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Abstract—In this work we focus on a stochastic optimization
based approach to make distributed routing and server man-
agement decisions in the context of large-scale, geographically
distributed data centers, which offers significant potential for
exploring power cost reductions. Our approach considers such
decisions at different time scales and offers provable power
cost and delay characteristics. The utility of our approach
and its robustness are also illustrated through simulation-based
experiments under delay tolerant workloads.

I. I NTRODUCTION

Over the last few years, the demand for computing has
grown significantly. This demand is being satisfied by very
large scale, geographically distributed data centers, each con-
taining a huge number of servers. While the benefits of having
such infrastructure are significant, so are the corresponding
energy costs. As per the latest reports, several companies
own a number of data centers in different locations, each
containing thousands of servers – Google (≈1 million), Mi-
crosoft (≈200K), Akamai (60-70K), INTEL (≈100K), and
their corresponding power costs are on the order of millions
of dollars per year [1]. Given this, a reduction by even a
few percent in power cost can result in savings of millions
of dollars.

Extensive research has been carried out to reduce power
cost in data centers, e.g., [2], [3], [4], [5], [6], [7]; such
efforts can (in general) be divided into the following two
categories. Approaches in the first category attempt to save
power cost through power efficient hardware design and
engineering, which includes designing energy efficient chips,
DC power supplies, and cooling systems. Approaches in the
second category exploit three different levels of power cost
reduction at existing data centers as follows. Firstly, at the
server level, power cost reduction can be achieved via power-
speed scaling [5], where the idea is to save power usage
by adjusting the CPU speed of a single server. Secondly, at
the data center level, power cost reduction can be achieved
through data center right sizing [7], [4], where the idea is to
dynamically control the number of activated servers in a data
center to save power. Thirdly, at the inter-data center level,
power cost reductions can be achieved by balancing workload
across centers [2], [3], where the idea is to exploit the price
diversity of geographically distributed data centers and route
more workload to places where the power prices are lower.
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Our work falls under the second category, where our goal
is to provide a unifying framework that allows one to exploit
power cost reduction opportunities across all these levels.
Moreover, thenon-work-conservingnature of our framework
allows us to take advantage of the temporal volatility of power
prices while offering anexplicit tradeoff between power cost
and delay.

Consider a system ofM geographically distributed data cen-
ters, each consisting of a front end proxy server and a back end
server cluster as shown in Figure 1. At different time instances,
workload arrives at the front end proxy servers which have
the flexibility to distribute this workload to different back end
clusters. The back end clusters receive the workload from front
end servers and have the flexibility to choose when to serve
that workload by managing the number of activated servers
and the service rate of each server.

The problem then is to make the following three decisions,
with the objective of reducing power cost: (i) how to distribute
the workload from the front end servers to the back end
clusters, (ii) how many servers to activate at each back end
cluster at any given time, and (iii) how to set the service rates
(or CPU power levels) of the back end servers.

Our proposed solution exploits temporal and spatial varia-
tions in the workload arrival process (at the front end servers)
and the power prices (at the back end clusters) to reduce power
cost. It also facilitates acost vs. delaytrade-off which allows
data center operators to reduce power cost at the expense
of increased service delay. Hence, our work is suited for
delay tolerant workloadssuch as massively parallel and data
intensive MapReduce jobs. Today, MapReduce programming
based applications are used to build a wide array of web
services – e.g., search, data analytics, social networking, etc.
Hence, even though our proposed solution is more effective
for delay tolerant workloads it is still relevant to many current
and future cloud computing scenarios.

Our contributions can be summarized as follows:
• We propose atwo time scalecontrol algorithm aimed at
reducing power cost and facilitating a power cost vs. delay
trade-off in geographically distributed data centers (Section
II and III).

• By extending the traditional Lyapunov optimization ap-
proach, which operates on a single time scale, to two
different time scales, we derive analytical bounds on the
time average power cost and service delay achieved by our
algorithm (Section IV).

• Through simulations based on real-world data sets, we



show that our approach can reduce the power cost by
as much as18%, even for state-of-the-art server power
consumption profiles and data center designs (Section VI).
We also show that our approach is environmentally friendly,
in the sense that it not only reduces power cost but also the
actual power usage.

• We demonstrate the robustness of our approach to errors
in estimating data center workload both analytically as well
as through simulations (Sections VI-C and VI-D).

II. PROBLEM FORMULATION

We first formulate our problem and then discuss the prac-
tical aspects of our model. We considerM geographically
distributed data centers, denoted byD = {D1, ...,DM}, where
the system operates in slotted time, i.e.,t = 0, 1, 2, .... Each
data centerDi consists of two components, a front end proxy
server,SF

i , and a back end server cluster,SB
i , that hasNi

homogeneous servers. Fig. 1 depicts our system model. Below
we first present our model’s components.
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Fig. 1. A model ofM geographically distributed data centers.

A. The Workload Model

In every time slott, jobs arrive at each data center. We
denote the amount of workload arriving atDi by Ai(t), where
A(t) = (A1(t), ..., AM (t)) denotes the arrival vector. In our
analysis, we first assume thatA(t) are i.i.d. every time slot
with E

{

A(t)
}

= λ , (λ1, ..., λM ). We later discuss how
our results can be extended to the case whenA(t) evolve
according to more general random processes. We also assume
that there exists someAmax such thatAi(t) ≤ Amax for all i
and t. Note that the components inA(t) can be correlated –
this is important in practice as arrivals to different data centers
may be correlated.

B. The Job Distribution and Server Operation Model

A job first arrives at the front end proxy server ofDi, SF
i ,

and is queued there. The proxy serverSF
i then decides how to

distribute the awaiting jobs to the back end clusters at different
data centers for processing. To model this decision, we use
µij(t) to denote the amount of workload routed fromDi to
Dj at time t, and useµi(t) = (µi1(t), ..., µiM (t)) to denote
the vector of workload routing rates atSF

i . We assume that
in every t, µi(t) must be drawn from some generalfeasible
workload distribution rate setRi, i.e., µi(t) ∈ Ri for all t.
We assume that each setRi is time invariant and compact. It

can be either continuous or finite discrete. Also each setRi

contains the constraint that
∑

j µij(t) ≤ µmax for some finite
constantµmax. Note that this assumption is quite general.
For example,Ri can contain the constraints thatµij(t) = 0
for all t to represent the constraint that jobs arriving atDi

cannot be processed atDj , e.g., due to the fact thatDj does
not have a data set needed for the corresponding computation.

For each data centerDi, the jobs routed to its back end
cluster are queued in ashared buffer. The data center then
controls its back end cluster as follows. In every time slot of
the formt = kT with k = 0, 1, ... whereT ≥ 1, the data center
first decides on the number of servers to activate. We denote
the number of active servers at timet at Di asNi(t), where
Ni(t) ∈ {N i

min, N i
min + 1, N i

min + 2, ..., Ni}, with Ni being
the total number of servers at the back end clusterSB

i , and
N i

min, 0 ≤ N i
min ≤ Ni being minimum number of servers that

should be activated at all times for data centerDi. If at time
slot t = kT , we haveNi(t) > Ni(t − T ), then we activate
more servers. Otherwise, we simply putNi(t − T ) − Ni(t)
servers to sleep. The reasons for havingNi(t) changed only
everyT time slots are: (i) activating servers typically costs a
non-negligible amount of time and power, and (ii) frequently
switching back and forth between active and sleep states can
result in reliability problems [8]. In addition to decidingon the
number of active servers, the data center sets the service rate
of each active server every time slot. This can be achieved
by using techniques such as power scaling [5]. For ease of
presentation, below we assume that all active servers in a
data center operate at the same service rate, and denote active
servers’ service rate atDi by bi(t), 0 ≤ bi(t) ≤ bmax, where
bmax is some finite number. We note that our model can be
extended to more general scenarios. A further discussion of
above assumptions is given in Section II-E.

C. The Cost Model

We now specify the cost model. For time slott, we use
tT = ⌊ t

T
⌋T to denote the last time beforet when the

number of servers has been changed. Then at time slott,
by running Ni(tT ) servers at speedbi(t), Di consumes a
total power ofPi(Ni(tT ), bi(t)). We assume that the function
Pi(·, ·) is known to Di, and there exists somePmax such
that Pi(Ni(tT ), bi(t)) ≤ Pmax for all t and i. Such power
consumption will in turn incur some monetary cost for the
data centers, of the form “power×price”. To also model the
fact that each data center may face a different power price at
time slot t, we denote the power price atDi at time slott by
pi(t). We assume thatp(t) = (p1(t), ..., pM (t)) varies every
T1 ≥ 1 time slots, whereT = cT1 for some integerc. We
assumep(t) are i.i.d and everyT1 time slot, eachpi(t) takes
a value in some finite state spacePi = {p1

i , ..., p
|Pi|
i }. We

also definepmax , maxij pj
i as the maximum power price

that any data center can experience. We useπi(p) to denote
the marginal probability thatpi = p. An example of these
different time scales is given in Figure 2.

Finally we usefi(t) = Pi(Ni(tT ), bi(t))pi(t) to denote the
power cost atDi in time slot t. It is easy to see that if we
definefmax , MPmaxpmax, then

∑

i fi(t) ≤ fmax for all t.
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Fig. 2. An example of different time scalesT and T1. In this example,
T = 8, T1 = 4, andT = 2T1.

D. The data center Power Cost Minimization (PCM) problem

Let Q(t) = (QF
i (t), QB

i (t), i = 1, ...,M), t = 0, 1, ...,
be the vector denoting the workload queued at the front end
servers and the back end clusters at time slott. We use the
following queueing dynamics:

QF
i (t + 1) = max

[

QF
i (t) −

∑

j µij(t), 0
]

+ Ai(t), (1)

QB
i (t + 1) ≤ max

[

QB
i (t) − Ni(t)bi(t), 0

]

+
∑

j µji(t). (2)
The inequality in (2) is due to the fact that the front end
servers may allocate a total routing rate that is more than the
actual workload queued. In the following, we assume that data
centers can estimate the unfinished workload in their queues
accurately. The case when such estimation has errors will be
discussed in Section IV. Throughout the paper, we use the
following definition of queue stability:

Q , lim sup
t→∞

1

t

t−1
∑

τ=0

M
∑

i=1

E
{

QF
i (τ) + QB

i (τ)
}

< ∞. (3)

Then we define afeasiblepolicy to be the one that chooses
Ni(t) every T time slots subject toN i

min ≤ Ni(t) ≤ Ni,
and choosesµij(t) and bi(t) every time slot subject to only
µi(t) ∈ Ri and 0 ≤ bi(t) ≤ bmax. We then define the time
average cost of a policyΠ to be:

fΠ
av , lim sup

t→∞

1

t

t−1
∑

τ=0

M
∑

i=1

E
{

fΠ
i (τ)

}

. (4)

Here,fΠ
i (τ) denotes the power cost incurred by policyΠ at

time slot τ . We call every feasible policy that ensures (3) a
stablepolicy, and usef∗

av to denote the infimum average power
cost over all stable policies. The objective of our problem is
to find a stable policy that chooses the number of activated
serversNi(t) every T time slots, and chooses the workload
distribution ratesµij(t) and the service ratesbi(t) every single
time slot, so as to minimize the time average power cost. We
refer to this as the data center Power Cost Minimization (PCM)
problem in the remainder of the paper.

E. Model Discussion and Practical Consideration

We now discuss the assumptions made in our model.
Above, we assume that in time slott all activated servers

at Di have the same service ratebi(t). This is not restrictive.
Indeed, let us focus on one data center in a single time slot and
consider the following formulation: Let the power consump-
tion of a server with service rateb be Pserver(b), a convex
function of b (see [6], [9]). If theN activated servers run at
service ratesb1, b2, ... , bN , then the total power consumed by
them can be written asPtotal =

∑N

j=1 Pserver(bj). Suppose
the actual power consumption in this data center,Pcenter, has
the form Pcenter = C1 × Ptotal + C2, whereC1 and C2 are
constants or functions ofN only. Then we have:

Pcenter = C1Ptotal + C2 = C1

N
∑

i=1

Pserver(bi) + C2

≥ C1NPserver(

∑N

i=1 bi

N
) + C2.

This indicates that, to minimize the power consumption with-
out reducing the amount of workload served, all servers should
have the same service rate. This justifies our assumption.

We also assume that jobs can be served at more than
one data center. When serving certain types of jobs, such
as I/O intensive ones, practical considerations such as data
locality should also be considered. This scenario can easily
be accommodated in our model by imposing restrictions on
Ri at the front end servers. Moreover, service providers like
Google replicate data across (at least) two data centers [10].
This provides flexibility for serving I/O intensive jobs.

We also assume that the data centers can observe/measure
Q(t), i.e., the unfinished work of all incoming workload
accurately. However, in many cases, the available information
only contains the number of jobs and the number of tasks per
job. With this, we can estimate the amount of workload of the
incoming jobs. In addition, in Section IV we show that even
if the estimation is not accurate we can still prove bounds on
the performance of our approach. Moreover, in Section VI-C
we show the robustness of our approach against workload
estimation errors through experiments.

Finally, we assume that a server in sleep state consumes
much less power than an idle server. According to [7], a
server consumes10 Watts when in sleep state, as compared
to 150 Watts in idle state. This indicates that our assumption
is reasonable. We also assume that servers can be activated
and put to sleep immediately. We note that waking up from
sleep takes around60 seconds. During this60 seconds, the
server cannot perform any work. This should not be ignored,
if the control actions on activating servers are made frequently.
However, when we chooseT , the period of such actions, to
be large, potentially no less than an hour, we can assume that
the wake up time is amortized over the relatively long period
during which the server is active. The effect ofT is further
discussed in Section VI, where we give experimental results.

III. T HE SAVE ALGORITHM

We solve PCM through our StochAstic power redUction
schEme (SAVE). We first describe SAVE’s control algo-
rithms and discuss corresponding insight and implementation
related issues. SAVE’s derivation and analytical performance
bounds are discussed in the following section.

A. SAVE’s control algorithms

SAVE’s three control actions are:

• Front end Routing:In every timet = kT , k = 0, 1, ...,
eachDi solves forµij to maximize

M
∑

j=1

µij [Q
F
i (t) − QB

j (t)] (5)

subject to the constraint thatµi = (µi1, ..., µiM ) ∈ Ri.
Then in every time slotτ ∈ [t, t + T − 1], Di distributes
up toµij(τ) amount of workload to the back end cluster
at Dj , 1 ≤ j ≤ M .



• Back end Server Management:At time slot t = kT ,
data centerDi chooses the number of serversNi(t) ∈
[N i

min, Ni] to minimize:

E
{

t+T−1
∑

τ=t

∑

j

[

V fj(τ) − QB
j (t)Nj(t)bj(τ)

]

|Q(t)
}

(6)

Then data centerDi usesNi(t) servers over time[t, t +
T−1]. In every time slotτ ∈ [t, t+T−1], each data center
Di chooses the service rate of the serversbi(τ) (note that
Ni(t) is determined at time slott) to minimize:

V fj(τ) − QB
j (t)Nj(t)bj(τ) (7)

• Queue Update:Update the queues using (1) and (2).
Note that V > 0 is a parameter of SAVE that controls
the tradeoff between power cost and delay performance, as
detailed below in Theorem 2. SAVE works at two different
time scales. The front end routing decisions and number of
active servers selection,Ni(t), are made everyT slots, while
back end servers’ service rates are updated at each slot. This
two time scale mechanism is important from an implementa-
tion perspective because waking up servers from sleep state
usually takes much longer than servers’ speedscaling. The
Back end Server Managementstep involves maximizing (6),
an expectation over future (power cost) events. We show in
Section III-C that this can be carried out through learning.

B. Properties ofSAVE

We highlight SAVE’s two interesting properties. First, it is
not work-conserving. A back end clusterSB

j may choose not
to serve jobs in a particular time slot, even ifQB

j > 0, due to
a high power price atDj . This may introduce additional delay
but can reduce the power cost as shown in Section VI-A.

Second, SAVE can provide opportunities for bandwidth
cost savings because (a) it provides an explicit upper bound
on the workload sent fromSF

i to SB
j , and (b) these routing

decisions remain unchanged forT time slots. If T is large,
this can provide opportunities for data centers to optimize
network routing ahead of time to reduce bandwidth cost. As
highlighted in [2], content distribution networks like Akamai
can incur significant bandwidth costs. Incorporating bandwidth
costs into our model is part of future work.

C. Implementing the algorithm

Note that the routing decisions made at the front end servers
do not require any statistical knowledge of the random arrivals
and prices. All that is needed is thatDi’s back end cluster
broadcastsQB

i (t) to all front end proxy servers everyT time
units. This typically only requires a few bits and takes very
little time to transmit. Then each data centerDi computeµij

for eachj. The complexity of maximizing
∑

j µij [Q
F
i (t) −

QB
j (t)] depends on the structure of the setRi. For example,

if Ri only allows oneµij to take nonzero values, then we can
easily find an optimal solution by comparing the weight-rate-
product of each link, and finding the best one.

In the second step, we need to minimize (6). This in general
requires statistical knowledge of the power prices. And it is
obtained as follows: At everyt = kT , k ≥ 0, we use the
empirical distribution of prices over a time window of size

L to compute the expectation. Specifically, ift ≥ L, then
let ni

p(t, L) be the number of times the event{pi(t) = p}

appears in time interval[t − L + 1, t]. Then use
ni

p(t,L)

L
as

the probabilityπi(p) for estimating the expectations. Since all
pi(t) only take finitely many values, we have:

lim
L→∞

ni
p(t, L)

L
= πi(p). (8)

Therefore, as we increase the number of samples, the estima-
tion becomes better and better. Note that in this procedure,
we use the fact that (6) can be decomposed into a summation
of M expectations, and that each expectation only requires
the marginal distribution of the prices. Now we can solve
for Nj(t) andbj(τ) through a joint optimization of (6). Note
that this is a two variable optimimization, since in an optimal
solutionbj(τ) remains constant whenτ ∈ [t, t + T − 1].

IV. SAVE: DESIGN AND PERFORMANCEANALYSIS

SAVE’s focus on reducing power cost along with queue
stability suggests a design approach based on the Lyapunov
optimization framework [11]. This framework allows us to
include power costs into theLyapunov drift analysis, a well-
known technique for designing stable control algorithms.
However, thevanilla Lyapunov optimization based algorithms
operate on a single time scale. We extend this approach to two
different time scales, and derive analytical performance bounds
analogous to the single time scale case. We now highlight the
key steps in deriving SAVE, and then characterize its power
cost and delay performance.

A. Algorithm Design

We first define the Lyapunov function,L(t), that measures
the aggregate queue backlog in the system.

L(t)△

=

M
∑

i=1

(

[QF
i (t)]2 + [QB

i (t)]2
)

. (9)

Next, we define theT -slot Lyapunov drift, ∆T (t) as the
expected change in the Lyapunov function overT slots.

∆T (t) , E
{

L(t + T ) − L(t)|Q(t)
}

. (10)
Following the Lyapunov optimization approach, we add the

expected power cost overT slots (i.e., a penalty function),
E

˘

Pt+T−1

τ=t

P

j
fj(τ)

¯

, to (10) to obtain thedrift-plus-penalty
term. A key derivation step is to obtain an upper bound on
this term. The following lemma defines such an upper bound
for our case (see [12] for proof).

Lemma 1. Let V > 0 and t = kT for some nonnegative in-
tegerk. Then under any possible actionsNi(t) ∈ [N i

min, N i],
µi(t) ∈ Ri and bi(t) ∈ [0, bmax], we have:

∆T (t) + V E
{

t+T−1
∑

τ=t

∑

j

fj(τ)|Q(t)
}

≤

B1T + V E
{

t+T−1
∑

τ=t

∑

j

fj(τ)|Q(t)
}

− E
{

t+T−1
∑

τ=t

∑

i

QF
i (τ)

[

∑

j

µij(τ) − Ai(τ)
]

|Q(t)
}



− E
{

t+T−1
∑

τ=t

∑

j

QB
j (τ)

[

Nj(t)bj(τ) −
∑

i

µij(τ)
]

|Q(t)
}

.

(11)

Here B1 , MA2
max +

∑

i N2
i b2

max + (M2 + M)µ2
max.

The main design principle in Lyapunov optimization is
to choose control actions that minimize the R.H.S. of (11).
However, for any slott, this requiresprior knowledge of the
future queue backlogs (Q(t)) over the time frame[t, t+T−1].
Q(t) depends on the job arrival processesAi(t), and SAVE’s
decisionsµij(t), bi(t)i, andNi(t) (that depend on time varying
power prices). Hence, minimizing the R.H.S. of (11) requires
information about the random job arrival and power price
processes. This information may not always be available.
In SAVE we address this byapproximating future queue
backlog values as the current value, i.e.,QF

i (τ) = QF
i (t) and

QB
j (τ) = QB

j (t) for all t < τ ≤ t + T − 1. However, the
simplification forces a “loosening” of the upper bound on the
drift-plus-penalty term as shown in the following lemma (see
[12] for proof).

Lemma 2. Let t = kT for some nonnegaive integerk. Then
under any possible actionsNi(t), µij(t), bi(t) that can be
taken, we have:

∆T (t) + V E
{

t+T−1
∑

τ=t

∑

j

fj(τ)|Q(t)
}

≤

B2T + E
{

t+T−1
∑

τ=t

∑

j

Qi(t)Ai(τ)|Q(t)
}

− E
{

t+T−1
∑

τ=t

∑

j

µij(τ)
[

QF
i (t) − QB

j (t)
]

|Q(t)
}

+ E
{

t+T−1
∑

τ=t

∑

j

[

V fj(τ) − QB
j (t)Nj(t)bj(τ)|Q(t)

}

. (12)

HereB2 , B1 +(T −1)
∑

j [N
2
j b2

max +(M2 +1)µ2
max]/2.

Comparing (12) with (5), (6), and (7), we can see that SAVE
choosesNi(t), µij(t), bi(t) to minimize the R.H.S. of (12).

B. Performance bounds

Theorem 2 (below) provides analytical bounds on the power
cost and delay performance of SAVE. To derive these bounds,
we first need to characterize the optimal time average power
costf∗

av that can be achieved by any algorithm that stabilizes
the queue. Theorem 1 (below) shows that using astationary
randomized algorithmwe can achieve the minimum time
average power costf∗

av possible for a given job arrival rate
vectorλ = (λ1, ..., λM ) whereλi = E

{

Ai(t)
}

. We define sta-
tionary randomized algorithms as the class of algorithms that
chooseNi(t), µij(t), andbi(t) according to a fixed probability
distribution that depends onAi(t) andfj(t) but is independent
of Q(t). In Theorem 1,Λ denotes thecapacity regionof the
system – i.e., the closure of set of ratesλ for which there
exists a joint workload assignment and computational capacity
adaptation algorithm that ensures (3).

Theorem 1. (Optimality over Stationary Randomized Policies)
For any rate vectorλ ∈ Λ , there exists a stationary random-
ized control policyΠopt that choosesNi(t), i = 1, ...,M every
T slots, and choosesµi(t) ∈ Ri and bi(t) ∈ [0, bmax] every
time slot purely as functions ofpi(t) and Ai(t), and achieves
the following for allk = 0, 1, 2, ...
kT+T−1

∑

τ=kT

M
∑

i=1

E
{

fΠopt(τ)
}

= Tf∗
av(λ),

kT+T−1
∑

τ=kT

E
{

∑

i

µ
Πopt

ij (τ)
}

=

kT+T−1
∑

τ=kT

E
{

N
Πopt

j (kT )b
Πopt

j (τ)
}

,

kT+T−1
∑

τ=kT

E
{

Ai(τ)
}

=

kT+T−1
∑

τ=kT

E
{

∑

j

µ
Πopt

ij (τ)
}

.

Proof: It can be proven using Caratheodory’s theorem in
[11]. Omitted for brevity.

The following theorem presents bounds on the time average
power cost and queue backlogs achieved by SAVE.

Theorem 2. (Performance ofSAVE) Suppose there exists an
ǫ > 0 such thatλ+2ǫ1 ∈ Λ, then under theSAVE algorithm,
we have:

QT , lim sup
K→∞

1

K

K−1
∑

k=0

M
∑

i=1

E
{

QF
i (kT ) + QB

i (kT )
}

≤
B2 + V fmax

ǫ
, (13)

fSAVE
av , lim sup

t→∞

1

t

t−1
∑

τ=0

M
∑

i=1

E
{

f(τ)
}

≤ f∗
av +

B2

V
. (14)

Heref∗
av is the optimal cost defined in Section II and1 denotes

the vector of all1’s.

Proof: See [12].
We can extend the results in Theorem 2 to Markovian arrival

processes using techniques developed in [13]. We omit the
details here due to space limitations.

What happens when SAVE makes its decisions based on
queue backlog estimateŝQ(t) that differ from the actual
queue backlogs? The following theorem shows that the SAVE
algorithm is robust against queue backlog estimation errors.

Theorem 3. (Robustness ofSAVE) Suppose there exists an
ǫ > 0 such thatλ + 2ǫ1 ∈ Λ. Also suppose there exists
a constantce, such that at all timet, the estimated backlog
sizesQ̂F

i (t), Q̂B
i (t) and the actual backlog sizesQF

i (t), QB
i (t)

satisfy|Q̂F
i (t)−QF

i (t)| ≤ ce and |Q̂B
i (t)−QB

i (t)| ≤ ce. Then
under theSAVE algorithm, we have:

QT , lim sup
K→∞

1

K

K−1
∑

k=0

M
∑

i=1

E
{

QF
i (kT ) + QB

i (kT )
}

≤
B3 + V fmax

ǫ
, (15)

fSAVE
av , lim sup

t→∞

1

t

t−1
∑

τ=0

M
∑

i=1

E
{

f(τ)
}

≤ f∗
av +

B3

V
. (16)

Here f∗
av is the optimal cost defined in Section II, andB3 =

B2 + 2Tce(µmax + Amax + Nmaxbmax + Mµmax).

Proof: See [12].



By comparing the inequalities (16) and (14), we can see that
with inaccurate information, we need to setV to a larger value
to obtain the same time average power cost as with accurate
information. However, this will result in higher average queue
backlogs (compare inequalities (15) and (13)). Hence, SAVE
works even with inaccurate queue backlog information but its
robustness is achieved at the expense of a power cost vs. delay
trafe-off. We further demonstrate SAVE’s robustness using
simulations in Section VI.

V. EXPERIMENTAL SETUP

The goal of this experimental study is to evaluate SAVE
under real world settings using real world data sets. Our evalu-
ation scenario consists of 7 data centers at different geographic
locations. Next, we describe the three main components of our
simulations – the electricity prices and job arrivals at different
data centers, the system parameters, and alternate techniques
against which we compare SAVE.

A. Data sets

Electricity prices. We downloaded the hourly electricity prices
for 7 hubs at different geographic locations from [14]. These
hubs supply electricity to large cities such as Boston and New
York, and sites like Palo Alto, CA and Ashburn, VA that host
Google’s data centers. To fully exploit the cost savings dueto
temporal power price variations, we would have preferred to
have prices at a time granularity that exhibits high variability,
e..g.5 minute intervals [2]. However, since we had access to
only the hourly prices, we use interpolation to generate prices
at5 minute intervals. For more details on this, please see [12].
Workload. We chose MapReduce jobs as representative of
delay tolerant workloads, and generate workload accordingto
the published statistics on MapReduce usage at Facebook [15].

Each job consists of a set of independent tasks that can be
executed in parallel. A job is completed when all its tasks
are completed. We make the following assumptions in our
experiments: (i) all tasks belonging to a job have the same
processing time; tasks from different jobs can have different
processing times; (ii) jobs can be served in any of the7
data centers; and (iii) all the tasks from the same job must
be served at the same back end cluster. Regarding (i), in
practice, tasks from the same MapReduce job (and other
parallel computations), exhibit variability in processing times.
However, techniques exist for reducing both the prevalence
and the magnitude of task duration variability for MapReduce
jobs [16]. Hence, (i) is not a significant oversimplification. As
explained in Section II-E, we believe (ii) is also reasonable.
Assumption (iii) is not required by our approach. Rather, itis
motivated by the fact that, in practice, partitioning tasksfrom
the same MapReduce job across geographically distant clusters
can degrade overall performance due to network delays.

We choose the execution time of a task belonging to a
particular job to be uniformly distributed between1 and 60
seconds1 with the “job size” distribution (i.e., number of tasks
per job) given in Table V-A; these distributions (job execution
time and “job size”) correspond to data reported in [15].

1Recall that all tasks within a job have the same execution time.

TABLE I
DISTRIBUTION OF JOB SIZES

# Tasks 1 2 10 50 100 200 400 800 4800
% 38 16 14 8 6 6 4 4 4

We generated5 groups of delay tolerant workloads. Each
group consists of 7 differentPoissonjob arrival traces – one
for each cluster. Group1 has “homogeneous” arrival rates –
the arrival process for each cluster is Poisson with a rate of15
jobs per time slot. The length of one time slot is15 seconds.
Groups2 to 5 have “heterogeneous” arrival rates. The average
arrival rate across all data centers is kept at15 jobs per time
slot. But as the index grows larger, the variance of arrival rates
grows larger. For example, Group2 has arrival rates ranging
from 14 to 16 jobs every time slot, whereas Group5 has arrival
rates ranging from12 to 18 jobs per time slot. We note that the
assumption of Poisson distributed arrivals is not groundless.
In fact, it is suggested by the measurements in [15].

B. Experimental Settings

Power Cost Function. SAVE can handle a wide range of
power cost functions including non-convex functions. In our
experiments, we model power consumptionP (Ni, bi) as:

P (Ni(t), bi(t)) =

(

Ni(t)

(

bi(t)
α

A
+ Pidle

))

· PUE (17)

In (17), A, Pidle, and α are constants determined by the
data center. Specifically,Pidle is the average idle power
consumption of a server, andbi(t)

α/A + Pidle gives the
power consumption of a server running at ratebi(t). In
our experiments we chooseα = 3, Pidle = 150 Watts,
and A such that the peak power consumption of a server
is 250 Watts. The model (17) and all its parameters are
based on the measurements reported in [9]. ThePUE term
accounts for additional power usage (such as cooling) for
having Ni(t) servers active. According to [17] PUE values
for many of today’s data centers lie between1.3 and 2. We
chosePUE = 1.3 in all of our experiments. This choice is
pessimistic, in a sense that SAVE will achieve larger power
cost reductions when PUE is higher.
System Parameters. We setNi, the number of servers in data
centeri, to be 1000 for all 7 data centers. Each server can
serve up to10 tasks at the same time. With a 15 jobs per slot
arrival rate, this gives an average server utility of about60%.
We set the bandwidth between the front end servers and the
back end clusters to a large value, based on the real world
practice [10]. Hence, a large amount of workload can be sent
from one data center to another within one time slot. We vary
the N i

min across a range of values to explore its impact on
SAVE’s performance (see Section VI-B).

C. Simulated Schemes for Comparison

We compare SAVE the following work-conserving schemes
that either represent the current practices in data center man-
agement or are simple heuristic based approaches proposed by
others.
Local Computation. All the requests arriving atSF

i are routed
to SB

i (the local back end); i.e.,µii = Ai andµij = 0 if j 6= i.
Load Balancing. The amount of workload routed fromDi

to Dj , µij , is proportional to the service capacity ofDj ,



regardless ofDj ’s power prices. Intuitively, this scheme should
have good delay characteristics.
Low Price. This scheme is similar to the heuristic proposed
in [2] that routes more jobs to data centers with lower power
prices. However, no data center receives workload over95th
percentile of its service capacity. Due to the discretenessof
job sizes and the constraint that all tasks of one job should be
served at the same back end cluster, it is difficult to ensure that
the cluster with the lowest power price always runs close to,
but not over, its capacity. Thus, in this scheme, the workload
is routed such that the long term arrival rate at the back end
cluster with the lowest average power price is close to the95th
percentile of its capacity. We then route the workload to the
second lowest price cluster, and so on.

In all these schemes, we assume that all servers are activated
at all times.2 However, we assume that the service rates of
the servers can be tuned in every slot. We also simulate the
following scheme that power downs idle servers:
Instant On/Off . Here, the routing decisions between front
end servers and back end clusters are exactly the same as
in the Load Balancing scheme. However, now not all servers
are active in all time slots. In every slot, each data center is
able to activate/put to sleep any number of servers withno
delay or power cost, and also adjust servers’ service rates.
This idealizedscheme represents the upper bound of power
cost reductions achievable for the single data center case by
any work-conserving scheme in our experimental settings. It is
highly impractical because it assumes that servers can switch
between active state and sleep state at the same frequency as
power scaling (once every15 seconds in our simulations).

VI. EXPERIMENTAL RESULTS

We now evaluate SAVE through simulation based experi-
ments, using the experimental setup described above.

A. Performance Evaluation

The performance of SAVE depends on parametersV andT .
We show experimental results of all schemes on all data sets
under differentV and T values (with the other parameters
fixed). For power cost reduction results, we use the Local
Computation scheme as a baseline. For all other schemes,
we show the percentage of average power cost reduction as
compared to the Local Computation scheme. Specifically, let
PCX denote the average power cost of schemeX. We use
PCL.C.−PCX

PCL.C.
× 100 to quantify the power cost reduction due

to schemeX. (HereL.C. is short for Local Computation.) For
delay results, we show the schemes’ average delay (in number
of time slots). We omit the delay results of the On/Off scheme
as they are nearly identical to those of the Load Balancing
scheme — the maximum difference is≈ 0.03 time slots (0.45
second).For all comparison schemes, we show average values
(power cost reduction and delay) over all arrival data sets.For
SAVE, we use curves to represent average values and bars to
show the corresponding ranges.

2According to [18], a large fraction (about80%) of data center operators
do not identify idle servers on a daily basis.

We first fix T to be 240 time slots (one hour) and run
experiments with differentV values. The results are shown
in Figure 3(a) and (b). From Figure 3(a) we can see that as
V goes from0.01 to 100, the power cost reduction grows
from an average of around0.1% to about18%. The On/Off
scheme achieves power cost reduction of about9.7%. If we
chooseV to be greater than5 then SAVE results in larger
power cost reductions than scheme On/Off. Because (i) our
approach considers differences in power prices across different
data centers, and (ii) our approach is not work conserving and
can adjust service rates at different data centers according to
power prices. We also note that the scheme Low Price gives
a small power cost reduction (of0.5%) – i.e., sending more
workload to data centers with low power prices in a greedy
fashion does not lead to significant savings in power cost. In
Figure 3(b), we observe that whenV is small (< 0.1) the
average delay of SAVE is quite small and close to the delay
of scheme Load Balancing. IncreasingV results in larger delay
as well as larger power cost reductions. In general,V in SAVE
controls the trade-off between delay and power cost; e.g.,
whenV is large, SAVE outperforms scheme On/Off (which is
impractical scheme, as noted above), in power cost reduction.

We fix V to be 10 and varyT from 30 time slots (7.5
minutes) to1080 time slots (4.5 hours), which is a sufficient
range for exploring the characteristics of SAVE. (Note that
servers are activated and put to sleep every10 minutes in
[4] and every hour in [19].) Corresponding results of the
different schemes are shown in Figures 3(c) and (d). From
Figure 3(c) we can see that changingT has relatively small
effect on power cost reductions of our SAVE approach. The
average power cost reduction fluctuates between8.7% and
13.6% when T varies from30 to 1080 time slots. In most
cases, it results in higher cost reductions than scheme On/Off.
However, we note thatT has a larger impact on average delay,
as shown in Figure 3(d). In the extreme case, whenT = 1080
time slots, the average delay is close to64 time slots. This
is not surprising – recall that in the bound on queue size
given in Theorem 2, theB2 term is proportional toT , i.e.,
the delay increases withT . However, reasonable delay values
are possible with appropriate choices ofT , e.g., if we choose
T to be240 time slots (1 hour), SAVE gives an average delay
of 14.8 time slots (3.7 minutes). From this set of results we
can see that for delay tolerant workloads, SAVE would take
infrequent actions on server activation/sleep (once in an hour
or less) and still achieve significant power cost reduction.

B. The impact ofNmin

In this set of experiments we keepV and T values
unchanged, but varyNmin values from 0 to 50% of the
number of servers in a data center. The results are depicted
in Figures 4(a) and (b). Figure 4(b) indicates that increasing
Nmin improves delay performance, e.g., when it increases
from 0 to 20% of the number of servers, the average delay
decreases significantly, from about72.5 to 25.9 time slots. At
the same time, as shown in Figure 4(a), the effect ofNmin on
power cost reduction is relatively small. This makes intuitive
sense. WhenNmin grows larger, more servers are activated
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Fig. 3. Average power cost and delay of all schemes under different V andT values
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Fig. 4. Average power cost and delay of all schemes under different Nmin values and robustness test results

regardless of job arrivals, providing more slots to serve jobs,
thus reducing average delay. On the other hand, adding more
active servers reduces the service rate of each server, which
compensates for the extra power consumed by added servers.

C. Robustness Characteristics

As mentioned in Section II-E, our SAVE algorithm needs
to know the amount of workload of each job. In practice,
when this is not available, we use estimated values. In this set
of experiments we explore the influence of estimation errors
on the performance of SAVE. To do this, for each arriving
job, we add a random estimation error (±50%, uniformly
distributed) to the amount of workload it contains. This gives
us one error data set for each arrival data set. We run SAVE on
these data sets, but let SAVE make all decisions on control
variables based on the amount of workload with estimation
errors. Only when a job get served does the server know the
exact amount of workload it actually contains.

We run experiments for all5 pairs of data sets for different
V values, and compare the results to the results we obtained
using the original arrival data sets. In Figures 4(c) and (d),
we use the results on data setswithout estimation errors as
the baseline, and show the differences in power cost reduction
percentage and delay (in time slots) due to injected estimation
errors. From Figure 4(c) we can see that for allV values we
experimented with, the difference(due to errors) in power cost
reduction is between−1.0% and 0.7%. As shown in Figure
4(d), estimation errors result in changes in average delay,but
only in the range of−1.2 to 0.9 time slots.

To conclude, SAVE is robust to workload estimation errors.

D. Actual Power Consumption ofSAVE

SAVE is designed to reduce thecostof power in geograph-
ically distributed data centers, as this is one major concern for
large computational facility providers. At the same time, with
more attention paid to the social and ecological impact of large
computational infrastructures, it is also desirable to consider
environmental friendly approaches, i.e., while reducing the
cost of power, it is also desirable to reduce theactual consump-
tion of power. To this end, we record the actual power con-
sumption of all simulated schemes. In Figure 5 we show the

percentage of average power consumption reduction by SAVE
with different V values, relative to the Local Computation
scheme. Figure 5 illustrates that withV values ramping from
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Fig. 5. Differences in average power usage reduction for differentV values

0.01 to 100, the actual power consumption reduction goes from
about0.1% to 10.3%. WhenV = 10, the reduction is around
8.7%. This indicates that SAVE is environmentally friendly,
in a sense that, while it reduces power cost, it also reduces
actual power consumption significantly. As a comparison, the
Low Price scheme is not environmentally friendly – althoughit
reduces power cost (see Figure 3(a)), it consumes more power
than the Local Computation scheme.

VII. R ELATED WORK

As mentioned in Section I, work on power cost reduction
can be classified into three broad categories – single server,
single data center, and multiple data centers. For a single
server, researchers have proposed scheduling algorithms to
minimize power consumption subject to job deadlines [20], or
minimize average response time subject to a power constrain
[21]. Wierman et al. use dynamic CPU speed scaling to
minimize weighted sum of mean response time and power
consumption [5]. A survey of work on single server power
cost reduction is given in [22]. For a data center, Gandhi et
al. provide management policies that minimize mean response
time under a total power cap [9] or minimize the product to
response time and power cost [7]. Chen et al. propose solutions
based on queueing models and control theory to minimize
the server energy as well as data center operational costs [8].
Lin et al. design an online algorithm to minimize a convex
function of power usage and delay that is 3-competitive [4].
SAVE differs from these work in three ways: (i) it leverages
spatio-temporal differences in job arrivals and power prices at



different geographic locations to achieve power cost reduction;
(ii) all work mentioned above except [21] and [20] assume
closed form convex expressions for service delay or convex
delay-cost functions, whereas SAVE does not make these
assumptions as they may not always hold, especially for delay
tolerant jobs; (iii) SAVE does not rely on predictions of
workload arrival processes, as [8] and [4] do.

Power cost reduction across multiple data centers is an
area of active research. Qureshi et al. proposed the idea of
exploiting spatial diversity in power prices to reduce costby
dynamically routing jobs to data centers with lower prices [2].
They also provide a centralized heuristic for doing so that is
similar to the Low Price scheme we evaluated in Section VI.
Rao et al. provide an approximation algorithm for minimizing
the total power cost subject to an average delay constraint
[19], while Liu et al. designed load balancing algorithms to
minimize a metric that combines power and delay costs [3].
Both papers make routing and server on/off decisions based on
predictions on arrival rates and closed form convex expressions
for average delay. [6] makes control decisions at three levels –
server, data center and across multiple data centers – in
one time slot by solving a deterministic convex optimization
problem. All these work have a work conserving scheduler and
only exploit the spatial differences in job arrivals and power
prices. Also, they work on a single time scale. In contrast,
SAVE exploits both the spatial and temporal differences in
job arrivals and power prices by using a non work conserving
scheduler. This leads to greater power cost reductions when
serving delay-tolerant workloads. Moreover, it works on two
time scales to reduce the server on/off frequency.

The Lyapunov optimization technique that we use to de-
sign SAVE was first proposed in [23] for network stabil-
ity problems. It was generalized in [11] for network utility
optimization problems. Recently, Urgaonkar et al. used this
technique to design an algorithm for joint job admission
control, routing, and resource allocation in a virtualizeddata
center [24]. However, they consider power reduction in a
single data center only. To the best of our knowledge, our
work is the first to apply a novel two time scale network
control methodology to distributed workload management for
geographically distributed data centers.

VIII. C ONCLUSIONS

In this paper, we propose a general framework for power
cost reduction in geographically distributed data centers. Our
approach incorporates routing and server management actions
on individual servers, within a data center, and across multiple
data centers, and works at multiple time scales. We show
that our approach has provable performance bounds and is
especially effective in reducing power cost when handling
delay tolerant workloads. We also show that our approach
is robust to workload estimation errors and can result in
significant power consumption reductions.
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