinaif the
LLSE and the ARIMA model based methods. Table Ill comparesprformance of two
in sequencéybrid methods (LLSE-ARIMA (One-step), and LLSE-ARIMA (L-step),
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Duration | LLSE | HMM LLSE—HMM
# samples
2000 40 68 70
3000 23.3 71 74

Table Il.  Low Intensity NOISE faults, NAMOS, Percentage atilty samples detected

L=120) against several other methods for detecting lownsitg NOISE faults. The results
in Table Il are for the same sensor measurements as the seddgar Figures 10, 11, and
12.

We make three interesting observations based on the retudten in Table Ill. First,
the combined LLSE-ARIMA (L-step) method outperforms the ARIMA (L-step) metho
but its performance is comparable to the LLSE method. Heoembining LLSE and
ARIMA (L-step) does not provide a significant benefit ovemgsihe LLSE method. Sec-
ond, for fault durations of 120 and 720 samples, the LLSERIMA (One-step) hybrid
method outperforms both the LLSE and the ARIMA (One-steplhmes; with the hybrid
method detecting.8% more faults compared to the best performing method (LLUBE)
the fault duration equal to 720 samples. Third, for faultadion equal to 60 samples, the
hybrid LLSE—~ARIMA (One-step) method detects D% fewer faults than the ARIMA
(One-step) method, but it outperforms LLSE by a small mar@hmus, using two different
methodsn sequencenay not always perform better than either of the two methods.

Duration LLSE ARIMA LLSE—ARIMA | ARIMA LLSE—ARIMA
# samples (time) (One-step) (One-step) (L-step) (L-step)
60 (0.5 hr.) 23.7 37.3 25.4 1.7 23.7
120 (1 hr.) 235 25.2 26.9 0 23.5
720 (6 hrs.) 35.9 7.4 40.2 6.7 37.4

Table lll.  Low intensity NOISE faults, Percentage of faudgmples detected

Duration LLSE | ARIMA LLSE—ARIMA | ARIMA | LLSE—ARIMA
# samples (time) (One-step) (One-step) (L-step) (L-step)
60 (0.5 hr) 9.6 1 2 0.87 0.97
120 (1 hr) 9.6 0.76 1.8 0.87 0.97
720 (6 hrs) 45 0 0.3 0.2 0.2

Table IV. False Positives as % of total # samples (2880)

False positives Using two (or more) methods in sequence to detect faultsimenease
the number of false positives. Consider the case of using.asd ARIMA methods in
sequence. In the first step, we replace the value of all th@lesndentified as faulty by
their estimate given by the LLSE method. If the LLSE method fadse positives, then
we alter the values of these normal (not faulty) samplesdtitin, if the estimates from
LLSE are not good (differ significantly from “normal” sensm@adings), these samples
might be identified as faulty by the ARIMA method in the nexyst

Table IV compares the false positive rate for the hybrid mé$.LSE-ARIMA (One-
step and L-step) against the ARIMA methods. For refereneealso show the false pos-
itive rate for the LLSE method. The increase in the falsetp@srate is more significant
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for the LLSE—-ARIMA (One-step) compared to LLSEARIMA (L-step). For both, the
One-step and the L-step methods, we used the Forecast Gmdiligerval heuristic (Sec-
tion 3.3) to determine the threshofilfor fault detection. As discussed in Section 3.3,
the confidence interval is smaller for One-step ahead fetgwa(resulting in a smalled)
compared to the L-step ahead forecasting. Hence, when nssdjuence with the LLSE
method, the ARIMA (One-step) method is more vulnerable teefpositives (due to the
false positives from LLSE in the first step) compared to thd MR (L-step) method.

In summary, the evaluation presented in Tables I, Ill, avidthow that if it is possible
to obtain a good estimate of the correct value of an errone@masurement, then using two
methods in sequence can (possibly) detect more faults axftense of a (slightly) higher
false positive rate.

5. FAULTS IN REAL-WORLD DATA SETS

We analyze four datasets from real-world deployments —@&espe [SensorScope 2006],
Great Duck Island (GDI) [Mainwaring et al. 2002], INTEL Befky Lab [INTEL 2004],
and NAMOS [NAMOS 2006] — for prevalence of faults in sensac#s. The sensor traces
contain measurements for temperature, humidity, liglesgure, and chlorophyll concen-
tration. All of these phenomena exhibit a diurnal patterthim absence of outside pertur-
bation or sensor faults.

Out of the four datasets, we were able to apply all four faetedtion methods only to
the SensorScope dataset. We could not apply one or more dsethahe other datasets
due to a variety of factors—for example, the NAMOS datasghdit have enough data for
training. We discuss these factors in detail below. Tablerdiges a summary of the
methods applied to each of the four datasets for fault detect

Dataset Rule-based| LLSE | HMM | ARIMA
SensorScope [SensorScope 2006] v v v v
INTEL Lab [INTEL 2004] v v v
GDI [Mainwaring et al. 2002] v v

NAMOS [NAMOS 2006] v

Table V. Real-world datasets and Detection methods

5.1 SensorScope

The SensorScope project is an ongoing outdoor sensor rletiegptoyment consisting of
weather-stations with sensors for sensing several enmieatal quantities such as temper-
ature, humidity, solar radiation, soil moisture, and so®&r{sorScope 2006]. We analyzed
the temperature measurements collected every 30 secoadsigwmonths at 64 weather
stations.

We did not have the ground truth regarding faulty samplegHisr dataset. Since this
dataset is very large (more than 500,000 samples per westtiteon), we used a combi-
nation of visual inspection and Rule-based methods to iiyesamples with (very likely)
faulty temperature values. The samples identified as faaltynly provide a ballpark esti-
mate for the prevalence of faults, but also serve as a ben&hagainst which we compare
the performance of other fault detection methods.

Using visual inspection and the SHORT rule, we identifiedrapimately 001% of
the total samples as affected by SHORT faults. There wasfisgmt variation in the
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Method Detected False Positive
(% of total # faulty samples) (% of total # samples)
HMM 35.3 <0.01
LLSE 69.8 0.01
ARIMA (One-step) 96.7 0.02
ARIMA (L-step), L=120 76.7 3
Hybrid(l) 25 <0.01
Hybrid(U) 98.9 3

Table VI. SensorScope: SHORT faults

prevalence of SHORT faults across individual weatheratati- some stations did not have
any faulty samples whereas one weather station (ID=39) had than 0.07% of samples
affected by SHORT faults. We did not find any instance of NOEE CONSTANT
faults. Table VI shows the performance of various methodse "Detected” and “False
Positive” percentages are computed by aggregating the euaflfaulty samples and the
false positives, respectively, over all the weather statio

Based on the results shown in Table VI, we make the followlimge observations. First,
the ARIMA (One-step) method performs the best; it detec®@% of the faulty samples
and incurred few false positives. Second, our evaluatidh injected SHORT faults (Sec-
tion 4.1) showed that the ARIMA (One-step) method is bettétesl than the ARIMA
(L-step) method for detecting SHORT faults. This obseorats confirmed by the relative
performance of the One-step and the L-step ahead foregastthods for detecting the
SHORT faults in the SensorScope dataset. Third, the HMM bhad k SE methods detect
less faults than the two ARIMA methods but they incur fewdsdgositives.

5.2 INTEL Lab, Berkeley data set

54 Mica2Dot motes with temperature, humidity and light seasvere deployed in the
Intel Berkeley Research Lab between February 28th and Agrjl2004 [INTEL 2004].
In this paper, we present the results on the prevalence b fauthe temperature readings
(sampled on average once every 30 seconds).

This dataset exhibited a combination of NOISE and CONSTABIItE. Each sensor
also reported the voltage values along with the samplepeti®n of these voltage values
showed that the faulty samples were well correlated withabefew days of the deploy-
ment when the lithium ion cells supplying power to the mote&sewunable to supply the
voltage required by the sensors for correct operation.

The faulty samples were contiguous in time (Figure 15). Wiia@ the NOISE rule, the
HMM method (using a simple 2-state HMM model), and the ARIMA&step and L-step
methods to detect the faulty samples. Interestingly, fisrdataset, we could not apply the
LLSE method. NOISE faults across various nodes were caegklaince all the nodes ran
out of battery power at approximately the same time. Thiaksen important assumption
underlying the LLSE technique, that faults at differents®s are uncorrelated.

Figure 16 shows the fraction of the total temperature sasr(plalected by all the motes)
with faults, and the performance of the NOISE rule, the HMM #me hybrid methods at
detecting these faults. We present the performance résuttee ARIMA model separately
in Figure 17 for clarity. Both the NOISE rule and HMM have sofakse negatives while
the HMM also has some false positives. For this data set, wil @iminate all the false
positives using Hybrid(l) with NOISE rule and HMM. Howevepmbining the NOISE
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Fig. 15. Intel data set: NOISE faults

rule and HMM for Hybrid(l) incurred more false negatives.
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Fig. 16. Intel data set: Prevalence of NOISE faults Fig. 17. Intel data set: ARIMA methods

The fact that this dataset contained sensor measuremdtgsted over two months
enabled us to apply our time series method for fault detectid/e set the periodicity
parameteis = 2880 because samples were collected every 30 seconds ace, 2&30
samples were collected per day. For each sensor mote, wemesslirements collected
over the first 10 days to estimate the parameters of the timessaodel. The size of
the training dataset was influenced by two factors: (a) thogieity parametes, and (b)
missing samples. Since our model differences the time séniee (the differences are
(z —z-1) — (za_s— z_s1), refer to equation (2)), we discasd- 1 = 2881 samples (i.e.,
measurements collected over a day). The average yield foELNJata set was 50%; i.e.
only 50% of the samples collected every 30 seconds at a sereserelivered at the base-
station. Due to large number of missing samples per day, @edimclude measurements
from more days in the training dataset, in order to have sefficdata for training the
ARIMA model.
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Figure 17 shows the performance of the time series basecumheitth three different
forecasting scenarios: One-step ahead, L-step ahead_with20 samples (i.e. 1 hour)
and L-step ahead with = 2880 samples (i.e. 24 hours). Maximum number of faults are
detected with L-step ahead forecast with- 2880. This is so because the duration of the
NOISE and CONSTANT faults in the INTEL dataset (Figure 15%wa the order of days,
and hence L-step ahead forecasting with a ldrggeneeded to detect these long duration
faults. Even folL. = 2880 samples, we could not detect two-thirds of the faultsvéver,
our method was able to detect 90% of the faulty samples reghatiring the first day on
which the faults started. This shows that our time seriegdasethod can detect long
duration faults provided that their duration is shortemttize time series periodicity.

Finally, in this data set, surprisingly there were few insts of SHORT faults. A total
of 6 faults were observed for the entire duration of the expent (Table VII). All of these
faults were detected by the HMM method, LLSE, the SHORT rahel the ARIMA model
based method.

ID | #Faults | Total # Samples
2 1 46915
4 1 43793
14 1 31804
16 2 34600
17 1 33786

Table VII. Intel Lab: SHORT Faults, Temperature

5.3 Great Duck Island (GDI) data set

We looked at data collected using 30 weather motes on the Buek Island over a period
of 3 months [Mainwaring et al. 2002]. Attached to each moteatemperature, light, and
pressure sensors, and these were sampled once every 5 hihe.3D motes, the data set
contained sampled readings from the entire duration of &péogyment for only 15 motes.
In this section, we present our findings on the prevalencawfd in the readings for these
15 motes.

The predominant fault in the readings was of the type SHORT applied the SHORT
rule, the LLSE method and Hybrid(l) to detect SHORT faultsight, humidity, and pres-
sure sensor readings. We could not apply the ARIMA and the HMBthods to this
dataset due to a large number of missing (not recorded)wdis@mns. Each of the 15 motes
that we considered had more than 60% of the samples missirag feast 18 days, and
more than 10% of the samples missing for at least 56 days. F&RAMA model with
periodicity s, in order to predict the sensor reading at time&ve need sensor readings at
timest — 1,t —s, andt —s— 1 (refer to Equation (2), Section 3.3). If any of these three
readings are missing, then the ARIMA model cannot predier#fading at timé. For the
ARIMA methods, one way to tackle the problem of one (or moresing readings needed
to predict the value at timecan be to use estimates of these missing readings (obtained
from the ARIMA or LLSE method). This works if we can be confitémat these estimates
are not erroneous. This approach worked for the INTEL datase did not for the GDI
dataset, mainly because we could not obtain estimateslftireaimissing samples. Simi-
larly, the large fraction of missing samples also prevetiedraining phase of the HMM
method from converging, and hence, we could not use the HMRhodeon this dataset.
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Figure 18 shows the overall prevalence (computed by agtinegasults from all the 15
nodes) of SHORT faults for different sensors in the GDI data he Hybrid(l) technique
eliminates any false positives reported by the SHORT rul¢herLLSE method. The
intensity of SHORT faults was high enough to detect them Isyafi inspection of the
entire sensor readings timeseries. This ground-truthcisidted for reference in the figure
under the labeV.

It is evident from Figure 18 that SHORT faults are relativieiiyequent. They are most
prevalent in the light sensor (approximately 1 fault eved@@ samples). Figure 19 shows
the distribution of SHORT faults in light sensor readingsoas various nodes. We did
not observe any discernible pattern in the prevalence sktfaults across different sensor
nodes;

In this data set, NOISE faults were infrequent. Only two reodad NOISE faults with
a duration of about 100 samples. The NOISE rule detectedtithie LLSE method failed
primarily because its parameters had been optimized forfSHf@ults.
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Fig. 18. SHORT Faults in GDI data set Fig. 19. SHORT Faults: Light Sensor

5.4 NAMOS data set

Nine buoys with temperature and chlorophyll concentraiensors (fluorimeters) were
deployed in Lake Fulmor, James Reserve for over 24 hours gusiy 2006 [NAMOS
2006]. Each sensor was sampled every 10 seconds. We anégzeteasurements from
chlorophyll sensors for the prevalence of faults.

The predominant fault was a combination of NOISE and CONSTABused by hard-
ware faults in the ADC (Analog-to-Digital Converter) boarigure 1.a shows the mea-
surements reported by buoy 103. We applied the NOISE Ruletextisamples with errors.
Figure 20 shows the fraction of samples corrupted by failllte sensors at 4 buoys were
affected by the ADC board fault and in the worst case, at bux8; 35% of the reported
values were erroneous. We could not apply the LLSE, the HMifithe ARIMA model
based method because there was not enough data to train tiedsnjdata was collected
for 24 hours onlyY

°The NAMOS dataset used in Section 4 is from a different depkayt done in October 2005 [NAMOS 2005].
This deployment consisted of only 4 buoys collecting data d@hours. We did not find any instances of faults
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Fig. 20. NAMOS data set: NOISE/CONSTANT faults

6. RELATED WORK

Sensor data integrity encompassing fault detection, facdtization, identification of root
causes, and correcting/recovering from data faults is tiveaarea of research. In this sec-
tion, we discuss several pieces of work that are closelyaelto our “data-centric” fault
detection approach. These techniques are similar to onmdoz) of the four classes of
methods explored in this paper, and we point these out whesnisiing the corresponding
work. However, none of these methods can be applitdout modificationto fault de-
tection. For example, some of these techniques are desugitle@ specific sensing task
or type of sensor in mind (e.g., [Elnahrawy and Nath 2003uéses on improving the
accuracy of aggregate queries over sensor readings). Wheeusding each related work,
we explain why it cannot be used directly for comparison. Ewesv, it may be possible
to use some of these methods for sensor fault detection dhiftement assumptions — for
example, when information about the probability distribatof the true sensor readings,
the characteristics of the noise corrupting sensor datajseavailable.

Two recent papers [Khoussainova et al. 2006; Jeffery eb@bphave proposed a declar-
ative approach to erroneous data detection and cleanirgar8Clean [Khoussainova et al.
2006] provides a simple declarative language for exprgsabegrity constraints on the in-
put data. Samples violating these constraints are comsldaulty. StreamClean uses a
probabilistic approach based on entropy maximization tnade the correct value of an
erroneous sample. The evaluation in [Khoussainova et 86]268 geared towards a pre-
liminary feasibility study and does not use any real worlthdsets. Extensible Sensor
stream Processing (ESP) framework [Jeffery et al. 2006liges support for specifying
the algorithms used for detecting and cleaning erroneauplss using declarative queries.
This approach works best when the types of faults that canr@od the methods to cor-
rect them are known a priori. The ESP framework is evaluasiuiguthe INTEL Lab data
set [INTEL 2004] and a data set from an indoor RFID networklogpent. These two
declarative approaches are similar to our Rule-based meth&r example, we can think
of the integrity constraints in StreamClean as (a combinadi) rules. Similarly, specify-
ing an algorithm for detecting erroneous samples withinBB® framework is equivalent

in the dataset from the October 2005 deployment and hencetabstoss it here.
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to deciding which Rule-based method to apply, as both thesisidns require knowledge
of the data fault types.

Koushanfar et al. propose a real-time fault detection prosethat exploits multi sen-
sor data fusion [Koushanfar et al. 2003]. Given measuresneinthe same source(s) by
n sensors, the data fusion is performed (n+1) times, ondem&asurements from all the
sensors; in the rest of the iterations the data from exaaysensor is excluded. Measure-
ments from a sensor are classified as faulty if excluding threproves the consistency
of the data fusion results significantly. Simulations anthdeom a small indoor sensor
network are used for evaluation in [Koushanfar et al. 200@jta from real world deploy-
ments are not used. This approach is similar to our HMM modskH fault detection
because it requires a sensor data fusion model. Howeveipiproach cannot be used for
fault detection in applications such as volcano monitofiMgrner-Allen et al. 2006] and
monitoring of chlorophyll concentration in lake water [NAD& 2006] where sensor data
fusion functions are not easy to define without consultingpmain expert; however the
HMM based method can be.

Elnahrawy et al. propose a Bayesian approach for cleanidgjaerying noisy sensors
[ElInahrawy and Nath 2003]. The focus in [Elnahrawy and N&63} is to improve the
accuracy of aggregate queries over sensor readings (fanpeaSUM, AVG, COUNT
etc.) rather than detect data faults. Using a Bayesian apprequires knowledge of the
probability distribution of the true sensor readings areld¢haracteristics of the noise pro-
cess corrupting the true readings. The evaluation in [Ebai and Nath 2003] does not
use any real world datasets. In terms of the prior knowledugktiae models required, the
Bayesian approach in [EInahrawy and Nath 2003] is similaheoHMM based method
we evaluated in this paper. It is difficult to apply this medho the real world datasets
considered in this paper due to the lack of prior informatdnout the probability distri-
bution for true sensor readings and the noise charactsristi each sensor, especially for
the NAMOS dataset because the variation of chlorophyll eatration in lake water is
not a well understood phenomenon. Even for well-undersfieehomena like ambient
temperature, humidity etc. (INTEL and SensorScope datgpdatthe absence of ground
truth values and contextual information related to the genalibration, determining the
probability of the true sensor readings is difficult. In sotases, prior information related
to true sensor readings can be obtained by calibrating atidgehe sensors extensively in
a controlled environment before a deployment, as done byaRathan et al. [Ramanathan
et al. 2006] for a ground water monitoring deployment. Ehaaly et al. also assume that
the noise corrupting the sensor readings follows a Gaustsarbution. This assumption
does not hold for the SHORT and the CONSTANT faults in general

Tulone et al. model the temperature measurements in the LINEIG data set [INTEL
2004] using an autoregressive (AR) time series model [Teimmd Madden 2006]. They
use a procedure similar to our One-step ahead forecastseglfault detection to detect
faults/outliers similar to SHORT faults. However, the ARdebbased fault detection tech-
nigue used in [Tulone and Madden 2006] is not suitable foectetg long duration faults
(for example, NOISE and CONSTANT fault types) or short digrataults that occur fre-
qguently. This is because the autoregressive model capbmfgsshort time scale trends.
For example, the AR model used in [Tulone and Madden 2006hisdd using samples
collected over an hour (at a rate of a sample every 30 secandd)ence, it captures tem-
poral trends/correlations that are on order of a few minutésr such an AR model, a
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long duration NOISE fault lasting a couple of hours (or a skaration fault that occurs
frequently) will be treated as a change in underlying das&rithution, and the AR model
will be retrained to fit the faulty data. Thus, it will fail taléntify a majority of the faulty

samples. Our seasonal ARIMA model based fault detectiomadetan detect both the
short duration and the long duration faults, and hence,wubs the fault detection ca-
pabilities of an AR model. However, estimating the paramseter a seasonal ARIMA

model is more complex computationally than estimating tiemeters for an AR model.
At the very least, we need temperature measurements eullever 2- 3 days to train our

seasonal ARIMA model, whereas measurements collectedomgran hour are enough
to train the AR model used in [Tulone and Madden 2006].

Several papers on real-world sensor network deploymeatte[dt al. 2005; Ramanathan
et al. 2006; Werner-Allen et al. 2006; Mainwaring et al. 2D@&sent results on meaning-
ful inferences drawn from the collected data. However, &libst of our knowledge, only
[Tolle et al. 2005; Werner-Allen et al. 2006; Ramanathar.&2@06] do a detailed analysis
of the collected data. The aim of [Ramanathan et al. 2006) dotroot cause analysis us-
ing Rule-based methods for on-line detection and remexiati sensor faults for a specific
type of sensor network monitoring the presence of arsengronndwater. The SHORT
and NOISE detection rules analyzed in this paper were pexbos [Ramanathan et al.
2006]. Werner et al. compare the fidelity of data collectedgia sensor network monitor-
ing volcanic activity to the data collected using traditbrquipment used for monitoring
volcanoes [Werner-Allen et al. 2006]. Finally, Tolle et@ekamine spatiotemporal patterns
in micro-climate on a single redwood tree [Tolle et al. 200%}Yhile these publications
thoroughly analyze their respective data sets, examirdanll prevalence and/or develop-
ing a generic sensor data fault detection approach was nekpglitit goal. Our work
presents a thorough analysis of four different real-wodthdsets. Looking at different
datasets also enables us to characterize the accuracy lamtmess of four qualitatively
different detection methods.

7. DISCUSSION AND FUTURE WORK

In this section, we briefly discuss two issues that are reketieadata fault detection — out-
liers and event detection as well as utility of faulty sanspleowever, these are not a focus
of our work. We also discuss interesting extensions to th# éetection methods evalu-
ated in this paper that can be useful for detecting otherstgbéaults.

Outliers and Events Sensor measurements can deviate from their expecteds\dligeto
an unexpected event or without any known causes (outliespecially in the context of
environmental monitoring. The fault detection methodsuksed in this paper are likely
to flag these measurements as faulty. However, discardempthamples as faulty may
result in loss of important information related to an unknosvent or outlier [Gupchup
et al. 2008]. Before discarding/filtering out the faulty gdes, we can try to extract some
information from these samples. For example, if the samfidegyed as faulty do not
match any of the known fault models, it is possible that theydae to an unknown event
or are simply outliers. In such a situation, contextual infation about the sensors and
the phenomenon being monitored can help us decide whetess #amples are due to an
unknown event. If so, using the flagged samples, we can trgnermte signaturefor the
event using statistical and learning techniques other thase we have presented in this
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paper. Having aignaturecan help us detect occurrences of the same event in the future

Utility of faulty samples. Applications using a sensor network typically combineadat
from several sensors with different sensing modalities gppatiotemporal scales (com-
monly referred to adlata fusion in order to extract the relevant information. Depending
on the fault type and intensity, a faulty sample may stilMie useful information. During
the data fusion process, we can assign a lower weight/impogtto faulty samples com-
pared to the clean/non-faulty samples [Zahedi et al. 2008he case of data faults due to
calibration errors, we can correct faulty samples if we catemine the proper calibration
formula. Thus, it is not advisable wwaysdiscard/filter out the fault samples.

Next we discuss several enhancements to the methods mrdsarthis paper. These
enhancements can possibly not only improve the accuradyesEtmethods, but also en-
hance their applicability to other fault types. We plan talaate these enhanced methods
as part of our future work.

Enhancements to the proposed method#\s mentioned in Section 3.2, the vector version
of the LLSE method can incorporate spatial correlation sEensors attached to differ-
ent nodes in computing the estimates for sensor valuesiabpatrelations can provide a
globalview of the data collected by the network. In the absenceai truth values, us-
ing the spatial correlation information from multiple serscan result in a higher fidelity
model or better estimates for sensor data, and hence, mauwease and robust fault detec-
tion. We expect the vector version of the LLSE method to pernfbetter than the scalar
version for fault detection that relies on leveraging isrtede relationships — for example,
detecting faults due to calibration errors.

The ARIMA model based methods can be expanded to take measoie from differ-
ent sensor(s) attached to same and/or different node atsitnile forecasting the expected
sensor reading (refer to Chapter 11, Section 5 in [Box et@4]). Such enhancements
can enable the ARIMA model based methods to leverage spatialations (or inter-node
relationships) as well as inter-sensor relationshipsdditan to the temporal correlations.
For example, in applying the ARIMA model based methods toe series of temperature
measurements, we can use measurements from the humidégrsenan input. Temper-
ature and humidity variations are known to be strongly dateel, and an ARIMA model
that combines the two can perform better in situations winger-sensor relationships
(across different sensing modalities) are needed for @eikection. However, this en-
hanced ARIMA model is more complex and we need to estimate mmdel parameters.
This increased complexity may result in a more computatipiitensive training phase
requiring a larger training dataset. Similarly, we can ewesour HMM based method to
take measurements from other sensors as input [Bengio asddi 1995].

8. SUMMARY AND CONCLUSIONS

In this paper, we focused on a simple question: How oftenteeénsor data fault types —
SHORT, NOISE, and CONSTANT — observed in real deploymentsarnbwer this ques-
tion, we first explored and characterized four qualitayidifferent classes of fault detec-
tion methods (Rule-based, LLSE, time series forecastind, MMMs) and then applied
them to real world datasets. Several other methods basedyesBn filters, neural net-
works, etc. can be used for sensor fault detection. Howéverfour methods discussed
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in this paper are representatives of the larger class oé thiksrnate techniques. Hence, an
analysis of the four methods with injected faults preseiie8ection 4, not only demon-
strates the differences, in terms of accuracy and robusthesween these methods, but
can also help make an informed opinion about the efficacy wéraé other methods for
sensor fault detection.

Fault type SensorScope INTEL Lab GDI NAMOS
Infrequent (less than | Infrequent (only 5| Infrequent,
SHORT 0.01% samples affected), nodes affected) | high intensity None
high intensity
Frequent (20-25% Frequent
NOISE, None samples affected)| Infrequent (15-35% sampleg
CONSTANT spatiotemporally affected)
correlated
Table VIII. Datasets: Prevalence of faults

We now summarize our main findings. Table VIII summarizesftudt prevalence for
the different datasets. The prevalence of faults was loindbe SensorScope dataset (less
than 001% samples were affect by faults). However, in the INTEL lzaid NAMOS
datasets a significant percentage (between 15-35%) of samlre affected by a combi-
nation of NOISE and CONSTANT faults. Such a high percentdgerrmneous samples
highlights the importance of automated, on-line sensdt &aiection. In the GDI data set
SHORT faults occurred once in two days but the faulty senabres were often orders
of magnitude higher than the correct value. Except for thEHN Lab dataset, we found
no spatial or temporal correlations among faults. In thaasiet, the faults across various
nodes were correlated because all the nodes ran out ofybptierer at approximately the
same time.

Table IX and X summarize the evaluation results with injdctgults. As discussed
in Section 4, most of the methods work well for high and medimtensity SHORT
faults, and high intensity and long duration NOISE faultsowdver, their performance
is severely degraded in case of low intensity and/or shartthn faults. In particular,
the HMM and the ARIMA (L-step) methods are not suited for détey short duration
NOISE faults, while the LLSE and the ARIMA methods perfornmogdy at detecting low
intensity SHORT faults. The observation that low intensétylts are harder to detect is
not entirely unexpected. Our “data-centric” approach tdtfdetection is most effective

Method High/Medium Low False
fault intensity fault intensity positives
SHORT rule |  works well detects at least 50% of faults No
LLSE works well performs poorly No
detects more faults Yes
HMM works well than SHORT rule and LLSE|  (for low fault intensity)
ARIMA Yes
0,
(One-step) works well detects at least 50% of faults (high rate of false positives
ARIMA works well erforms poorl Yes
(L-step) P poorly (high rate of false positives

Table IX. Detection methods: Performance on injected SHORIESa
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Method ngh/_Medlqm L.OW . Fault duration False positives
fault intensity fault intensity
robust to changes
NOISE rule works well performs poorly in fault duration No
. Yes
LLSE works well performs poorly I'S%e ul#gﬁgrﬁ%ults (for low intensity and/or
short duration faults)
detects more faulty not suited for Yes
HMM works well than NOISE rule | low intensity and (high false
and LLSE short duration faults positive rate)
Avg. performance for
ARIMA No significant impact short duration faults;
. Yes
(One-step) on performance not suited for
long duration faults
reasonable performance
ARIMA reasonable for long duration
(L-step) performance performs poorly faults; not suited for Yes
short duration faults

Table X. Detection methods: Performance on injected NOISEsfau

when the faulty samples differ significantly from normal senreadings. This is not al-
ways the case for low intensity faults. Two important obagons can be made based on
the evaluation of the fault detection methods with injedidts: (i) the four classes of
methods sit at different points on the accuracy/robustgesstrum, and no single method
is perfect for detecting the different types of faults; fiybrid methods can help eliminate
false positives or false negatives, and using two methodsdguence can detect more low
intensity faults at the expense of slightly higher falseijpes.

The fault detection methods performed well on the real wddthsets except for the
ARIMA model based methods when used on the INTEL Lab, Beykdlaset. This is
because most of the datasets experienced high intensity.fau

Even though we analyzed most of the publicly available realdvsensor datasets for
faults, it is hard to make general statements about senglts fa real world deployments
based on just four datasets. However, our results raisecaess of the prevalence and
severity of the problem of data corruption and can infornufatdeployments. Overall, we
believe that our work opens up new research directions naaited high-confidence fault
detection, fault classification, data rectification, andeo More sophisticated statistical
and learning techniques than those we have presented caouggbto bear on this crucial
area.
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