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Various sensor network measurement studies have reported instances of transient faults in sensor

readings. In this work, we seek to answer a simple question: How often are such faults observed in
real deployments? We focus on three types of transient faults, caused by faulty sensor readings that
appear abnormal. To understand the prevalence of such faults, we first explore and characterize
four qualitatively different classes of fault detection methods. Rule-based methods leverage domain

knowledge to develop heuristic rules for detecting and identifying faults. Estimation methods
predict “normal” sensor behavior by leveraging sensor correlations, flagging anomalous sensor
readings as faults. Time series analysis based methods start with an a priori model for sensor
readings. A sensor measurement is compared against its predicted value computed using time

series forecasting to determine if it is faulty. Learning-based methods infer a model for the
“normal” sensor readings using training data, and then statistically detect and identify classes of
faults.

We find that these four classes of methods sit at different points on the accuracy/robustness
spectrum. Rule-based methods can be highly accurate, but their accuracy depends critically on
the choice of parameters. Learning methods can be cumbersome to train, but can accurately
detect and classify faults. Estimation methods are accurate, but cannot classify faults. Time

series analysis based methods are more effective for detecting short duration faults than long
duration ones, and incur more false positives than the other methods. We apply these techniques
to four real-world sensor data sets and find that the prevalence of faults as well as their type varies
with data sets. All four methods are qualitatively consistent in identifying sensor faults, lending

credence to our observations. Our work is a first-step towards automated on-line fault detection
and classification.
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1. INTRODUCTION

With the maturation of sensor network software, we are increasingly seeing longer-term
deployments of wireless sensor networks in real mode settings. As a result, research at-
tention is now turning towards drawing meaningful scientific inferences from the collected
data [Tolle et al. 2005]. Before sensor networks can become effective replacements for
existing scientific instruments, it is important to ensure the quality of the collected data.
Already, several deployments have observed faulty sensor readings caused by incorrect
hardware design or improper calibration, or by low battery levels [Ramanathan et al. 2006;
Tolle et al. 2005; Werner-Allen et al. 2006].

Given these observations, and the realization that it will be impossible to always deploy
a perfectly calibrated network of sensors, an important research direction for the future
will be automated detection, classification, and root-cause analysis of sensor faults, as well
as techniques that can automatically scrub collected sensor data to ensure high quality. A
first step in this direction is an understanding of the prevalence of faulty sensor readings in
existing real-world deployments. In this paper, we take such a step.

Sensor Data Faults. We start by focusing on a small set of sensor faults that havebeen
observed in real deployments: single-sample spikes sensorreadings (we call these SHORT
faults, following [Ramanathan et al. 2006]), longer duration noisy readings (NOISE faults),
and anomalous constant offset readings (CONSTANT faults).

The three fault types (SHORT faults, NOISE faults, and CONSTANT faults), that we
focus on in this paper, cause the faulty sensor readings to deviate from the normal pattern
exhibited by true (or non-faulty) sensor readings, and are derived from a “data centric” view
of sensor faults [Ni et al. 2008]. These three fault types have been observed in several real-
world deployments [Ramanathan et al. 2006; Tolle et al. 2005], and hence, it is important to
understand their prevalence and develop automated techniques for detecting them. Given
these three fault models, our paper makes the three contributions described below.

Before describing our contributions, we note that not all sensor data faults fall within the
three fault categories considered in this paper. Ni et al. [Ni et al. 2008] provide examples
of sensor data faults due to calibration errors that can persist during the entire deployment.
For example, anoffset faultdue to calibration errors causes all the sensor readings to differ
from the true value by a constant amount, but the sensor readings still exhibit normal
patterns (e.g., a diurnal variation in case of ambient temperature).

Detection Methods.We first explore four qualitatively different techniques for detecting
such faults from a trace of sensor readings. Our decision to consider four qualitatively
different fault detection techniques is motivated by the following two factors. Firstly, our
goal is to explore the space of fault detection techniques that are suitable for detecting
the class of data faults – SHORT, NOISE, and CONSTANT – examined in this paper.
Secondly, as one might expect, and as we shall see later in thepaper, no single method
is perfect for detecting the different types of faults we consider in this paper. Intuitively,
then, it makes sense to explore the space of detection techniques to understand the trade-
offs in detection accuracy versus the robustness to parameter choices and other design
considerations. This is what we have attempted to do with respect to the methods that we
have chosen, from among the existing general types of fault detection methods, and our
choice of qualitatively different approaches exposes differences in the trade-offs.

All four methods follow a common framework for fault detection: they characterize the
“normal” behavior of sensor readings, and identify significant deviations from this “nor-
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mal” as faults. However, in order to facilitate a systematicexploration of the space of de-
tection techniques, we choose/design these methods based on four different types/sources
of information relevant for detecting the SHORT, NOISE and CONSTANT data faults. The
four different classes of methods discussed in this paper are as follows.

—Rule-based methodsleveragedomain knowledge about sensor readingsto develop
heuristic rules/constraints that the sensor readings mustsatisfy.

—Estimation methodsdefine“normal” sensor behavior by leveragingspatial correlation
in measurements at different sensors.

—Time series analysis based methodsleveragetemporal correlations in measurements
collected by the same sensorto estimate the parameters of an (a priori selected) model
for these measurements. A sensor measurement is compared against its predicted value,
computed using time series forecasting, to determine if it is faulty.

—Learning-based methodsinfer a model for the normal and faulty sensor readings using
training data, and then statistically detect and identify classes of faults.

While all four methods are geared towards automated fault detection, our design is not fully
automated. In particular, parameter selection (e.g., selecting the fault detection thresholds
for Rule-based methods) using a combination of domain knowledge and heuristics (as
summarized in Table I), requires manual intervention.

While our choice and our design of the four fault detection methods is targeted at
SHORT, NOISE, and CONSTANT faults, we discuss extensions tothe Estimation method,
the Time series analysis based methods, and the learning-based methods that incorporate
information from multiple sensors co-located on the same node (inter-sensor relationships)
and/or information from sensors attached to different nodes (inter-node relationships) in
Section 7. Leveraging these inter-node and inter-sensor relationships can be useful for de-
tecting data faults not considered in this paper, for example, those caused by calibration
errors [Ni et al. 2008].

Evaluation using injected faults. By artificially injecting faults of varying intensity into
sensor data sets, we are able to study the detection performance of these methods. We
find that these methods sit at different points on the accuracy/robustness spectrum. While
rule-based methods can detect and classify faults, they canbe sensitive to the choice of
parameters. By contrast, the estimation method we study cantolerate errors in parameter
choices (for example, errors in estimating the correlationbetween readings from different
sensor nodes) but relies on spatial correlations and cannotclassify faults. Our seasonal
time series model based method exploits temporal correlations in sensor measurements to
detect faults. It is more accurate and robust at detecting SHORT faults than longer dura-
tion NOISE faults, and incurs more false positives than the other methods. However, it
can detect the onset of long duration NOISE and/or CONSTANT faults accurately; even in
situations where all the sensor nodes suffer from faults simultaneously. Finally, our learn-
ing method (based on Hidden Markov Models) is cumbersome, partly because it requires
training, but it can fairly accurately detect and classify faults. Furthermore, at low fault
intensities, these techniques perform qualitatively differently: the learning method is able
to detect more NOISE faults but with higher false positives,while the rule-based method
detects more SHORT faults, with the estimation method’s performance being intermediate.
The time series forecasting based method is able to detect low intensity SHORT faults and
short duration NOISE faults but incurs a high false positiverate. It has a low detection rate
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for long duration NOISE faults. Motivated by the different performance of these methods,
we also propose and evaluate hybrid detection techniques, which combine these methods
in ways that can be used to reduce false positives or false negatives, whichever is more
important for the application.

Evaluation on Real-World Datasets.Armed with this evaluation, we apply our detection
methods (or, in some cases, a subset thereof) to four real-world data sets. The longest of
our data sets spans six months, and the shortest spans one day. We examine the frequency
of occurrence of faults in these real data sets, using a very simple metric: the fraction
of faulty samples in a sensor trace. We find that faults are relatively infrequent: often,
SHORT faults occur once in about two days in one of the data sets that we study, and
NOISE faults are even less frequent. However, if a fault is not detected promptly, it can
corrupt a significant fraction of samples – for one dataset, 15-35% of samples are affected
by a combination of NOISE and CONSTANT faults across different nodes. We find no
spatial or temporal correlation among faults. The different data sets exhibit different levels
of faults: for example, in a six months-long dataset, less than 0.01% of the samples are
affected by faults, while in another 3-month long dataset, close to 20% of the samples
are affected. Finally, we find that our detection methods incur false positives and false
negatives on these data sets, and hybrid methods are needed to eliminate one or the other.

Our study informs the research on ensuring data quality. Even though we find that faults
are relatively rare, they are not negligibly so, and carefulattention needs to be paid to
engineering the deployment and to analyzing the data. Furthermore, our detection methods
could be used as part of an online fault diagnosis system, i.e., where corrective steps could
be taken during the data collection process based on the diagnostic system’s results.1

2. SENSOR FAULTS

In this section, we first visually depict some faults in sensor readings observed in real
datasets. These examples are drawn from the same real-worlddatasets that we use to
evaluate prevalence of sensor faults; we describe details about these datasets later in the
paper. These examples give the reader visual intuition for the kinds of faults that occur in
practice, and motivate the fault models we use in this paper.

Figure 1(a) shows readings from a sensor reporting chlorophyll concentration measure-
ments from a sensor network deployment on lake water. Due to faults in the analog-to-
digital converter board the sensor starts reporting values4−5 times greater than the actual
chlorophyll concentration. Similarly, in Figure 1(b), oneof the samples reported by a
humidity sensor is roughly 3 times the value of the rest of thesamples, resulting in a no-
ticeable spike in the plot. Finally, Figure 2 shows that the variance of the readings from an
accelerometer attached to a MicaZ mote measuring ambient vibration increases when the
voltage supplied to the accelerometer becomes low. In the absence of ground truth values
(as is the case with the data shown in Figures 1 and 2), strictly speaking, the term fault

1A note to the reviewer: A preliminary version of this paper appeared in the Fourth Annual IEEE Conference
on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2007 [Sharma et al. 2007]. Apart
from the material presented in the preliminary version, this manuscript describes and evaluates a time series
forecasting based fault detection method, and analyzes a muchlarger dataset from the SensorScope deployment.
The SensorScope dataset that we analyzed in [Sharma et al. 2007] consisted of readings collected over a month
by 31 weather stations, whereas the SensorScope dataset analyzed in Section 5.1 [SensorScope 2006] consists of
readings collected by 64 weather stations over 6 months.
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Fig. 1. Errors in sensor readings
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Fig. 2. NOISE fault: Increase in variance

refers to a deviation from the expected value. Hence, these data faults can also be thought
of asanomalies.

The faults in sensor readings shown in these figures characterize the kind of faults we
observed in the four datasets from wireless sensor network deployments that we analyze
in this paper. We know of two other sensor network deployments [Tolle et al. 2005; Ra-
manathan et al. 2006] that have observed similar faults.

In this paper, we explore the following three fault models motivated by these examples:

(1) CONSTANT: The sensor reports a constant value for a large number of successive
samples. The reported constant value is either very high or very low compared to the
“normal” sensor readings (Figure 1(a)) and uncorrelated tothe underlying physical
phenomena.

(2) SHORT: A sharp change in the measured value between two successivedata points
(Figure 1(b)).

(3) NOISE: The variance of the sensor readings increases. Unlike SHORT faults that
affect a single sample at a time, NOISE faults affect a numberof successive samples
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(see Figure 2).

SHORT andNOISE faults were first identified and characterized in [Ramanathan et al.
2006] but only for a single dataset. Ni et al. [Ni et al. 2008] categorize the three fault types
defined above as representing the “data-centric” view of classifying faults, i.e. these fault
types are defined in terms characteristics of the faulty data.

2.1 What causes sensor faults ?

While it is not always possible to ascertain the root cause forsensor faults, several system
(hardware and software) faults have been known to result in sensor faults.

The typical hardware faults that have been observed to causesensor faults include dam-
aged sensors, short-circuited connections, low battery, and calibration errors. For the sen-
sor faults shown in Figure 1(a), we were able to establish that they were caused due a
fault in the analog-to-digital converter. Ramanathan et al. [Ramanathan et al. 2006] and
Szewczyk et al. [Szewczyk et al. 2004] identified short circuit connections as the reason be-
hind abnormally large or small sensor readings resembling SHORT or NOISE faults. Low
battery voltage resulted in a combination of NOISE and CONSTANT faults at temperature
sensors (see Figure 15) during the INTEL Lab, Berkeley deployment [INTEL 2004]).

A well-known root cause for sensor data faults is calibration problems [Ramanathan
et al. 2006; Ni et al. 2008]. Calibration errors can corrupt the sensor measurements in
different ways: (i) the measured value can differ from its true value by a constant amount
(Offset fault), (ii) the rate of the measured data can differfrom the true/expected rate (Gain
fault), and (iii) the parameters associated with a sensor’soriginal calibration formulas may
change during a deployment (Drift fault). Calibration errors can affect all the samples
collected during a deployment, and the faulty data may stillexhibit normal patterns. For
example, ambient temperature measurements affected by an Offset fault will still exhibit
a diurnal pattern. Without the availability of ground truthvalues or a model for expected
sensor behavior, detecting data faults due to calibration errors remains an open problem.
In Section 7, we discuss extensions to our fault detection methods that can be used to
automatically generate a model for expected sensor behavior by leveraging spatial corre-
lation across sensor nodes. Bychkovskiy et al. [Bychkovskiy et al. 2003], and Balzano
and Nowak [Balzano and Nowak 2007] exploit spatial correlation across sensor nodes to
develop methods for online sensor calibration that can be used to recover from calibration
errors during a deployment, once such an error is detected.

An example of software fault is given in [Ni et al. 2008] whereNi et al. identify instances
of SHORT faults due to software errors during communicationand data logging.

In this paper, our focus is on the prevalence of the SHORT, NOISE, and CONSTANT
data faults and methods for detecting these faults. We do notattempt to precisely establish
the root causefor these faults. The reader is referred to [Ni et al. 2008] for a detailed
summary of known (system-level) root causes for sensor faults.

3. DETECTION METHODS

In this paper, we explore and characterize four qualitatively different detection methods
for detecting SHORT, NOISE and CONSTANT faults. As discussed in Section 1, these
methods leveraging different types/sources of information for fault detection. Rule-based
methods – SHORT and NOISE rules – leveragedomain knowledge about sensor read-
ings to develop heuristic rules/constraints that the sensor readings must satisfy. The Lin-
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ear Least-Squares Estimation (LLSE) based method defines “normal” sensor behavior by
leveragingspatial correlation in measurements at different sensors. The autoregressive
intergrated moving average (ARIMA) model based time seriesanalysis methods leverage
temporal correlations in measurements collected by the same sensorto estimate the pa-
rameters of an (a priori selected) model for these measurements. A sensor measurement is
compared against its predicted value, computed using time series forecasting, to determine
if it is faulty. Finally, the learning-based hidden markov model (HMM) methodinfers a
model for the normal and faulty sensor readings using training data, and then statistically
detect and identify classes of faults. These methods are described in detail in the rest of
this section. Table I provides a summary of these methods (along with their variations and
parameters).

3.1 Rule-based (Heuristic) Methods

Our first class of detection methods uses two intuitive heuristics for detecting and identify-
ing the fault types described in Section 2.

NOISE Rule: Compute the standard deviation of sample readings within a window N. If
it is above a certain threshold, the samples are corrupted bythe NOISE fault.
To detect CONSTANT faults, we use a slightly modified NOISE rule where we classify
the samples as corrupted by CONSTANT faults if the standard deviation is zero. The
window sizeN can be in terms of time or number of samples. Clearly, the performance
of this rule depends on the window sizeN and the threshold. Determining the best value
for the window sizeN requires domain knowledge, in particular, a good understanding of
thenormalsensor readings. We discuss a heuristic for selecting the threshold value later
in this section.

SHORT Rule: Compute the rate of change of the physical phenomenon being sensed
(temperature, humidity etc.) between two successive samples. If the rate of change is
above a threshold, it is an instance of a SHORT fault.

For well-understood physical phenomena like temperature,humidity etc., the thresholds
for the NOISE and SHORT rules can be set based on domain knowledge. For example,
[Ramanathan et al. 2006] uses feedback from domain scientists to set a threshold on the
rate of change of chemical concentration in soil.

For automated threshold selection, [Ramanathan et al. 2006] proposes the following
technique:

— Histogram based method: Divide the time series of sensor readings into groups of
N samples. Plot the histogram of the standard deviations or the rate of change observed for
these groups ofN samples. Select one of the modes of the histogram as the threshold.

Clearly, if the histogram does not have a (distinct) mode, then the histogram based method
will fail to select a good threshold. For the NOISE rule, the Histogram method for auto-
mated threshold selection will be most effective when, in the absence of faults, the his-
togram of standard deviations is uni-modal and sensor faults affect the measured values in
such a way that the histogram becomes bi-modal. However, this approach is sensitive to
the choice ofN; the number of modes in the histogram of standard deviationsdepends on
N. Figure 3 shows the effect ofN on the number of modes in the histogram computed for
sensor measurements taken from a real-world deployment [NAMOS 2005]. The measure-
ments do not contain a sensor fault, but choosing a large value for N (500 or 1000) can
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result in the Histogram method selecting an incorrect threshold. For example, choosing
N = 1000 gives a multi-modal histogram (Figure 3.c); this wouldresult in false positives,
if we select one of the two modes greater than 20 as the fault detection threshold. As stated
earlier, selecting the correct value for the parameterN requires a good understanding of
the normal sensor readings. In particular, a domain expert would have to suggest that
N = 1000 in our previous example was an unrealistic choice of parameter. In practice, one
should also try a range of values forN to ensure that the samples flagged as faulty are not
just an artefact of the value selected forN.
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Fig. 3. Histogram Shape

3.2 An Estimation-Based Method

Is there a method that perhaps requires less domain knowledge in setting parameters? For
physical phenomena like ambient temperature, light etc. that exhibit a diurnal pattern,
statistical correlations between sensor measurements canbe exploited to generate estimates
for the sensed phenomenon based on the measurements of the same phenomenon at other
sensors. Regardless of the cause of the statistical correlation, we can exploit the observed
correlation in a reasonably dense sensor network deployment to detect anomalous sensor
readings.

More concretely, suppose the temperature values reported by sensorss1 ands2 are cor-
related. Lett̂1(t2) be the estimate of temperature ats1 based on the temperaturet2 reported
by s2. Let t1 be the actual temperature value reported bys1. If |t1 − t̂1| > δ , for some
thresholdδ , we classify the reported readingt1 as erroneous. If the estimation technique is
robust, in the absence of faults, the estimate error (|t1− t̂1|) would be small whereas a fault
of the type SHORT or CONSTANT would cause the reported value to differ significantly
from the estimate.

In this paper we consider the Linear Least-Squares Estimation (LLSE) method [Kailath
1977] as the estimation technique of choice. In scalar form,the LLSE equation is

t̂1(t2) = mt1 +
λt1t2

λt2
(t2−mt2) (1)

wheremt1 and mt2 are the average temperatures ats1 and s2, respectively. λt1t2 is the
covariance between the measurements reported bys1 ands2, andλt2 is the variance of the
measurements reported bys2.
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In the real-world, the valuet2 might itself be faulty. In such situations, we can estimate
t̂1 based on measurements at more than one sensor using the LLSE equations for the vector
case (a straight forward and well-known generalization of the scalar form equation).

In general, the information needed for applying the LLSE method may not be available
a priori. In applying the LLSE method to a real-world dataset, we divide the dataset into a
training set and a test set. We compute the mean and variance of sensor measurements, and
the covariance between sensor measurements based on the training dataset and use them
to detect faulty samples in the test dataset. This involves an assumption that, in the ab-
sence of faults or external perturbations, the physical phenomenon being sensed does not
change dramatically between the time when the training and test samples were collected.
We found this assumption to hold for many of the datasets we analyzed.

Threshold for fault detection: We set the thresholdδ used for detecting faulty samples
based on the LLSE estimation error for the training dataset.We use the following two
heuristics for determiningδ :

— Maximum Error : If the training data has no faulty samples, we can setδ to be the
maximum estimation error for the training dataset, i.e.δ = max{|t1− t̂1| : t1 ∈ TS} where
TSis set of all samples in the training dataset.

— Confidence Limit: In practice, the training dataset will have faults. If we can rea-
sonably estimate, e.g., from historical information, the fraction of faulty samples in the
training dataset, (say)p%, we can setδ to be the upper confidence limit of the(1− p)%
confidence interval for the LLSE estimation errors on the training dataset.
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Fig. 4. LLSE on NAMOS dataset

Figure 4 is a visual demonstration of the feasibility of LLSE, derived from one of our
datasets. It compares the LLSE estimate of sensor readings at a single nodeA based on
the measurements reported by a neighboring nodeB, with the actual readings atA. The
horizontal line in Figure 4(b) represents the thresholdδ using theMaximum Errorcriterion.
The actual sensor data had no SHORT faults and the LLSE methodclassified only one out
of 11,678 samples as faulty. We return to a more detailed evaluation of LLSE-based fault
detection in later sections.
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Finally, although we have described an estimation-based method that leverages spatial
correlations, this method can equally well be applied by only leveraging temporal correla-
tions at a single node. By extracting correlations induced by diurnal variations at a node,
it might be possible to estimate readings, and thereby detect faults, at that same node. The
method described next presents one approach for exploitingthese temporal correlations for
fault detection.

3.3 A Time Series analysis based Method

Physical phenomena such as temperature, ambient light, etc. exhibit a diurnal pattern. If
these phenomena are measured periodically for a long time interval (as is the case with
several sensor network deployments), the resulting time series of measurements by a sen-
sor captures the diurnal pattern as well as other (shorter) time scale temporal correlations.
These temporal correlations can be exploited to construct amodel for the sensor measure-
ments using time series analysis. Time series analysis is a popular technique for analyzing
periodically collected data. For example, it is used by businesses to model and forecast
demand for electricity, sale of airline tickets, etc. that exhibit temporal correlations like a
diurnal and/or a seasonal pattern [Chatfield 2000].

In this paper, we use a multiplicative(0,1,1)x(0,1,1)s seasonal ARIMA time series
model for fault detection, where the parameterscaptures theperiodic behaviorin the sen-
sor measurement time series; for example, temperature measurements exhibit similarities
with periods= 24 hours. The multiplicative seasonal model is widely used for modeling
and forecasting of time series with periodicity [Box et al. 1994]. It can be written explicitly
as,

zt = zt−1 +zt−s−zt−s−1 +at −θat−1−Θat−s+θΘat−s−1 (2)

wherezt is the sensor reading andat is a sample drawn from a white noise process at time
t. Equation (2) shows how the model accounts for periodicity:zt depends not only on
the measurement at timet −1 but also on measurements mades time samples in the past,
namely at timest − s and t − s− 1. For more details on seasonal models, we refer the
interested reader to [Box et al. 1994].

Fault detection using forecasting: We used the implementation of maximum likelihood
(ML) computational method (Chapter 7, [Box et al. 1994]) in SAS [SAS ], a commonly
used software package for time series analysis, to estimatethe two parameters,θ andΘ,
of the model using training data. To detect faults in a sensormeasurement time series, we
first forecast the sensor measurement at timet based on our model (using standard time
seriesforecastingtools available in SAS). We then compute the difference between actual
sensor measurement at timet and its predicted value, and flag the measurement as faulty if
this difference is above a thresholdδ .

We used two different durations of forecasting for fault detection.

— One-step ahead: We forecast the sensor measurement for timet + 1, ẑt+1, based
on the measurements up to timet. We then compare the measurement at timet +1, zt+1,
against its predicted value ˆzt+1 to determine if its faulty.

— L-step ahead: Using measurements up to timet, we forecast the values for time
t + i, 1 ≤ i ≤ L with L > 1. We then compare the actual measurements for timet + i,
1≤ i ≤ L against their forecast value. If the difference between themeasured value and its
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forecast for any sample is greater thanδ , we flag that sample as faulty.

One-step ahead forecasting is more suited for detecting SHORT faults. The idea be-
hind L-step ahead forecasting is to detect faults that last for long durations (for example,
the fault shown in Figure 15). However, the potential error in our forecast grows withL
(Chapter 5, [Box et al. 1994]). In order to control false positives due to erroneous forecast
values, we restrictL ≤ s.

Threshold for fault detection: We use two heuristics to determine the thresholdδ for
fault detection.

— Forecast Confidence Interval: For each sensor measurement in our “test” dataset,
we compute both the forecast value and the 95% confidence interval for the forecast value.
If a sensor measurement lies outside the 95% confidence interval for its forecast value, we
flag that measurement as faulty.
Instead of using a fixed thresholdδ for all the measurements, the confidence interval based
heuristic adapts the threshold value dynamically for each measurement. If the confidence
interval for the forecast value for a measurement is small (indicating that we have a high
confidence that the forecast value represents the true value), then the thresholdδ for that
measurement is small. Similarly, if the confidence intervalfor the forecast value for a
measurement is large, then the threshold for that measurement is large.

— Forecast Error: If the sensor measurement time series is monitored continuously
for a long duration for the presence of faults, we can use the difference in forecast values
and actual measurements observed in the past to set the thresholdδ using the “Confidence
Limit” heuristic described for LLSE based method in Section3.2.

Alternatives to the ARIMA model : The choice of a time series model for sensor mea-
surements is determined by the nature of the phenomenon being measured. For example,
if the sensor measurements do not exhibit periodicity, an autoregressive (AR) or a mov-
ing average (MA) (or a combination of the AR and MA models called the autoregressive
moving average (ARMA) model) would be more appropriate for time series analysis. The
model that we use in this work is one of the simplest seasonal models available. It is possi-
ble that a more complex season model can be a better fit for the sensor measurement time
series that we analyze in this paper. However, using a more complex model requires esti-
mating more parameters, and generally, implies a more computationally intensive training
phase requiring a larger training dataset. Our results withreal-world datasets (Section 5)
show that the model that we use in this paper is effective at detecting faults in a time series
of temperature measurements. The issue of determining thebest-fittime series model for
modeling phenomena such as outdoor temperature and humidity is not the focus of our
work.

3.4 A Learning-based Method

For phenomena that may not be spatio-temporally correlated, a learning-based method
might be more appropriate. For example, if the pattern of “normal” sensor readings and
the effect of sensor faults on the reported readings for a sensor are well understood, then we
can use learning-based methods, for example Hidden Markov Models (HMMs) and neural
networks, to construct a model for the measurements reported by that sensor. In this paper
we chose HMMs because they are a reasonable representative of learning based methods
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that can simultaneously detect and classify sensor faults.Determining the most effective
learning based method is outside the scope of this paper.
A Hidden Markov Model (HMM) is characterized by the following.

—The number of states in the model,S.

—The set of possible measurements,O.

—For each states∈ S, the conditional probability of observing a measuremento ∈ O,
P{o | s}.

—The state transition probabilitiesA = {ai j } whereai j represents the probability of a
transition to statej from statei.

—The initial state distributionπ = {πi} whereπi is the probability that the HMM starts in
statei.

Although the states of an HMM are hidden, we can attach some physical significance
to them. For example, based on our characterization of faults in Section 2, for a sensor
measuring ambient temperature, we can use a 5-state HMM withthe states corresponding
to day, night, SHORT faults, NOISE faults, and CONSTANT faults. Such an HMM can
capture not only the diurnal pattern of temperature but alsothe distinct patterns in the
reported values in the presence of faults.

For the basic HMM, the set of possible measurementsO is discrete. In this paper, we use
the basic HMM, and when modeling temperature, humidity, etc. we make the observation
space discrete by clustering the sensor readings into bins.For example, we bin tempera-
ture measurements into bins of width 0.1◦C. If the observation space is continuous (and
cannot be made discrete), one can use a continuous density HMM (CDHMM), defined for
a continuous observation space. However, a CDHMM is computationally more complex
than a basic HMM. We chose a basic HMM over CDHMM because (a) wecould make
the observation space discrete without introducing significant rounding-off errors, and (b)
we wanted to avoid the additional computational complexityinvolved in using a CDHMM
(provided the basic HMM based method proved effective at detecting sensor faults). Our
results with injected faults (Section 4) and real- world datasets (Section 5) demonstrate
that our basic HMM based method is effective at detecting thetypes of sensor faults we
consider in this paper.

Given values forS,O,P{o | S},A, andπ, and a sequence of sensor measurements{Ot},
the HMM can generate the most likely stateSt that resulted in observationOt for each
observation. If the stateSt associated with an observationOt is a fault state (SHORT,
NOISE, or CONSTANT), then we classify observationOt as faulty. Thus, our HMM
based method can detect as well as classify faults.

In order to estimate the parametersS,O,P{o | S},A, andπ of the HMM used for fault
detection, we used a supervised learning technique. We injected faults into (fault-free)
training dataset (using the techniques described in Section 4), labeled each sample as fault-
free or faulty with a particular fault type, and used this labeled data for estimating the
parameters of the HMM. For details on the techniques used forestimating the parameters
of an HMM, and for generating the most likely sequence of states for a given sequence of
observations, please refer to the tutorial by Rabiner [1989]. We used the implementation
of HMMs provided in MATLAB [MATLAB ].
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3.5 Hybrid Methods

Finally, observe that we can use combinations of the Rule-based, LLSE, ARIMA and
HMM methods to eliminate/reduce the false positives and negatives. In this paper, we
study two such schemes:

— Hybrid(U) : Over two (or more) methods, this method identifies a sample as faulty
if at least one of the methods identifies the sample as faulty.Thus, Hybrid(U) is intended
for reducing false negatives (it may not eliminate them entirely, since all methods might
fail to identify a faulty sample). However, it can suffer from false positives.

— Hybrid(I) : Over two (or more) methods, this method identifies a sample as faulty
only if both (all) the methods identify the sample as faulty.Essentially, we take an in-
tersection over the set of samples identified as faulty by different methods. Hybrid(I) is
intended for reducing false positives (again, it may not eliminate them entirely) but suffers
from false negatives.

Several other hybrid methods are possible. For example, Hybrid(U) can be easily modi-
fied so that results from different methods have different weights in determining if a mea-
surement is faulty. This would be advantageous in situations where a particular method or
heuristic is known to be better at detecting faults of a certain type.

Table I summarizes the methods (and their specific variations) described in this section.
It also highlights the parameters associated with each method that must be determined –
using expert knowledge, heuristics or empirically (trial and error) – in order to be able to
use these methods for fault detection. For each parameter, we also specify, within brackets,
the approaches used in this paper for determining their value.

Method Parameters
SHORT & NOISE rules N: sample window size (domain knowledge),

δ : threshold for fault detection (Histogram method)
Linear Least-Squares Estimation (LLSE) δ : threshold for fault detection

(Maximum training error, Confidence Limit)
ARIMA model s: seasonality (domain knowledge)

ARIMA model: One-step δ : threshold for fault detection
(Forecast Confidence Interval, Forecast error)

ARIMA model: L-step L: look-ahead forecast parameter
(domain knowledge and empirically),

δ : threshold for fault detection
(Forecast Confidence Interval, Forecast error)

HMM Number of states (domain knowledge)

Table I. Fault Detection Methods

4. EVALUATION: INJECTED FAULTS

Before we can evaluate the prevalence of faults in real-world datasets using the methods
discussed in the previous section, we need to characterize the accuracy and robustness of
these methods. To do this, we artificially injected faults ofthe types discussed in Sec-
tion 2 into sensor measurements from a real-world dataset containing measurements for
chlorophyll concentration in lake water [NAMOS 2005]. Ideally, before injecting faults,
we should ensure that the dataset does not have any faulty samples. However, since we did
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not have ground truth information about faults for this dataset, we relied on a combination
of visual inspection, and feedback from the members of the NAMOS project to ensure (to
the extent possible) that the dataset did not contain any faults.

This methodology has two advantages. Firstly, injecting faults into a dataset gives us
an accurate “ground truth” that helps us better understand the performance of a detection
method. Secondly, we are able to control theintensityof a fault and can thereby explore
the limits of performance of each detection method as well ascomparatively assess differ-
ent schemes at low fault intensities. Many of the faults we have observed in existing real
datasets are of relatively high intensity; even so, we believe it is important to understand
the behavior of fault detection methods across a range of fault intensities, since it is unclear
if faults in future datasets will continue to be as pronounced as those in today’s datasets.

Sensor measurements for injecting faults. For evaluating the Rule-based methods, LLSE,
HMM and the two hybrid methods, we inject NOISE faults into measurements of chloro-
phyll concentration in lake water collected by buoy number 106 during the NAMOS de-
ployments in October, 2005 [NAMOS 2005]. Buoy number 106 collected a measurement
every 8 seconds, and collect 22,600 measurements in total. We use the samples collected
during the first 24 hours (the first 11,000 samples) as training data to train LLSE and the
HMM. We inject Noise faults into the remaining samples, and we use these samples to test
our methods. To train the HMM, we inject faults in the training data as well. These faults
were of the same duration and intensity as the faults used forcomparing different methods.
We did not inject any faults in the training data for LLSE.

The samples from the NAMOS deployment did not provide enoughtraining data to
estimate the parameters of our ARIMA model, and hence, we usesamples from the Sen-
sorScope deployment to evaluate the ARIMA model based method. We injected NOISE
faults into temperature measurements collected by weatherstation 3 during the SensorScope
deployment [SensorScope 2006]. This weather station took atemperature measurement
every 30 seconds. We estimate the parameters of the ARIMA model using samples col-
lected over 3 days (8640 total samples) by station 3. We inject NOISE faults into samples
from another day (2880 samples collected over 24 hours), anduse these samples to test our
ARIMA model based methods.

Below, we discuss the detection performance of various methods for each type of fault.
We describe how we generate faults in the corresponding subsections. We use three met-
rics to understand the performance of various methods: the number of faults detected,
false negatives, and false positives. More specifically, weuse the fraction of samples with
faults as our metric, to have a more uniform depiction of results across the data sets. For
the figures pertaining to this section and Section 5, the labels used for different detec-
tion methods are:R: Rule-based,L : LLSE, H: HMM, OS: ARIMA model based One-step
ahead forecasting,LS: ARIMA model based L-step ahead forecasting,U:Hybrid(U), and
I : Hybrid(I).

4.1 SHORT Faults

To inject SHORT faults, we picked a samplei and replaced the reported valuevi with
v̂i = vi + f × vi . The multiplicative factorf determines the intensity of the SHORT fault.
We injected SHORT faults with intensityf = {1.5,2,5,10}. Injecting SHORT faults in
this manner (instead of just adding a constant value) does not require the knowledge of the
range of “normal” sensor readings.
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(a) SHORT Rule, LLSE, HMM, and Hybrid Methods (b) ARIMA Model

Fig. 5. Injected SHORT faults

Figures 5.a and 5.b depict the performance of our various methods for detecting SHORT
faults of different intensities. The horizontal line in both the figures represents the actual
fraction of samples with injected faults. The four sets of bar plots correspond to increasing
intensity of SHORT faults (left to right).

The ARIMA model based methods incur significantly higher number of false positives
compared to other methods. We plot their performance separately in Figure 5.b in order to
be able to depict the performance of all the other methods with better clarity in Figure 5.a.
For the Hybrid(U) and Hybrid(I), we include all the methods except the ARIMA model
based methods. Including the ARIMA model based method in ourhybrid methods would
significantly increase the number of false positives for theHybrid(U) method.

The SHORT rule and LLSE do not have any false positives; hence, the Hybrid(I) method
exhibits no false positives (thus eliminating the false positives incurred by the HMM based
method). However, for faults with low intensity (f = 1.5,2), the SHORT rule as well as
LLSE have significant false negatives, and hence, the Hybrid(I) method also has a high
number of false negatives for these intensities.

The HMM method has fewer false negatives compared to SHORT rule and LLSE but it
has false positives for the lowest intensity (f = 1.5) faults. While training the HMM for
detecting SHORT faults, we observed that if the training data had a sufficient number of
SHORT faults (on the order of 15 faults in 11000 samples), theintensity of the faults did
not affect the performance of the HMM.

It is evident from Figure 5.a that Hybrid(U) performs like the method with more detec-
tions and Hybrid(I) performs like the method with less detections (while eliminating the
false positives). However, in general this does not have to be the case, e.g., in the absence
of false positives, Hybrid(U) could detect more faults thanthe best of the methods and
Hybrid(I) could detect fewer faults than the worst of the methods (as illustrated on the real
data sets in Section 5).

Our ARIMA model based methods do not perform as well as the other methods. Even
though the One-step (OS) and the L-step (LS) ahead forecasting methods are able to detect
most of the high intensityf = {5,10} faults, overall, they incur a significantly higher
fraction of false positives than the other methods. However, comparing the performance
of One-step ahead forecasting method against the L-step ahead forecasting withL = 120
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samples shows that for all fault intensities, One-step ahead forecasting performs better
than the L-step ahead forecasting, especially for faults with intensity f = 10. This is to be
expected because fault detection with L-step ahead forecasting is better suited for detecting
faults that affect more than one sample, for example NOISE and CONSTANT faults.

The choice of threshold used to detect a faulty sample governs the trade-off between
false positives and false negatives; reducing the threshold would reduce the number of
false negatives but increase the number of false positives.We select the threshold using the
histogram method (with window sizeN = 100) for the Rule-based methods, the “Maximum
Error” heuristic for LLSE, the “Forecast Error” heuristic for One-step ahead forecasting,
and the “Forecast Confidence Interval” heuristic for L-stepahead forecasting.

4.2 NOISE Faults

To inject NOISE faults, we pick a set of successive samplesW and add a random value
drawn from a normal distribution,N(0,σ2), to each sample inW. We vary the intensity of
NOISE faults by choosing different values forσ . The Low, Medium and High intensity of
NOISE faults correspond to 0.5x, 1.5x, and 3x increase in standard deviation of the samples
in W. Apart from varying the intensity of NOISE faults, we also vary their duration by
considering different numbers of samples inW.

Duration of Noise faults. We inject NOISE faults of duration (number of samples inW)
3000 samples, 2000 samples, 1000 samples, and 100 samples for evaluating the NOISE
rule, LLSE, HMM, and the two hybrid methods. Since these samples (from the NAMOS
deployment) were collected at an interval of 8 seconds, in terms of time, these fault dura-
tions range from longer than 6 hours (for 3000 samples) to less than 15 minutes (for 100
samples).

For our ARIMA model based method, like in the case of injectedSHORT faults, we
use One-step ahead forecasting and L-step ahead (L = 120) forecasting for detecting the
(injected) NOISE faults. In order to understand the impact of the parameterL on the
performance of the L-step ahead forecasting based NOISE fault detection, we vary the
duration of NOISE faults relative toL = 120. Hence, we inject NOISE faults of duration
720 samples, 120 samples, and 60 samples. Note that a fault affecting 720 samples lasts
for 6 hours because the SensorScope deployment used a sampling interval of 30 seconds.

Figures 6 (|W| = 3000), 7 (|W| = 2000), 8 (|W| = 1000) and 9 (|W| = 100) show the
performance of the NOISE rule, LLSE, HMM and the hybrid methods for NOISE faults
with varying intensity and duration. For the ARIMA model, Figures 10 (|W| = 60), 11
(|W| = 120), and 12 (|W| = 720) show the performance of One-step and L-step (L = 120)
ahead forecasting based fault detection. The horizontal line in each figure corresponds to
the fraction of samples with faults.

4.2.1 Impact of Fault Duration.The impact of NOISE fault duration is most dramatic
for the HMM method. For|W| = 100, regardless of the fault intensity, the number of
faulty samples were not enough to train the HMM model. Hence,Figure (9) does not
show results for HMM. For|W| = 1000 and low fault intensity, we again failed to train
the HMM model. This is not very surprising because for short duration (e.g.,|W| = 100)
or low intensity faults, the data with injected faults is very similar to data without injected
faults. For faults with medium and high intensity or faults with sufficiently long duration,
e.g.,|W| ≥ 1000, performance of the HMM method is comparable to the NOISE rule and
LLSE.
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Fig. 6. NOISE Fault: 3000 samples
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Fig. 7. NOISE Fault: 2000 samples
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Fig. 8. NOISE Fault: 1000 samples
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Fig. 9. NOISE Fault: 100 samples
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Fig. 10. NOISE, ARIMA: 60 samples
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Fig. 11. NOISE, ARIMA: 120 samples

The NOISE rule and LLSE method are more robust to fault duration than HMM in
the sense that we were able to derive model parameters for those cases. However, for
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Fig. 12. NOISE, ARIMA: 720 samples

|W| = 100 and low fault intensity, both the methods fail to detect any of the samples with
faults. The LLSE also has a significant number of false positives for|W| = 100 and fault
intensity 0.5x. The false positives were eliminated by the Hybrid(I) method.

For the ARIMA model based method, One-step ahead forecasting based method detects
fewer faults as the fault duration increases. For example, for |W| = 60 samples and high
fault intensity, One-step forecasting based method detects 50% of faults, but for|W|= 720
samples and high fault intensity, it detects only 9% of the faults. L-step ahead forecast-
ing based method is more robust to increase in fault duration. It detects 41% and 33% of
the high intensity faults when|W| = 60 samples and|W| = 720 samples, respectively, and
hence, the degradation in its performance is not as severe asin case of the One-step ahead
forecasting based method. It is also worth noting that for NOISE faults affecting|W| = 60
samples and|W| = 120 samples, regardless of the fault intensity, One-step ahead forecast-
ing detects more faults than L-step ahead forecasting. However, for NOISE faults affecting
|W|= 720 samples, L-step ahead forecasting detects more faults than One-step ahead fore-
casting. Hence, overall, the One-step ahead forecasting based method is more suited for
detecting short-to-medium duration faults, whereas L-step ahead forecasting based method
is need when the faults last for a long duration.

4.2.2 Impact of Fault Intensity.For medium and high intensity faults, there are no
false negatives for the three methods–NOISE rule, LLSE and HMM. For low intensity
faults, these three methods have significant false negatives. For fault duration and intensi-
ties for which the HMM training algorithm converged, the HMMmethod gives lower false
negatives compared to the NOISE rule and LLSE. However, mostof the time the HMM
method gave more false positives. Hybrid methods are able toreduce the number of false
positives and negatives, as intended. Like the other methods, the ARIMA model based
One-step ahead and L-step ahead forecasting methods perform better (detect more faults
and incur fewer false positives) as the fault intensity increases. High false negatives for
low fault intensity arise because the measurements with injected faults are very similar to
the measurements without faults.

Overall, however, the ARIMA model based method does not perform as well as the other
three methods. For example, for NOISE faults lasting 6 hours(720 samples in case of the
ARIMA model and 3000 samples for the other methods), even with high fault intensity, the
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ARIMA model based method detects 33% of the faults whereas the other three methods
can detect all the faults. The ARIMA model based method also incurs a higher rate of false
positives compared to the other methods.

4.2.3 ARIMA model–Impact of parameter L.The performance results for the ARIMA
model indicate that, for detecting very long duration faults, L-step ahead forecasting is
better suited than the One-step ahead forecasting. However, for high intensity NOISE
faults lasting for 6 hours (affecting 720 samples), by estimating the measurements 1 hour
in advance (using L-step ahead forecasting withL = 120), we could detect only 33% of the
faults. Will increasing the forecasting interval,L, help us detect more faults?
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Fig. 13. High intensity, Long duration NOISE faults
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Fig. 14. CONSTANT and NOISE faults

Figure 13 shows the performance of L-step ahead forecastingtechnique for detecting
high intensity NOISE faults with duration|W| = 720 samples. Contrary to our intuition,
settingL equal to the fault duration (720 samples or 6 hours) detects less faults thanL = 120
samples (1 hour). As we increaseL, the uncertainty in the forecast value grows. Due to
this increased uncertainty, we are forced to set the fault detection thresholdδ to a large
value (using the “Forecast Confidence Interval” heuristic defined in Section 3.3) to prevent
large number of false positives. Even though the variance ofthe NOISE fault is high, for
most of the samples, the change in the sensor measurement (due to the additive noise) is
small compared to the thresholdδ . Hence, fewer faults are detected for large value ofL.
For L = 120 samples, the uncertainty in the forecast value is smaller and hence, we can
set a lower threshold value. By setting a lower threshold value, we are able to detect more
faults because now the change in sensor measurements due to additive noise is larger than
the threshold for a larger fraction of faulty samples. Thus,forecasting too far ahead into
the future (large value ofL) is not always beneficial. The benefits of using a large value of
L to detect long duration faults can be outweighed by the increased error in forecast value
for largeL.

Does there exist a scenario for which increasing the value ofL improves the perfor-
mance of the ARIMA model based L-step ahead forecasting? In the same temperature
measurement time series as the one used to obtain the resultsin Figure 13 (obtained from
the SensorScope deployment), we inject a combination of high intensity NOISE and CON-
STANT faults into 720 samples. The CONSTANT faults add a value of 20 to each sample.
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Figure 14 shows the impact of increasingL on the number of faults detected. As we in-
crease the value ofL, we detect more faults and forL equal to the duration of faults, we
detect all the faults. In this scenario, the faults are of such a high intensity that the increase
in thresholdδ (due to a larger value ofL) is not large enough to cause false negatives. A
similar combination of CONSTANT and NOISE faults occurred in the INTEL lab dataset
[INTEL 2004], and for this dataset, increasing the value ofL enabled us to detect more
faults (refer to Figure 17).

The results shown in Figures 13 and 14 demonstrate that thebestvalue ofL for detecting
long duration faults depends not only on the duration of the faults but also on the difference
in magnitude between the faulty and normal sensor readings.For the real world datasets,
contextual information about the phenomenon being sensed and the nature of faults are
useful in determining the best value forL. For slowly varying measurements like ambient
temperature, humidity, etc., if the long duration faults increase only the variance of the
sensor measurements, limiting the forecast interval to a short duration (for example, an
hour) works best. However, if the faults change both the meanand the variance of the
sensor measurements, matching the forecast interval to thefault duration (to the extent
possible) gives better performance. Apart from using this contextual information, we also
relied on trial and error to determine the value ofL that gave the best performance.

4.3 Other Hybrid methods

We noted earlier that in our evaluation with injected faults, Hybrid(U) performs like the
method with more detections and Hybrid(I) performs like themethod with less detections
(while eliminating the false positives). As a result, for low intensity NOISE faults (see
Figures 6 and 7), Hybrid(U) performs like the HMM, and Hybrid(I) performs like the
NOISE rule.

Note that the LLSE method, apart from detecting faulty measurements, also provides an
estimate of their correct value. We can leverage this fact todesign a hybrid method that
uses two different methodsin sequenceas follows.

—Use the LLSE method to identify (some of the) faulty measurements.

—Replace these measurements with their estimates from LLSE.

—Use this modified time series of measurements as input to another method.

We next evaluate whether the hybrid approach of using two different methods in sequence
can detect more low intensity faults.

LLSE and HMM : We use a combination of LLSE and HMM to detect low intensity
NOISE faults with duration|W| = 3000, and|W| = 2000 samples injected into readings
from the NAMOS, October, 2005 deployment [NAMOS 2005]. These measurements are
also used for the evaluation results shown in Figures 6 and 7.Table II shows a comparison
between the LLSE, the HMM, and the combined LLSE→HMM method. Note that using
the LLSE and the HMM methodsin sequencehelps us detect more faults than either of the
two methods.

LLSE and ARIMA : Low intensity faults can also be detected using a combination of the
LLSE and the ARIMA model based methods. Table III compares the performance of two
in sequencehybrid methods (LLSE→ARIMA (One-step), and LLSE→ARIMA (L-step),
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Duration LLSE HMM LLSE→HMM
# samples

2000 40 68 70
3000 23.3 71 74

Table II. Low Intensity NOISE faults, NAMOS, Percentage of faulty samples detected

L=120) against several other methods for detecting low intensity NOISE faults. The results
in Table III are for the same sensor measurements as the ones used for Figures 10, 11, and
12.

We make three interesting observations based on the resultsshown in Table III. First,
the combined LLSE→ARIMA (L-step) method outperforms the ARIMA (L-step) method,
but its performance is comparable to the LLSE method. Hence,combining LLSE and
ARIMA (L-step) does not provide a significant benefit over using the LLSE method. Sec-
ond, for fault durations of 120 and 720 samples, the LLSE→ARIMA (One-step) hybrid
method outperforms both the LLSE and the ARIMA (One-step) methods; with the hybrid
method detecting 4.3% more faults compared to the best performing method (LLSE)for
the fault duration equal to 720 samples. Third, for fault duration equal to 60 samples, the
hybrid LLSE→ARIMA (One-step) method detects 11.9% fewer faults than the ARIMA
(One-step) method, but it outperforms LLSE by a small margin. Thus, using two different
methodsin sequencemay not always perform better than either of the two methods.

Duration LLSE ARIMA LLSE→ARIMA ARIMA LLSE→ARIMA
# samples (time) (One-step) (One-step) (L-step) (L-step)

60 (0.5 hr.) 23.7 37.3 25.4 1.7 23.7
120 (1 hr.) 23.5 25.2 26.9 0 23.5
720 (6 hrs.) 35.9 7.4 40.2 6.7 37.4

Table III. Low intensity NOISE faults, Percentage of faultysamples detected

Duration LLSE ARIMA LLSE→ARIMA ARIMA LLSE→ARIMA
# samples (time) (One-step) (One-step) (L-step) (L-step)

60 (0.5 hr) 9.6 1 2 0.87 0.97
120 (1 hr) 9.6 0.76 1.8 0.87 0.97
720 (6 hrs) 4.5 0 0.3 0.2 0.2

Table IV. False Positives as % of total # samples (2880)

False positives: Using two (or more) methods in sequence to detect faults canincrease
the number of false positives. Consider the case of using LLSE and ARIMA methods in
sequence. In the first step, we replace the value of all the samples identified as faulty by
their estimate given by the LLSE method. If the LLSE method has false positives, then
we alter the values of these normal (not faulty) samples. In addition, if the estimates from
LLSE are not good (differ significantly from “normal” sensorreadings), these samples
might be identified as faulty by the ARIMA method in the next step.

Table IV compares the false positive rate for the hybrid methods LLSE→ARIMA (One-
step and L-step) against the ARIMA methods. For reference, we also show the false pos-
itive rate for the LLSE method. The increase in the false positive rate is more significant
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for the LLSE→ARIMA (One-step) compared to LLSE→ARIMA (L-step). For both, the
One-step and the L-step methods, we used the Forecast Confidence Interval heuristic (Sec-
tion 3.3) to determine the thresholdδ for fault detection. As discussed in Section 3.3,
the confidence interval is smaller for One-step ahead forecasting (resulting in a smallerδ )
compared to the L-step ahead forecasting. Hence, when used in sequence with the LLSE
method, the ARIMA (One-step) method is more vulnerable to false positives (due to the
false positives from LLSE in the first step) compared to the ARIMA (L-step) method.

In summary, the evaluation presented in Tables II, III, and IV show that if it is possible
to obtain a good estimate of the correct value of an erroneousmeasurement, then using two
methods in sequence can (possibly) detect more faults at theexpense of a (slightly) higher
false positive rate.

5. FAULTS IN REAL-WORLD DATA SETS

We analyze four datasets from real-world deployments – SensorScope [SensorScope 2006],
Great Duck Island (GDI) [Mainwaring et al. 2002], INTEL Berkeley Lab [INTEL 2004],
and NAMOS [NAMOS 2006] – for prevalence of faults in sensor traces. The sensor traces
contain measurements for temperature, humidity, light, pressure, and chlorophyll concen-
tration. All of these phenomena exhibit a diurnal pattern inthe absence of outside pertur-
bation or sensor faults.

Out of the four datasets, we were able to apply all four fault detection methods only to
the SensorScope dataset. We could not apply one or more methods to the other datasets
due to a variety of factors–for example, the NAMOS dataset did not have enough data for
training. We discuss these factors in detail below. Table V provides a summary of the
methods applied to each of the four datasets for fault detection.

Dataset Rule-based LLSE HMM ARIMA
SensorScope [SensorScope 2006] X X X X

INTEL Lab [INTEL 2004] X X X

GDI [Mainwaring et al. 2002] X X

NAMOS [NAMOS 2006] X

Table V. Real-world datasets and Detection methods

5.1 SensorScope

The SensorScope project is an ongoing outdoor sensor network deployment consisting of
weather-stations with sensors for sensing several environmental quantities such as temper-
ature, humidity, solar radiation, soil moisture, and so on [SensorScope 2006]. We analyzed
the temperature measurements collected every 30 seconds over six months at 64 weather
stations.

We did not have the ground truth regarding faulty samples forthis dataset. Since this
dataset is very large (more than 500,000 samples per weatherstation), we used a combi-
nation of visual inspection and Rule-based methods to identify samples with (very likely)
faulty temperature values. The samples identified as faultynot only provide a ballpark esti-
mate for the prevalence of faults, but also serve as a benchmark against which we compare
the performance of other fault detection methods.

Using visual inspection and the SHORT rule, we identified approximately 0.01% of
the total samples as affected by SHORT faults. There was significant variation in the
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Method Detected False Positive
(% of total # faulty samples) (% of total # samples)

HMM 35.3 < 0.01
LLSE 69.8 0.01

ARIMA (One-step) 96.7 0.02
ARIMA (L-step), L=120 76.7 3

Hybrid(I) 25 < 0.01
Hybrid(U) 98.9 3

Table VI. SensorScope: SHORT faults

prevalence of SHORT faults across individual weather stations – some stations did not have
any faulty samples whereas one weather station (ID=39) had more than 0.07% of samples
affected by SHORT faults. We did not find any instance of NOISEand CONSTANT
faults. Table VI shows the performance of various methods. The “Detected” and “False
Positive” percentages are computed by aggregating the number of faulty samples and the
false positives, respectively, over all the weather stations.

Based on the results shown in Table VI, we make the following three observations. First,
the ARIMA (One-step) method performs the best; it detected 96.9% of the faulty samples
and incurred few false positives. Second, our evaluation with injected SHORT faults (Sec-
tion 4.1) showed that the ARIMA (One-step) method is better suited than the ARIMA
(L-step) method for detecting SHORT faults. This observation is confirmed by the relative
performance of the One-step and the L-step ahead forecasting methods for detecting the
SHORT faults in the SensorScope dataset. Third, the HMM and the LLSE methods detect
less faults than the two ARIMA methods but they incur fewer false positives.

5.2 INTEL Lab, Berkeley data set

54 Mica2Dot motes with temperature, humidity and light sensors were deployed in the
Intel Berkeley Research Lab between February 28th and April5th, 2004 [INTEL 2004].
In this paper, we present the results on the prevalence of faults in the temperature readings
(sampled on average once every 30 seconds).

This dataset exhibited a combination of NOISE and CONSTANT faults. Each sensor
also reported the voltage values along with the samples. Inspection of these voltage values
showed that the faulty samples were well correlated with thelast few days of the deploy-
ment when the lithium ion cells supplying power to the motes were unable to supply the
voltage required by the sensors for correct operation.

The faulty samples were contiguous in time (Figure 15). We applied the NOISE rule, the
HMM method (using a simple 2-state HMM model), and the ARIMA One-step and L-step
methods to detect the faulty samples. Interestingly, for this dataset, we could not apply the
LLSE method. NOISE faults across various nodes were correlated, since all the nodes ran
out of battery power at approximately the same time. This breaks an important assumption
underlying the LLSE technique, that faults at different sensors are uncorrelated.

Figure 16 shows the fraction of the total temperature samples (collected by all the motes)
with faults, and the performance of the NOISE rule, the HMM and the hybrid methods at
detecting these faults. We present the performance resultsfor the ARIMA model separately
in Figure 17 for clarity. Both the NOISE rule and HMM have somefalse negatives while
the HMM also has some false positives. For this data set, we could eliminate all the false
positives using Hybrid(I) with NOISE rule and HMM. However,combining the NOISE
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Fig. 15. Intel data set: NOISE faults

rule and HMM for Hybrid(I) incurred more false negatives.
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Fig. 16. Intel data set: Prevalence of NOISE faults
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Fig. 17. Intel data set: ARIMA methods

The fact that this dataset contained sensor measurements collected over two months
enabled us to apply our time series method for fault detection. We set the periodicity
parameters = 2880 because samples were collected every 30 seconds and hence, 2880
samples were collected per day. For each sensor mote, we usedmeasurements collected
over the first 10 days to estimate the parameters of the time series model. The size of
the training dataset was influenced by two factors: (a) the periodicity parameters, and (b)
missing samples. Since our model differences the time series twice (the differences are
(zt −zt−1)− (zt−s−zt−s−1), refer to equation (2)), we discards+1 = 2881 samples (i.e.,
measurements collected over a day). The average yield for INTEL data set was 50%; i.e.
only 50% of the samples collected every 30 seconds at a sensorwere delivered at the base-
station. Due to large number of missing samples per day, we had to include measurements
from more days in the training dataset, in order to have sufficient data for training the
ARIMA model.
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Figure 17 shows the performance of the time series based method with three different
forecasting scenarios: One-step ahead, L-step ahead withL = 120 samples (i.e. 1 hour)
and L-step ahead withL = 2880 samples (i.e. 24 hours). Maximum number of faults are
detected with L-step ahead forecast withL = 2880. This is so because the duration of the
NOISE and CONSTANT faults in the INTEL dataset (Figure 15) was on the order of days,
and hence L-step ahead forecasting with a largeL is needed to detect these long duration
faults. Even forL = 2880 samples, we could not detect two-thirds of the faults. However,
our method was able to detect 90% of the faulty samples reported during the first day on
which the faults started. This shows that our time series based method can detect long
duration faults provided that their duration is shorter than the time series periodicity.

Finally, in this data set, surprisingly there were few instances of SHORT faults. A total
of 6 faults were observed for the entire duration of the experiment (Table VII). All of these
faults were detected by the HMM method, LLSE, the SHORT rule,and the ARIMA model
based method.

ID # Faults Total # Samples
2 1 46915
4 1 43793
14 1 31804
16 2 34600
17 1 33786

Table VII. Intel Lab: SHORT Faults, Temperature

5.3 Great Duck Island (GDI) data set

We looked at data collected using 30 weather motes on the Great Duck Island over a period
of 3 months [Mainwaring et al. 2002]. Attached to each mote were temperature, light, and
pressure sensors, and these were sampled once every 5 mins. Of the 30 motes, the data set
contained sampled readings from the entire duration of the deployment for only 15 motes.
In this section, we present our findings on the prevalence of faults in the readings for these
15 motes.

The predominant fault in the readings was of the type SHORT. We applied the SHORT
rule, the LLSE method and Hybrid(I) to detect SHORT faults inlight, humidity, and pres-
sure sensor readings. We could not apply the ARIMA and the HMMmethods to this
dataset due to a large number of missing (not recorded) observations. Each of the 15 motes
that we considered had more than 60% of the samples missing for at least 18 days, and
more than 10% of the samples missing for at least 56 days. For an ARIMA model with
periodicity s, in order to predict the sensor reading at timet, we need sensor readings at
timest −1, t − s, andt − s−1 (refer to Equation (2), Section 3.3). If any of these three
readings are missing, then the ARIMA model cannot predict the reading at timet. For the
ARIMA methods, one way to tackle the problem of one (or more) missing readings needed
to predict the value at timet can be to use estimates of these missing readings (obtained
from the ARIMA or LLSE method). This works if we can be confident that these estimates
are not erroneous. This approach worked for the INTEL dataset, but did not for the GDI
dataset, mainly because we could not obtain estimates for all the missing samples. Simi-
larly, the large fraction of missing samples also preventedthe training phase of the HMM
method from converging, and hence, we could not use the HMM method on this dataset.
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Figure 18 shows the overall prevalence (computed by aggregating results from all the 15
nodes) of SHORT faults for different sensors in the GDI data set. The Hybrid(I) technique
eliminates any false positives reported by the SHORT rule orthe LLSE method. The
intensity of SHORT faults was high enough to detect them by visual inspection of the
entire sensor readings timeseries. This ground-truth is included for reference in the figure
under the labelV.

It is evident from Figure 18 that SHORT faults are relativelyinfrequent. They are most
prevalent in the light sensor (approximately 1 fault every 2000 samples). Figure 19 shows
the distribution of SHORT faults in light sensor readings across various nodes. We did
not observe any discernible pattern in the prevalence of these faults across different sensor
nodes;

In this data set, NOISE faults were infrequent. Only two nodes had NOISE faults with
a duration of about 100 samples. The NOISE rule detected it, but the LLSE method failed
primarily because its parameters had been optimized for SHORT faults.
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Fig. 18. SHORT Faults in GDI data set
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Fig. 19. SHORT Faults: Light Sensor

5.4 NAMOS data set

Nine buoys with temperature and chlorophyll concentrationsensors (fluorimeters) were
deployed in Lake Fulmor, James Reserve for over 24 hours in August, 2006 [NAMOS
2006]. Each sensor was sampled every 10 seconds. We analyzedthe measurements from
chlorophyll sensors for the prevalence of faults.

The predominant fault was a combination of NOISE and CONSTANT caused by hard-
ware faults in the ADC (Analog-to-Digital Converter) board. Figure 1.a shows the mea-
surements reported by buoy 103. We applied the NOISE Rule to detect samples with errors.
Figure 20 shows the fraction of samples corrupted by faults.The sensors at 4 buoys were
affected by the ADC board fault and in the worst case, at buoy 103, 35% of the reported
values were erroneous. We could not apply the LLSE, the HMM and the ARIMA model
based method because there was not enough data to train the models (data was collected
for 24 hours only).2

2The NAMOS dataset used in Section 4 is from a different deployment done in October 2005 [NAMOS 2005].
This deployment consisted of only 4 buoys collecting data over 48 hours. We did not find any instances of faults
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Fig. 20. NAMOS data set: NOISE/CONSTANT faults

6. RELATED WORK

Sensor data integrity encompassing fault detection, faultlocalization, identification of root
causes, and correcting/recovering from data faults is an active area of research. In this sec-
tion, we discuss several pieces of work that are closely related to our “data-centric” fault
detection approach. These techniques are similar to one (ormore) of the four classes of
methods explored in this paper, and we point these out when discussing the corresponding
work. However, none of these methods can be appliedwithout modification, to fault de-
tection. For example, some of these techniques are designedwith a specific sensing task
or type of sensor in mind (e.g., [Elnahrawy and Nath 2003] focusses on improving the
accuracy of aggregate queries over sensor readings). When discussing each related work,
we explain why it cannot be used directly for comparison. However, it may be possible
to use some of these methods for sensor fault detection underdifferent assumptions — for
example, when information about the probability distribution of the true sensor readings,
the characteristics of the noise corrupting sensor data, etc. is available.

Two recent papers [Khoussainova et al. 2006; Jeffery et al. 2006] have proposed a declar-
ative approach to erroneous data detection and cleaning. StreamClean [Khoussainova et al.
2006] provides a simple declarative language for expressing integrity constraints on the in-
put data. Samples violating these constraints are considered faulty. StreamClean uses a
probabilistic approach based on entropy maximization to estimate the correct value of an
erroneous sample. The evaluation in [Khoussainova et al. 2006] is geared towards a pre-
liminary feasibility study and does not use any real world data sets. Extensible Sensor
stream Processing (ESP) framework [Jeffery et al. 2006] provides support for specifying
the algorithms used for detecting and cleaning erroneous samples using declarative queries.
This approach works best when the types of faults that can occur and the methods to cor-
rect them are known a priori. The ESP framework is evaluated using the INTEL Lab data
set [INTEL 2004] and a data set from an indoor RFID network deployment. These two
declarative approaches are similar to our Rule-based methods. For example, we can think
of the integrity constraints in StreamClean as (a combination of) rules. Similarly, specify-
ing an algorithm for detecting erroneous samples within theESP framework is equivalent

in the dataset from the October 2005 deployment and hence do not discuss it here.
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to deciding which Rule-based method to apply, as both these decisions require knowledge
of the data fault types.

Koushanfar et al. propose a real-time fault detection procedure that exploits multi sen-
sor data fusion [Koushanfar et al. 2003]. Given measurements of the same source(s) by
n sensors, the data fusion is performed (n+1) times, once with measurements from all the
sensors; in the rest of the iterations the data from exactly one sensor is excluded. Measure-
ments from a sensor are classified as faulty if excluding themimproves the consistency
of the data fusion results significantly. Simulations and data from a small indoor sensor
network are used for evaluation in [Koushanfar et al. 2003].Data from real world deploy-
ments are not used. This approach is similar to our HMM model based fault detection
because it requires a sensor data fusion model. However, this approach cannot be used for
fault detection in applications such as volcano monitoring[Werner-Allen et al. 2006] and
monitoring of chlorophyll concentration in lake water [NAMOS 2006] where sensor data
fusion functions are not easy to define without consulting a domain expert; however the
HMM based method can be.

Elnahrawy et al. propose a Bayesian approach for cleaning and querying noisy sensors
[Elnahrawy and Nath 2003]. The focus in [Elnahrawy and Nath 2003] is to improve the
accuracy of aggregate queries over sensor readings (for example, SUM, AVG, COUNT
etc.) rather than detect data faults. Using a Bayesian approach requires knowledge of the
probability distribution of the true sensor readings and the characteristics of the noise pro-
cess corrupting the true readings. The evaluation in [Elnahrawy and Nath 2003] does not
use any real world datasets. In terms of the prior knowledge and the models required, the
Bayesian approach in [Elnahrawy and Nath 2003] is similar tothe HMM based method
we evaluated in this paper. It is difficult to apply this method to the real world datasets
considered in this paper due to the lack of prior informationabout the probability distri-
bution for true sensor readings and the noise characteristics for each sensor, especially for
the NAMOS dataset because the variation of chlorophyll concentration in lake water is
not a well understood phenomenon. Even for well-understoodphenomena like ambient
temperature, humidity etc. (INTEL and SensorScope datasets), in the absence of ground
truth values and contextual information related to the sensor calibration, determining the
probability of the true sensor readings is difficult. In somecases, prior information related
to true sensor readings can be obtained by calibrating and testing the sensors extensively in
a controlled environment before a deployment, as done by Ramanathan et al. [Ramanathan
et al. 2006] for a ground water monitoring deployment. Elnahrawy et al. also assume that
the noise corrupting the sensor readings follows a Gaussiandistribution. This assumption
does not hold for the SHORT and the CONSTANT faults in general.

Tulone et al. model the temperature measurements in the INTEL Lab data set [INTEL
2004] using an autoregressive (AR) time series model [Tulone and Madden 2006]. They
use a procedure similar to our One-step ahead forecasting based fault detection to detect
faults/outliers similar to SHORT faults. However, the AR model based fault detection tech-
nique used in [Tulone and Madden 2006] is not suitable for detecting long duration faults
(for example, NOISE and CONSTANT fault types) or short duration faults that occur fre-
quently. This is because the autoregressive model capturesonly short time scale trends.
For example, the AR model used in [Tulone and Madden 2006] is trained using samples
collected over an hour (at a rate of a sample every 30 seconds)and hence, it captures tem-
poral trends/correlations that are on order of a few minutes. For such an AR model, a
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long duration NOISE fault lasting a couple of hours (or a short duration fault that occurs
frequently) will be treated as a change in underlying data distribution, and the AR model
will be retrained to fit the faulty data. Thus, it will fail to identify a majority of the faulty
samples. Our seasonal ARIMA model based fault detection method can detect both the
short duration and the long duration faults, and hence, subsumes the fault detection ca-
pabilities of an AR model. However, estimating the parameters for a seasonal ARIMA
model is more complex computationally than estimating the parameters for an AR model.
At the very least, we need temperature measurements collected over 2−3 days to train our
seasonal ARIMA model, whereas measurements collected overonly an hour are enough
to train the AR model used in [Tulone and Madden 2006].

Several papers on real-world sensor network deployments [Tolle et al. 2005; Ramanathan
et al. 2006; Werner-Allen et al. 2006; Mainwaring et al. 2002] present results on meaning-
ful inferences drawn from the collected data. However, to the best of our knowledge, only
[Tolle et al. 2005; Werner-Allen et al. 2006; Ramanathan et al. 2006] do a detailed analysis
of the collected data. The aim of [Ramanathan et al. 2006] is to do root cause analysis us-
ing Rule-based methods for on-line detection and remediation of sensor faults for a specific
type of sensor network monitoring the presence of arsenic ingroundwater. The SHORT
and NOISE detection rules analyzed in this paper were proposed in [Ramanathan et al.
2006]. Werner et al. compare the fidelity of data collected using a sensor network monitor-
ing volcanic activity to the data collected using traditional equipment used for monitoring
volcanoes [Werner-Allen et al. 2006]. Finally, Tolle et al.examine spatiotemporal patterns
in micro-climate on a single redwood tree [Tolle et al. 2005]. While these publications
thoroughly analyze their respective data sets, examining fault prevalence and/or develop-
ing a generic sensor data fault detection approach was not anexplicit goal. Our work
presents a thorough analysis of four different real-world data sets. Looking at different
datasets also enables us to characterize the accuracy and robustness of four qualitatively
different detection methods.

7. DISCUSSION AND FUTURE WORK

In this section, we briefly discuss two issues that are relevant to data fault detection – out-
liers and event detection as well as utility of faulty samples; however, these are not a focus
of our work. We also discuss interesting extensions to the fault detection methods evalu-
ated in this paper that can be useful for detecting other types of faults.

Outliers and Events. Sensor measurements can deviate from their expected values due to
an unexpected event or without any known causes (outliers),especially in the context of
environmental monitoring. The fault detection methods discussed in this paper are likely
to flag these measurements as faulty. However, discarding these samples as faulty may
result in loss of important information related to an unknown event or outlier [Gupchup
et al. 2008]. Before discarding/filtering out the faulty samples, we can try to extract some
information from these samples. For example, if the samplesflagged as faulty do not
match any of the known fault models, it is possible that they are due to an unknown event
or are simply outliers. In such a situation, contextual information about the sensors and
the phenomenon being monitored can help us decide whether these samples are due to an
unknown event. If so, using the flagged samples, we can try to generate asignaturefor the
event using statistical and learning techniques other thanthose we have presented in this
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paper. Having asignaturecan help us detect occurrences of the same event in the future.

Utility of faulty samples. Applications using a sensor network typically combine data
from several sensors with different sensing modalities andspatiotemporal scales (com-
monly referred to asdata fusion) in order to extract the relevant information. Depending
on the fault type and intensity, a faulty sample may still provide useful information. During
the data fusion process, we can assign a lower weight/importance to faulty samples com-
pared to the clean/non-faulty samples [Zahedi et al. 2008].In the case of data faults due to
calibration errors, we can correct faulty samples if we can determine the proper calibration
formula. Thus, it is not advisable toalwaysdiscard/filter out the fault samples.

Next we discuss several enhancements to the methods presented in this paper. These
enhancements can possibly not only improve the accuracy of these methods, but also en-
hance their applicability to other fault types. We plan to evaluate these enhanced methods
as part of our future work.

Enhancements to the proposed methods. As mentioned in Section 3.2, the vector version
of the LLSE method can incorporate spatial correlation across sensors attached to differ-
ent nodes in computing the estimates for sensor values. Spatial correlations can provide a
globalview of the data collected by the network. In the absence of ground truth values, us-
ing the spatial correlation information from multiple sensors can result in a higher fidelity
model or better estimates for sensor data, and hence, more accurate and robust fault detec-
tion. We expect the vector version of the LLSE method to perform better than the scalar
version for fault detection that relies on leveraging inter-node relationships – for example,
detecting faults due to calibration errors.

The ARIMA model based methods can be expanded to take measurements from differ-
ent sensor(s) attached to same and/or different node as input while forecasting the expected
sensor reading (refer to Chapter 11, Section 5 in [Box et al. 1994]). Such enhancements
can enable the ARIMA model based methods to leverage spatialcorrelations (or inter-node
relationships) as well as inter-sensor relationships, in addition to the temporal correlations.
For example, in applying the ARIMA model based methods to a time series of temperature
measurements, we can use measurements from the humidity sensor as an input. Temper-
ature and humidity variations are known to be strongly correlated, and an ARIMA model
that combines the two can perform better in situations whereinter-sensor relationships
(across different sensing modalities) are needed for faultdetection. However, this en-
hanced ARIMA model is more complex and we need to estimate more model parameters.
This increased complexity may result in a more computationally intensive training phase
requiring a larger training dataset. Similarly, we can enhance our HMM based method to
take measurements from other sensors as input [Bengio and Frasconi 1995].

8. SUMMARY AND CONCLUSIONS

In this paper, we focused on a simple question: How often are the sensor data fault types –
SHORT, NOISE, and CONSTANT – observed in real deployments? To answer this ques-
tion, we first explored and characterized four qualitatively different classes of fault detec-
tion methods (Rule-based, LLSE, time series forecasting, and HMMs) and then applied
them to real world datasets. Several other methods based on Bayesian filters, neural net-
works, etc. can be used for sensor fault detection. However,the four methods discussed
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in this paper are representatives of the larger class of these alternate techniques. Hence, an
analysis of the four methods with injected faults presentedin Section 4, not only demon-
strates the differences, in terms of accuracy and robustness, between these methods, but
can also help make an informed opinion about the efficacy of several other methods for
sensor fault detection.

Fault type SensorScope INTEL Lab GDI NAMOS
Infrequent (less than Infrequent (only 5 Infrequent,

SHORT 0.01% samples affected), nodes affected) high intensity None
high intensity

Frequent (20-25% Frequent
NOISE, None samples affected), Infrequent (15-35% samples

CONSTANT spatiotemporally affected)
correlated

Table VIII. Datasets: Prevalence of faults

We now summarize our main findings. Table VIII summarizes thefault prevalence for
the different datasets. The prevalence of faults was lowestin the SensorScope dataset (less
than 0.01% samples were affect by faults). However, in the INTEL Laband NAMOS
datasets a significant percentage (between 15-35%) of samples were affected by a combi-
nation of NOISE and CONSTANT faults. Such a high percentage of erroneous samples
highlights the importance of automated, on-line sensor fault detection. In the GDI data set
SHORT faults occurred once in two days but the faulty sensor values were often orders
of magnitude higher than the correct value. Except for the INTEL Lab dataset, we found
no spatial or temporal correlations among faults. In that dataset, the faults across various
nodes were correlated because all the nodes ran out of battery power at approximately the
same time.

Table IX and X summarize the evaluation results with injected faults. As discussed
in Section 4, most of the methods work well for high and mediumintensity SHORT
faults, and high intensity and long duration NOISE faults. However, their performance
is severely degraded in case of low intensity and/or short duration faults. In particular,
the HMM and the ARIMA (L-step) methods are not suited for detecting short duration
NOISE faults, while the LLSE and the ARIMA methods perform poorly at detecting low
intensity SHORT faults. The observation that low intensityfaults are harder to detect is
not entirely unexpected. Our “data-centric” approach to fault detection is most effective

Method High/Medium Low False
fault intensity fault intensity positives

SHORT rule works well detects at least 50% of faults No
LLSE works well performs poorly No

HMM works well
detects more faults Yes

than SHORT rule and LLSE (for low fault intensity)
ARIMA

works well detects at least 50% of faults
Yes

(One-step) (high rate of false positives)
ARIMA

works well performs poorly
Yes

(L-step) (high rate of false positives)

Table IX. Detection methods: Performance on injected SHORT faults
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Method
High/Medium Low

Fault duration False positives
fault intensity fault intensity

NOISE rule works well performs poorly
robust to changes

No
in fault duration

LLSE works well performs poorly
more suited for

Yes
long duration faults (for low intensity and/or

short duration faults)

HMM works well
detects more faults not suited for Yes
than NOISE rule low intensity and (high false

and LLSE short duration faults positive rate)
Avg. performance for

Yes
ARIMA No significant impact short duration faults;

(One-step) on performance not suited for
long duration faults

performs poorly

reasonable performance

Yes
ARIMA reasonable for long duration
(L-step) performance faults; not suited for

short duration faults

Table X. Detection methods: Performance on injected NOISE faults

when the faulty samples differ significantly from normal sensor readings. This is not al-
ways the case for low intensity faults. Two important observations can be made based on
the evaluation of the fault detection methods with injectedfaults: (i) the four classes of
methods sit at different points on the accuracy/robustnessspectrum, and no single method
is perfect for detecting the different types of faults; (ii)hybrid methods can help eliminate
false positives or false negatives, and using two methods insequence can detect more low
intensity faults at the expense of slightly higher false positives.

The fault detection methods performed well on the real worlddatasets except for the
ARIMA model based methods when used on the INTEL Lab, Berkeley dataset. This is
because most of the datasets experienced high intensity faults.

Even though we analyzed most of the publicly available real world sensor datasets for
faults, it is hard to make general statements about sensor faults in real world deployments
based on just four datasets. However, our results raise awareness of the prevalence and
severity of the problem of data corruption and can inform future deployments. Overall, we
believe that our work opens up new research directions in automated high-confidence fault
detection, fault classification, data rectification, and soon. More sophisticated statistical
and learning techniques than those we have presented can be brought to bear on this crucial
area.
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